第一篇:一元二次方程应用题(含答案)整理版
一元二次方程应用题
1、某种服装,平均每天可以销售20件,每件盈利44元,在每件降价幅度不超过10元的情况下,若每件降价1元,则每天可多售出5件,如果每天要盈利1600元,每件应降价多少元?
解:设没件降价为x,则可多售出5x件,每件服装盈利44-x元,依题意x≤10
∴(44-x)(20+5x)=1600 展开后化简得:x²-44x+144=0 即(x-36)(x-4)=0 ∴x=4或x=36(舍)即每件降价4元
2.游行队伍有8行12列,后又增加了69人,使得队伍增加的行、列数相同,增加了多少行多少列?
解:设增加x(8+x)(12+x)=96+69 x=3 增加了3行3列
3.某化工材料经售公司购进了一种化工原料,进货价格为每千克30元.物价部门规定其销售单价不得高于每千克70元,也不得低于30元.市场调查发现:单价每千克70元时日均销售60kg;单价每千克降低一元,日均多售2kg。在销售过程中,每天还要支出其他费用500元(天数不足一天时,按一天计算).如果日均获利1950元,求销售单价关系式
解:(1)若销售单价为x元,则每千克降低了(70-x)元,日均多售出2(70-x)千克,日均销售量为[60+2(70-x)]千克,每千克获利(x-30)元.依题意得: y=(x-30)[60+2(70-x)]-500 =-2x^2+260x-6500(30<=x<=70)(2)当日均获利最多时:单价为65元,日均销售量为60+2(70-65)=70kg,那么获总利为1950*7000/70=195000元,当销售单价最高时:单价为70元,日均销售60kg,将这批化工原料全部售完需7000/60约等于117天,那么获总利为(70-30)*7000-117*500=221500 元,而221500>195000时且221500-195000=26500元.∴销售单价最高时获总利最多,且多获利26500元.4.现有长方形纸片一张,长19cm,宽15cm,需要剪去边长多少的小正方形才能做成底面积为77平方cm的无盖长方形的纸盒? 解:设边长x 则(19-2x)(15-2x)=77 4x^2-68x+208=0 x^2-17x+52=0
(x-13)(x-4)=0,当x=13时19-2x<0不合题意,舍去 故x=4 5.某商品进价为每件40元,如果售价为每件50元,每个月可卖出210件,如果售价超过50元,但不超过80元,每件商品的售价每上涨10元,每个月少卖1件,如果售价超过80元后,若再涨价,每件商品的售价每涨1元,每个月少卖3件。设该商品的售价为X元。
(1)、每件商品的利润为
元。若超过50元,但不超过80元,每月售
件。若超过80元,每月售
件。(用X的式子填空。)
(2)、若超过50元但是不超过80元,售价为多少时 利润可达到7200元(3)、若超过80元,售价为多少时利润为7500元。
解: 1)x-40 210-(x-40)10
210-(x-40)10-3(x-80)(2)设售价为a
(a-40)[210-(a-40)10=7200(3)设售价为b
(b-40)[210-(b-40)10-3(b-80)=7500(第2、3问也可设该商品的售价为X1 x2元)
6.某商场销售一批衬衫,平均每天可出售30件,每件赚50元,为扩大销售,加盈利,尽量减少库存,商场决定降价,如果每件降1元,商场平均每天可多卖2件,若商场平均每天要赚2100元,问衬衫降价多少元
解:衬衫降价x元
2100=(50-x)(30+2x)=1500+70x-x^2 x^2-70x+600=0(x-10)(x-60)=0 x-60=0 x=60>50 舍去 x-10=0 x=10
7.一元二次方程解应用题 将进货单价为40元的商品按50元出售时,能卖500个,如果该商品每涨价1元,其销售量就减少10个。商店为了赚取8000元的利润,这种商品的售价应定为多少?应进货多少?
解:利润是标价-进价 设涨价x元,则:(10+x)(500-10x)=8000 5000-100x+500x-10x^2=8000 x^2-40x+300=0(x-20)^2=100 x-20=10或x-20=-10 x=30或x=10 经检验,x的值符合题意 所以售价为80元或60元
所以应进8000/(10+x)=200个或400个
所以应标价为80元或60元 应进200个或400个
当x2=80时,进货量为200个
8.某商店如果将进货价8元的商品按每件10元出售,每天可销售200件,现采用提高售价,减少进货量的方法增加利润,已知这种商品每涨0.5元,其销售量就可以减少10件,问应将售价定为多少时,才能使所赚利润最大,并求出最大利润
24解:设售价定为x元,则每件的利润为
[200(x-8)元,销售量为
x10x1010][20010]0.50.5件,列式得(x-8)
20(x228x160)整理得,20(x14)2720
即当x=14时,所得利润有最大值,最大利润是720元
第二篇:一元二次方程应用题
一元二次方程应用题----销售问题
1、某商场销售一批名牌衬衣,平均每天可售出20件,每件衬衣盈利40元,为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当的降价措施。经调查发现,如果每件衬衣降价1元,商场平均每天可多售出2件。
(1)若商场平均每天盈利1200元,每件衬衣应降价多少元?
(2)若要使商场平均每天的盈利最多,请你为商场设计降价方案。
2、商场某新商品每件的进价是120元,在试销期间发现,当每件商品售价130元时,每天可销售70件,当每件商品售价高于130元时,每涨价1元,日销售量就减少1件。据此规律,请回答:
(1)当每件商品售价定为170元时,每天可销售多少件商品?商场获得的日盈利是多少?
(2)在上述条件不变,商品销售正常的情况下,每件商品的销售价定为多少元时,商品的日利润可达1600元?(提示:盈利=售价-进价)
3、进价为每件30元的某商品,售价为每件60元时,每星期可卖出100件。市场调查反映:如果每件的售价每降低1元,每星期可多卖出20件,但售价不能低于每件50元。设每件降价x元(x为整数),每星期的利润为y元。
(1)求y与x的函数关系并指出自变量x的取值范围。
(2)若某星期的利润为6000元,此利润是否是本月的最大利润,请说明理由。
(3)试分析售价在什么范围内时,每星期的利润不低于5000元?
4、某商品的进价为每件40元,售价为每件50元,每个月可卖出210件;如果每件商品的售价每上涨1元,则每个月少卖10件(每件售价不能高于65元)。设每件商品的售价上涨x元(x为正整数),每个月的销售利润为y元。
(1)求y与x的函数关系式并直接写出自变量x的取值范围;
(2)求每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元?
(3)每件商品的售价定为多少元时,每个月的利润恰为2200元?根据以上结论,请你直接写出售价在什么范围时,每个月的利润不低于2200元?
5、某市场将进价货价为40元/件的商品按60元/件出售,每星期可卖出300件,市场调查反映;如调整价格,没涨价1元/件,每星期该商品要少卖出10件。
(1)请写出该商场每月卖出该商品所获得的利润y(元)与该商品每件涨价x(元)间的函数关系式;
(2)每月该商场销售该种商品获利能否达到6300元?请说明理由;
(3)请分析并回答每件售价在什么范围内,该商场获得的月利润不低于6160元?
6、某宾馆有50个房间供游客住宿,当每个房间的房价为每天180元时,房间会全部注满,当每个房间每天的房价每增加10元时,就会有一个房间空闲,宾馆需对游客居住的每个房间每天支出20元的各种费用。根据规定,每个房间每天的房价不得高于340元。设每个房间的房价每天增加x元(x为10的正整数倍)。
(1)设一天订住得房间数为y,直接写出y与x的函数关系式及自变量x的取值范围;
(2)设宾馆一天的利润为w元,求w与x的函数关系式;
(3)一天订住多少个房间时,宾馆的利润最大?最大利润是多少元?
第三篇:一元二次方程实际问题
例3.某商店经销一种销售成本为每千克40元的水产品,•据市场分析,•若每千克50元销售,一个月能售出500kg,销售单价每涨1元,月销售量就减少10kg,针对这种水产品情况,请解答以下问题:
(1)当销售单价定为每千克55元时,计算销售量和月销售利润.
(2)设销售单价为每千克x元,月销售利润为y元,求y与x的关系式.
(3)商品想在月销售成本不超过10000元的情况下,使得月销售利润达到8000元,销售单价应为多少?
分析:(1)销售单价定为55元,比原来的销售价50元提高5元,因此,销售量就减少5×10kg.
(2)销售利润y=(销售单价x-销售成本40)×销售量[500-10(x-50)]
(3)月销售成本不超过10000元,那么销售量就不超过10000=250kg,在这个提前下,40
•求月销售利润达到8000元,销售单价应为多少.
解:(1)销售量:500-5×10=450(kg);销售利润:450×(55-40)=450×15=6750元
(2)y=(x-40)[500-10(x-50)]=-10x2+1400x-40000
(3)由于水产品不超过10000÷40=250kg,定价为x元,则(x-40)[500-10(x-50)]=8000解得:x1=80,x2=60
当x1=80时,进货500-10(80-50)=200kg<250kg,满足题意.
当x2=60时,进货500-10(60-50)=400kg>250kg,(舍去).
例4.某人将2000元人民币按一年定期存入银行,到期后支取1000元用于购物,剩下的1000元及应得利息又全部按一年定期存入银行,若存款的利率不变,到期后本金和利息共1320元,求这种存款方式的年利率.
分析:设这种存款方式的年利率为x,第一次存2000元取1000元,剩下的本金和利息是1000+2000x·80%;第二次存,本金就变为1000+2000x·80%,其它依此类推.解:设这种存款方式的年利率为x
则:1000+2000x·80%+(1000+2000x·8%)x·80%=1320
整理,得:1280x2+800x+1600x=320,即8x2+15x-2=0
解得:x1=-2(不符,舍去),x2=
答:所求的年利率是12.5%.
1=0.125=12.5% 8
第四篇:一元二次方程应用2010
1、(2009烟台市)某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台.
(1)假设每台冰箱降价x元,商场每天销售这种冰箱的利润是y元,请写出y与x之间的函数表达式;(不要求写自变量的取值范围)
(2)商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元?
2、(2009武汉)某商品的进价为每件40元,售价为每件50元,每个月可卖出210件;如果每件商品的售价每上涨1元,则每个月少卖10件(每件售价不能高于65元).设每件商品的售价上涨x元(x为正整数),每个月的销售利润为y元.
(1)求y与x的函数关系式并直接写出自变量x的取值范围;
(2)每件商品的售价定为多少元时,每个月的利润恰为2200元?
3、某果园有100棵橙子树,每一棵树平均结600个橙子.现准备多种一些橙子树以提高产量,但是如果多种树,那么树之间的距离和每一棵树所接受的阳光就会减少.根据经验估计,每多种一棵树,平均每棵树就会少结5个橙子.⑴利用函数表达式描述橙子的总产量与增种橙子树的棵数之间的关系.(2)增种多少棵橙子,可以使橙子的总产量达到60400个?
4、某商店经销一种销售成本为每千克40元的水产品.据市场分析,若按每千克50元销售,一个月能售出500千克;销售单价每涨1元,月销售量就减少10千克.针对这种水产品的销售情况,请售答以下问题:
(1)当销售单价定为每千克55元时,计算月销售量和月销售利润;
(2)设销售单价为每千克x元,月销售利润为y元,求y与x函数关系式(不必写出x的取值范围);(3)商店想在月销售成本不超过1000元的情况下,使得月销售利润达到8000元,销售单价应定为多少?
5、某化工材料经销公司购进了一种化工原料共7000千克,购进价格为每千克30元.物价部门规定其销售单价不得高于每千克70元,也不得低于30元.市场调查发现:单价定为70元时,日均销售60千克;单价每降低1元,日均多售出2千克.在销售过程中,每天还要支出其他费用500元(天数不足一天时,按整天计算).设销售单价为x元,日均获利为y元.求y关于x的二次函数关系式,并注明x的取值范围;
6、(2009年贵州省黔东南州)凯里市某大型酒店有包房100间,在每天晚餐营业时间,每间包房收包房费100元时,包房便可全部租出;若每间包房收费提高20元,则减少10间包房租出,若每间包房收费再提高20元,则再减少10间包房租出,以每次提高20元的这种方法变化下去。
(1)设每间包房收费提高x(元),则每间包房的收入为y1(元),但会减少y2
间包房租出,请分别写出y1、y2与x之间的函数关系式。
(2)为了投资少而利润大,每间包房提高x(元)后,设酒店老板每天晚餐包房总收入为y(元),请写出y与x之间的函数关系式。
7、(2009年甘肃庆阳)(8分)某企业2006年盈利1500万元,2008年克服全球金融危机的不利影响,仍实现盈利2160万元.从2006年到2008年,如果该企业每年盈利的年增长率相同,求:(1)该企业2007年盈利多少万元?
(2)若该企业盈利的年增长率继续保持不变,预计2009年盈利多少万元?
8、(2009年湖州)随着人民生活水平的不断提高,我市家庭轿车的拥有量逐年增加.据统计,某小区2006年底拥有家庭轿车64辆,2008年底家庭轿车的拥有量达到100辆.(1)若该小区2006年底到2009年底家庭轿车拥有量的年平均增长率都相同,求该小区到2009年底家庭轿车将达到多少辆?
(2)为了缓解停车矛盾,该小区决定投资15万元再建造若干个停车位.据测算,建造费用分别为室内车位5000元/个,露天车位1000元/个,考虑到实际因素,计划露天车位的数量不少于室内车位的2倍,但不超过室内车位的2.5倍,求该小区最多可建两种车位各多少个?试写出所有可能的方案.9.建造一个面积是140平方米的仓库,要求其一边靠墙,墙长16米,在与墙平行的一边开一道2米宽的门。现人32米长的材料来建仓库,求这个仓库的长是多少米?
10、如图在△ABC中,∠B是直角,AB=6厘米,BC=12厘米。点P从A点开始,沿AB方向以每秒1厘米的速度移动,同时点Q从点B开始,沿BC方向以每秒厘米移动。问几秒时△PBQ的面积等于8平方厘米?
11.(2009年甘肃庆阳)若关于x的方程x2
2xk10的一个根是0,则k.
12.、(2009威海)若关于x的一元二次方程x2
(k3)xk0的一个根是2,则另一个根是______.、(2009山西省太原市)某种品牌的手机经过四、五月份连续两次降价,每部售价P 13由3200元降到了2500元.设平均每月降价的百分率为x,根据题意列出的方程是.
第五篇:2014最新人教版一元二次方程 简单
《一元二次方程》单元训练题
班级:姓名:
一、选择题(每小题3分,共24分)
1.方程x2=2x-3化为一般形式后二次项系数、一次项系数和常数项分别为()
A. 1、2、-3B.
1、2、-3C.
1、-
2、3D.1、2、3
2.方程(m2)x23mx10是关于x的一元二次方程,则()
A.m2B.m2C.m2D.m2
3.一元二次方程x2-4=0的解是()
A.x1=2,x2=-2B.x=-2C.x=2D.x1=2,x2=0
4.用配方法解方程x2-4x=-2,下列配方正确的是()
A.(x-2)2=2B.(x+2)2=2C.(x-2)2=-2D.(x-2)2=6
5.已知一元二次方程x2+x-1=0,下列判断正确的是()
A.该方程有两个相等的实数根B.该方程有两个不相等的实数根
C.该方程无实数根D.该方程根的情况不确定
6.若x1、x2是方程x23x50的两个根,则x1x2的值为()
22A.3B.5C.3D.5 7.如果x=4是一元二次方程x3xa的一个根,则常数a的值是()
A.2B.-2C.±2D.±4
8.为了美化环境,某市加大对环境绿化的投资.2009年用于绿化投资20万元,2011年用于绿化投资25万元,求这两年绿化投资的年平均增长率.设这两年绿化投资的年平均增长率为x,根据题意,所列方程为()
A.20x2=25B.20(1+x)=25C.20(1+x)2=25D.20(1+x)+20(1+x)2=25
二、填空题(每小题3分,共21分)
9.一元二次方程x2x的解为:;
10.已知x=2是关于x的一元二次方程x2+4x-p=0的一个根,则p的值是_______.
11.已知
3、-5是关于x的方程x+px+q=0的两根,则 ,.12.已知x2+x-1=0,则3x2+3x-5=_______.
13.三角形的两边长分别为3和4,第三边的长是方程x6x80的一个根,则这个三角形的周长是
14.已知代数式x2x3与x7的值相等,则x的值是.
15.已知方程x-4x+3=0的两根为x1、x2, 则x1+x2=,x1·x2=,三.解下列方程(每小题5分,共20分)
21.x90;2.3x216x. 2222211. x1x
22x4.2x(x3)5x( 33.2x13
四.解答题(共35分)
1.已知x1=-1是方程x2+mx-5=0的一个根,求m的值及方程的另一个根x2.(8分)
4.已知关于x的一元二次方程x+(m+1)x+m+4=0,当m为何值时,方程有两个相等的实数根.(8分)
2.某汽车销售公司2005年盈利1500万元,到2007年盈利2160万元,且从2005年到2007年,每年盈利的年增长率相同.问该公司的年增长率是多少?(8分)
3.商场某种商品平均每天可销售30件,每件盈利50元.为了尽快减少库存,商场决定采取适当的降价措施.经调查发现,每件商品每降价1元,商场平均每天可多售出 2件.
设每件商品降价x元.据此规律,请回答:
(1)商场日销售量增加件,每件商品盈利元(用含x的代数式表示);
(2)在上述条件不变、销售正常情况下,每件商品降价多少元时,商场日盈利可达到2100元?(11分)