第一篇:分数与整数相乘说课稿
“分数与整数相乘”说课稿
一、说教材
1.教材简析
本节课是在学生理解整数乘法的意义,掌握整数乘法的计算方法;理解分数的意义和基本性质,能正确计算分数加减法的基础上进行教学的。通过本节课的学习,为下面进一步学习分数乘法(包括分数乘整数、分数乘分数),解决分数乘法的简单实际问题,分数除法和分数四则混合运算奠定基础。
这部分教材在编排上有以下几个特点:
(1)把计算学习和解决问题有机结合;
(2)注重计算方法的探索过程。
2.学情分析
对于本节课的内容有的学生并不陌生,有的可能已经会计算分数与整数相乘的算式。但是,这节课的学习对于他们来说并不多余。因为很多学生可能凭借经验只知道怎么算,不知道为什么这样算。尤其是对于分数和整数相乘时,为什么直接将分子与整数相乘的积作分子,而分母不变,学生不一定明确。因此,这节课不能仅仅满足学生会算,更重要的是要关注学生理解为什么可以这样算。
3.教学目标定位
基于教材特点与学生的学情分析,本节课的教学目标确定如下:
(1)了解分数和整数相乘的意义,知道“求几个几分之几相加的和”可以用乘法计算,初步理解并掌握分数与整数相乘的计算方法,学会正确的计算。
(2)通过观察比较等体验性活动,引导学生归纳分数乘整数的计算方法,培养抽象概括的能力。
(3)引导学生探求知识的内在联系,激发学生学习兴趣。
4.教学重难点确立
教学重点:知道“求几个几分之几相加的和”可以用乘法计算,初步理解并掌握分数与整数相乘的计算方法,理解分数与整数相乘的算理。
教学难点:让学生探索、发现能先约分的要先约分,再相乘,这样计算比较简便,而且能减少计算的错误。
二、说教法、学法
根据教学内容的特点以及学生学习的现状,为了有效的突出重点,突破难点,这节课采用自主探究、合作交流的学习方式,让学生在观察的基础上,进行分析、综合、抽象和概括,进而总结分数与整数相乘的计算方法,让学生感受由直观到抽象,由个别到一般的学习模式,学会独立思考,积极交流,实现学习者自觉、积极、主动地建构新知。教师在整个过程中通过创设情境,引导启发,调动学生的积极性让全体学生参与整个学习活动。
三、说教学过程
下面再具体说一下教学环节的设计:
(一)以旧引新,唤醒认知
首先出示如: 4/9+4/9+4/9=
2/7+2/7+2/7+2/7=
让学生先计算,然后思考:这些算式有什么特点,还可以用怎样的形式表示?
设计说明:本节课的知识基础是整数乘法的意义和计算方法,分数加法的计算等。由于时间关系,学生可能对于上述知识点有些遗忘。通过复习热身,试想唤醒学生对乘法的意义以及分数加法计算的认知,调动学生的知识储备,为后面的例题教学作好相应的准备。
(二)情境设疑,探索新知
1.创设情境:学校要举行“国庆”庆祝活动,要求大家做绸花布置环境。
出示:例1中的长方形直条图,标注出长是“1米”
提问:做一朵绸花用3/10米绸带,你能在图中涂色表示这个已知条件吗?
(学生涂色)追问:你是怎么涂色的?
出示问题:小芳做3朵这样的绸花,一共用几分之几米绸带?
这里可以引导学生先猜一猜是几分之几米,再提问:
你能在图中涂色表示做3朵花的米数吗?
你是怎样涂色的?
屏幕上再显示:3/10米就是3个1/10米,3朵花就是3个3/10米。
提问:解决这个问题可以怎样列示?
估计学生可能会列出加法算式,也可能列出乘法算式。
教师在巡视的过程中,注意用加法列式的同学,交流时,指名其先说,并计算出得数。而后再请用乘法算式列式的同学回答。首先追问学生怎么想到用乘法计算?让学生明确相同的分数连加,也可以用乘法表示。通过这第一次的追问,帮助学生理解分数乘整数的意义。
而后再请所有的学生一起思考:3/10×3的得数怎么求。估计学生中一定会出现直接会用3/10的分子3与整数3相乘作分子,用10作分母的计算方法。如果出现这种情况,教师要再一次追问,为什么能这样进行计算?有的学生可能借助图说明算理,有的可能根据乘法和加法的联系来阐述原因。但不管哪一种原因,最后教师都要归纳到分数乘整数的意义角度,即3/10×3就是3/10+3/10+3/10,等于3+3+3/10,就是3×3/10。通过这两次追问,让学生理解分数乘整数的算理。
设计说明:在计算教学中,往往有很多教师只关注教会学生如何算,对为什么可以这样算缺乏足够的重视。因此,造成由于算理不清而导致的只会机械算,不会灵活运用的状况。所以,在这部分的教学中,我通过直观操作,连续追问,帮助学生由“实物感知”向“算理理解”的自然过渡,让学生深入理解算理,让学生明白分数乘整数为什么分母不变,分子与整数相乘作分子的道理。这样做能够很好的突出重点,让学生知其然,知其所以然。
2.自主练习,突破难点:
出示:小华做了5朵这样的绸花,一共用了几分之几米绸带?
让学生自己做再指名板演。肯定会出现“先计算再约分”和“先约分再计算”两种方法。这时就要引导学生进行比较:比较这个算式的两种计算过程,你发现它们有什么相同的地方?有什么不同的地方?
第一种方法是先计算,计算结果不是最简分数的,再约成最简分数;第二种方法是先约分,再算出结果。说明:两种方法都是可以的。计算结果不是最简分数的,要约成最简分数。
出示一组判断题:
(1)2/51×17=34/51(2)3/4×3=1/4
(3)5/12×6=5×6/12=5/2(4)5/6×4=20/6=10/3
比较:你认为哪一种计算方法不容易算错、比较简便?
小结:“先约分再计算”的计算方法,参与计算的数字比原来变小了,这样就便于计算,因此提倡同学们采用这种“先约分再计算”的方法。
请同学们注意约分的书写格式:在约分时,约得的数要与原数上下对齐。
设计说明:虽然在五年级教学分数的基本性质以及分数的加减法,要求学生都要将计算结果约成最简分数。但是在历次作业和检测中,仍然有相当一部分学生由于结果不是最简分数,或者数据较大约错了而导致失分。可见,学生没有化成最简分数的意识,没有养成这种习惯,约分的能力也欠缺。所以这部分的教学设计重在帮助学生突破这一难点。学生在练习时出现两种计算方法,首先要先肯定两种计算过程都是正确的,明确计算结果不是最简分数的,要约成最简分数。接着根据同学们在作业中容易出现的一些问题,出示一组判断题:(1)的结果没有约分成最简分数;(2)是将分子与整数约分,是错误的约分方法;(3)是先约分再计算,是正确的;(4)是先计算再约分,也是正确的。通过这组题的练习,让学生在比较中感受到:先约分再计算,可以使计算时数据小一些,就会减少计算的失误。进而要求学生在今后的计算中采用这种“先约分再计算”的方法。
3.总结归纳:分数和整数相乘可以怎样计算?先同桌商量,再全班交流。
(三)分层练习,强化认知
为了帮助学生巩固新知,我安排了三个层次的练习:
1.巩固分数和整数相乘的意义。
主要是完成“练一练”中的第一题和练习八中的第1题。
“练一练”的第1题,让学生先涂一涂,再列出算式。
练习十八的第1题,让学生看图先填一填,再说说自己的想法。
2.巩固分数乘整数的算理和算法。
“练一练”中的第2题
强化对分数与整数相乘的算理和算法的理解,以及如何正确约分的处理。3.结合实际,解决问题。
练习八的第三、四两题,这两题是分数与整数相乘的实际应用题,通过练习让学生把分数和整数相乘的意义,分数与整数相乘的计算方法有机结合起来。以此体会学习数学的价值,体验数学与生活的联系!
四、说板书设计
分数与整数相乘
3/10×3=3/10+3/10+3/10=3×3/10=9/10米
3/10×5=3×5/10=3/2米
意义:表示几个相同分数相加的和。
计算方法:分母不变,分数的分子和整数相乘作分子。
注意:分子、分母能约分的,可以先约分。
第二篇:《分数与整数相乘》教案
《分数与整数相乘》教案
1.复习导入
(1)师:同学们,你能快速说出以下几道算式的答案吗?
***+++= 9992222++++= 999922222+++„„+(共17个相加)= 99999++=
(2)师引导学生说说如何算的。
(3)师相机总结:17个相加,为了简便可以改写成乘法算式:22×17或者17×,因为求几个相同加数的和可以直接用乘法9929计算。
板书:×17或者17×
(4)这道乘法算式有什么特点,与以前所学的乘法算式有什么不一样?
谈话:今天这节课,我们就一起学习“分数与整数相乘”。(板书课题)2.探究算法 1)出示例1:
①出示例1中长方形直条图,标注出长是“1米”。2929
提问:做一朵绸花用
3米绸带,你能在图中涂色表示这个已知条10件吗?(学生动手涂色)追问:你是怎么涂色的?
3米表示什么? 10
②出示问题(1):小芳做3朵这样的绸花,一共用几分之几米绸带?
提问:你能在图中涂色表示做3朵绸花所用的米数吗?(学生动手涂色)
追问:你是怎样涂色的?
③一共用几分之几米的绸带,你准备怎么列式? 引导生列出加法算式:
乘法算式:
333++ 10101033×3或者3× 1010 师:分数乘法与整数乘法的意义相同,求几个几分之几相加的和也可以直接用乘法计算。2)探究算法
①师谈话:算。
引导学生说说算法,相机总结:可以用加法来推导,也可以根据分数的意义来思考。33×3或者3×怎样计算呢?想一想,并试着计1010小结:计算3/10×3时,可以用3×3的结果作积的分子,积的分母仍然是10
②出示问题2:小华做5朵这样的绸花,一共用几分之几米绸带?
学生尝试列式计算,并指名板演。
评点学生的板演,明确:计算结果不是最简分数时,要通过约分化成最简分数。
③小结计算方法
引导:比较刚才两道乘法算式的计算过程,你发现它们有什么相同的地方?有什么不同的地方?分数与整数相乘,可以怎样计算?
在小组里讨论,交流。
小结:分数与整数相乘,用分数的分子与整数相乘的积作分子,分母不变。
能约分的先约分,再相乘,比较简便。3.巩固提高
“练一练”的第1题,让学生先涂一涂,再列出算式。
练习十八的第1题,让学生看图先填一填,再说说自己的想法。
“练一练”中的第2题
强化对分数与整数相乘的算理和算法的理解,以及如何正确约分的处理。指出:先约分再计算的方法更加简便。
3、练习八的第3、4两题,这两题是分数与整数相乘的实际应用。4.课堂总结
师:今天我们学习了什么内容?
分数乘以整数表示什么意义?举例说明 分数乘以整数怎样计算?计算时应注意什么?
第三篇:《分数与整数相乘》教学设计
授课时间:
****年**月**日
《分数与整数相乘》教学设计
教学目标:
1.使学生通过自主探索,理解分数乘整数的意义与整数乘法相同,初步理解分数乘整数的计算法则。
2.使学生进一步增强运用已有知识经验探索并解决问题的意识,体验探索学习的乐趣。
教学重点与难点:
分数乘整数的意义和计算法则。教具:作业纸 教学过程:
一、复习旧知
教师谈话:同学们,我们已经学会了整数乘法和同分母分数相加的计算方法,大家还记住吗?
师:你觉得用什么方法计算简便?
生:乘法。
师:那在什么情况下用乘法计算呢?
提问:整数乘法的意义是什么呢?
今天我们就来学习与 “同分母分数相加和整数乘法”关系密切的知识。
二、组织探究
1、教学例1。(1)出示例1,教师出示图,标注出长是“1米”
教师:你能在图中涂色表示出这个已知条件吗?
出示问题:小芳做3朵这样的绸花,一共用几分之几米绸带? 你能在图中涂色表示出来吗?学生涂色。
问:解决这个问题可以列怎样的算式?随着学生的回答进行板书 教师:求3个 3/10相加的和还可以用乘法计算,你会列式吗? 学生回答,教师板书: 3/10×3或3×3/10 3个6相加 6+6+6= 或 6X3=
授课时间:
****年**月**日
提问:这个算式中的 3/10是什么数?式中的3是什么数?这就是今天我们学习的新知识——分数乘整数(板书课题)。
教师:由此可以看出,分数乘整数的意义与整数乘法的意义是相同的,都是求几个相同加数的和的简便运算。
(2)探索 学生尝试计算。
启发: 3/10×3的积是多少?你能联系学过的知识来计算吗? 学生试做得出:
提问:分子上的3+3+3用乘法算式怎样表示?(3×3)教师板书:
进一步启发总结分数乘整数的计算法则
提问: 由此你发现分数乘整数是怎样计算的?(分母不变,只用分子与整数相乘)
教师引导学生概括出书上的结语。
教师:以后计算分数乘整数时,不必再写加法算式,直接根据分数乘整数的计算法则进行计算就行了。(3)解决例题的第(2)题
出示:小芳做5朵这样的绸花,一共用几分之几米绸带? 学生尝试列式计算,指名板演。
小结计算方法。
引导:比较刚才两道算式的计算过程,你发现它们有什么相同的地方?有什么不同的地方?分数与整数相乘,可以怎样计算?在小组里交流。
三、练习
1、做“练一练”第1题。
学生按要求在图中涂色,然后列式计算。
做“练一练”第2题。指名板演
四、总结
本节课学习了的新知识是什么?通过学习你有那些收获?还有那些疑问?
五、作业
第四篇:分数与整数相乘教学反思
《分数与整数相乘》教学反思
本节课教学时,我充分发挥了学生的积极主动性,真正地体现了学生的主体地位,教师真正地成为课堂的组织者和引导者。在例1第一问的教学中,先让学生尝试涂色练习,然后通过猜想——观察——发现规律,在小组中交流自己的发现,而在例1的第二问得教学时我采用大胆放手,让学生独立尝试完成,再让自己看书校对,培养学生充分利用课本资源,学会学习,最后集体补充完善分数与整数相乘的计算方法。整节课磕磕碰碰,在学生的对比、发现、交流中学习,同时也反映出一些不足。下面我就这节课的教学谈谈一些感想。
1、充分利用教材资源,概括计算方法和挖掘算理
计算教学的课堂中注重的是讲明算理,掌握算法,一般对于学生来说,是比较单调和枯燥的,为了避免单纯的机械计算,我创设了学生做绸花的实际情境,将计算教学与解决问题有机结合。学生通过观察、涂条形图验证口算3/10×3的答案,再列出算式计算验证,从而有利于理解分数乘法的意义,又渗透了猜想——验证——应用的数学思想。这样处理,既有利于学生主动地把整数乘法的意义推广到分数乘法中来,即分数和整数相乘的意义与整数乘法的意义相同,都是求几个相同加数的和的简便运算,又可以启发学生用加法算出3/10×3的结果。在教学中,我抓住一米绸带的这幅图先让学生涂出3/10米,然后涂出3个3/10米,再列式计算,图形结合,借助图形来说明算理,理解几个相同加数的和用乘法来计算。
在计算教学中,往往有时我们往往会只关注教会学生如何计算,对为什么可以这样计算缺乏足够的重视,而造成了由于算理不清而导致的只会机械计算,不会灵活运用的状况。因此,在这部分的教学中,我通过图文结合,引导观察,巧妙地用色笔作记号,再适时追问,引导学生深入理解算理,让学生明白分数乘整数为什么分母不变,分子与整数相乘的积作分子的道理。这样做能够很好地突出重点,突破难点,让学生知其然,更知其所以然。最后学生归纳、补充,初步感知分数与整数相乘的计算方法。
2、实现教学的个性化,发展学生的能力。
相比去年教学本课时,我又做了大胆地尝试,备这节课时又想起去年执教镇教研课的情景,用同年级的老师的话是“课堂教学流畅,一气呵成,要想有所突破,会很难”。细想感觉学生的积极性是很高,算理也理解得很透彻,但总有种学生是“牵得过多,主观能动性发挥得不太好,所以在教学例1第二问时我改变了原来的方式,大胆放手,先让学生独立尝试计算做5朵这样的绸花要用绸带多少米?再打开书本互相补充学习,并观察比较哪一种方法更好?最后交流完善分数与整数相乘的计算方法(能先约分的要先约分再计算),并互相质疑。其用意是在利用身边的资源,培养学生学会学习,并能将自己的发现用语言表达出来。为“课堂教学过关”做了一次大胆地尝试,但情况不是十分理想,特别是学生的数学语言表达能力不强。在今后的教学中,我要更多地关注学生小组合作学习能力,交流能力,自学能力,引导学生学会学习数学。
通过这节课的改革尝试,我深深体会到:在平时的课堂教学中,我们应该大胆放手让学生去探索、归纳,充分地相信孩子,把学习的主动权交还给孩子,教师要具有引发学生思考的能力,促使形成合作、探索、质疑、互助的良好学习氛围。
第五篇:《分数和整数相乘》教学反思
《分数和整数相乘》教学反思
◆您现在正在阅读的《分数和整数相乘》教学反思文章内容由收集!本站将为您提供更多的精品教学资源!《分数和整数相乘》教学反思五年级的时候学生就接触过分数的加减法,六年级的上册开始就完整了分数的所有运算,本节课是分数乘除法的起始课,所要教学的内容,虽然对于部分学生来说也许并不陌生,估计有学生可能已经会计算分数与整数相乘的算式。但这节课的学习对于他们来说并不多余,因为很多学生可能凭借经验只知道怎么算,但不知道为什么这样算。尤其是对于分数和整数相乘时,为什么直接将分子与整数相乘的积作分子,而分母不变,学生不一定明确。因此,这节课不能仅仅满足学生会算,更重要的是要让学生理解分数与整数相乘的含义,关注学生理解分数与整数相乘的算理,理解和掌握为什么可以这样算?这样做的理由是什么?这样做能够很好的突出重点,突破难点,要让学生不仅知其然,更重要的是知其所以然。
1、重视创设情境,理解意义。
让学生从现实生活中学习数学。本课我创设了同学为迎接国庆节做绸花的实际情境,引导学生根据实际问题的数量关系,列出算式。求三个相同加数的和,可以用加法和乘法列式。这样处理,既有利于学生主动地把整数乘法的意义推广到分数中来,即分数和整数相乘的意义与整数乘法的意义相同,都是求几个相同加数的简便运算,又可以启发学生用加法算出3的结果。
2、重视直观教学,让学生在操作实践中学习数学
导入新课时,我主要采用,引导学生涂色表示3个米,目的是让学生认识到求3个可以用加法计算,也可以用乘法计算,再借助所列的加法算式初步理解分数与整数相乘的意义,并为引导学生探索分数与整数相乘的计算方法进行了知识结构上的铺垫。
3、尝试计算。自主探究新知,理解算理。
借助同分母分数加法,自主探索分数和整数相乘的计算方法。由于分数和整数相乘可以转化成几个相同加数连加的算式,因此,例1放手让学生尝试计算,着重让学生说一说计算的思考过程。
4、多样。有针对性的练习。
在巩固练习中的习题主要是提高学生的技能。一定的技能训练是需要的,熟练的技能也是进一步学习的基础,旨在引导学生要善于结合实际的情境理解分数乘法的意义。我在练习设计时注意设计的练习要有针对性,多样性,激励性,生活性,而不是机械的记忆分数乘法的意义。特别是设计了两个常见的改错题,引发学生自我反思、自我完善计算方法,已达到算法的自主优化。
存在不足:
1、涂色表示3个米处,由于学生速度慢费时较多;在学生探究3的算理时的引导还不够简约有效,使本课有前松后紧之弊。
2、对学生约分的格式和规范方面的要求不够,不利于养成良好的计算习惯。
教学真的是件憾事,细细反思起来,总有需要改进的东西。今后教学中一定要注意这些小细节,争取把课上得更好。