塞瓦定理证明

时间:2019-05-15 15:25:59下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《塞瓦定理证明》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《塞瓦定理证明》。

第一篇:塞瓦定理证明

塞瓦定理

在△ABC内任取一点O,直线AO、BO、CO分别交对边于D、E、F,则(BD/DC)*(CE/EA)*(AF/FB)=1证法简介

(Ⅰ)本题可利用梅涅劳斯定理证明:

∵△ADC被直线BOE所截,∴(CB/BD)*(DO/OA)*(AE/EC)=1 ①

而由△ABD被直线COF所截,∴(BC/CD)*(DO/OA)*(AF/FB)=1②②÷①:即得:(BD/DC)*(CE/EA)*(AF/FB)=1

(Ⅱ)也可以利用面积关系证明

∵BD/DC=S△ABD/S△ACD=S△BOD/S△COD=(S△ABD-S△BOD)/(S△ACD-S△COD)=S△AOB/S△AOC ③

同理 CE/EA=S△BOC/ S△AOB ④ AF/FB=S△AOC/S△BOC ⑤

③×④×⑤得BD/DC*CE/EA*AF/FB=1

利用塞瓦定理证明三角形三条高线必交于一点:

设三边AB、BC、AC的垂足分别为D、E、F,根据塞瓦定理逆定理,因为(AD:DB)*(BE:EC)*(CF:FA)=[(CD*ctgA)/[(CD*ctgB)]*[(AE*ctgB)/(AE*ctgC)]*[(BF*ctgC)/[(BF*ctgA)]=1,所以三条高CD、AE、BF交于一点。

可用塞瓦定理证明的其他定理;

三角形三条中线交于一点(重心):如图5 D , E分别为BC , AC 中点 所以BD=DC AE=EC 所以BD/DC=1 CE/EA=1

且因为AF=BF 所以 AF/FB必等于1,所以三角形三条中线交于一点,即为内心

用赛瓦定理还可以证明三条角平分线交于一点

此外,可用定比分点来定义塞瓦定理:

在△ABC的三边BC、CA、AB或其延长线上分别取L、M、N三点,又分比是λ=BL/LC、μ=CM/MA、ν=AN/NB。于是AL、BM、CN三线交于一点的充要条件是λμν=1。(注意与梅涅劳斯定理相区分,那里是λμν=-1

第二篇:正弦定理证明

正弦定理证明1.三角形的正弦定理证明: 步骤1.在锐角△ABC中,设三边为a,b,c。作CH⊥AB垂足为点H CH=a·sinB CH=b·sinA ∴a·sinB=b·sinA 得到

a/sinA=b/sinB 同理,在△ABC中,b/sinB=c/sinC 步骤2.证明a/sinA=b/sinB=c/sinC=2R:

如图,任意三角形ABC,作ABC的外接圆O.作直径BD交⊙O于D.连接DA.因为直径所对的圆周角是直角,所以∠DAB=90度 因为同弧所对的圆周角相等,所以∠D等于∠C.所以c/sinC=c/sinD=BD=2R a/SinA=BC/SinD=BD=2R 类似可证其余两个等式。2.三角形的余弦定理证明:平面几何证法: 在任意△ABC中 做AD⊥BC.∠C所对的边为c,∠B所对的边为b,∠A所对的边为a 则有BD=cosB*c,AD=sinB*c,DC=BC-BD=a-cosB*c 根据勾股定理可得: AC^2=AD^2+DC^2 b^2=(sinB*c)^2+(a-cosB*c)^2 b^2=sin^2B*c^2+a^2+cos^2B*c^2-2ac*cosB b^2=(sin^2B+cos^2B)*c^2-2ac*cosB+a^2 b^2=c^2+a^2-2ac*cosB cosB=(c^2+a^2-b^2)/2ac 3 在△ABC中,AB=c、BC=a、CA=b 则c^2=a^2+b^2-2ab*cosC a^2=b^2+c^2-2bc*cosA b^2=a^2+c^2-2ac*cosB 下面在锐角△中证明第一个等式,在钝角△中证明以此类推。过A作AD⊥BC于D,则BD+CD=a 由勾股定理得:

c^2=(AD)^2+(BD)^2,(AD)^2=b^2-(CD)^2 所以c^2=(AD)^2-(CD)^2+b^2 =(a-CD)^2-(CD)^2+b^2 =a^2-2a*CD +(CD)^2-(CD)^2+b^2 =a^2+b^2-2a*CD 因为cosC=CD/b 所以CD=b*cosC 所以c^2=a^2+b^2-2ab*cosC 题目中^2表示平方。2 谈正、余弦定理的多种证法 聊城二中 魏清泉

正、余弦定理是解三角形强有力的工具,关于这两个定理有好几种不同的证明方法.人教A版教材《数学》(必修5)是用向量的数量积给出证明的,如是在证明正弦定理时用到作辅助单位向量并对向量的等式作同一向量的数量积,这种构思方法过于独特,不易被初学者接受.本文试图通过运用多种方法证明正、余弦定理从而进一步理解正、余弦定理,进一步体会向量的巧妙应用和数学中“数”与“形”的完美结合.定理:在△ABC中,AB=c,AC=b,BC=a,则(1)(正弦定理)= =;(2)(余弦定理)c2=a2+b2-2abcos C, b2=a2+c2-2accos B, a2=b2+c2-2bccos A.一、正弦定理的证明

证法一:如图1,设AD、BE、CF分别是△ABC的三条高。则有 AD=b•sin∠BCA,BE=c•sin∠CAB,CF=a•sin∠ABC。

所以S△ABC=a•b•csin∠BCA =b•c•sin∠CAB =c•a•sin∠ABC.证法二:如图1,设AD、BE、CF分别是△ABC的3条高。则有 AD=b•sin∠BCA=c•sin∠ABC,BE=a•sin∠BCA=c•sin∠CAB。证法三:如图2,设CD=2r是△ABC的外接圆 的直径,则∠DAC=90°,∠ABC=∠ADC。

证法四:如图3,设单位向量j与向量AC垂直。因为AB=AC+CB,所以j•AB=j•(AC+CB)=j•AC+j•CB.因为j•AC=0,j•CB=| j ||CB|cos(90°-∠C)=a•sinC,j•AB=| j ||AB|cos(90°-∠A)=c•sinA.二、余弦定理的证明

法一:在△ABC中,已知,求c。

第三篇:正弦定理证明

正弦定理

1.在一个三角形中,各边和它所对角的正弦的比相等,且等于其外接圆半径的两倍,即

abc2R sinAsinBsinC

证明:如图所示,过B点作圆的直径BD交圆于D点,连结AD BD=2R, 则 D=C,DAB90 在RtABD中 A sinCsinDc 2RD

b c c2R sinCab同理:2R,2R

sinAsinBabc所以2R

sinAsinBsinC2.变式结论

1)a2RsinA,b2RsinB,c2RsinC 2)sinAC

a

B abc ,sinB,sinC2R2R2R3)asinBbsinA,asinCcsinA,csinBbsinC 4)a:b:csinA:sinB:sinC

例题

在ABC中,角A,B,C所对的边分别是a,b,c,若(3bc)cosAacosC,求cosA的值.解:由正弦定理 a2RsinA,b2RsinB,c2RsinC得

(3sinBsinC)cosAsinAcosC

3sinBcosAsin(AC)sin(AC)sinB3sinBcosAsinBB(0,)0sinB1cosA33

第四篇:几何证明定理

几何证明定理

一.直线与平面平行的(判定)

1.判定定理.平面外一条直线如果平行于平面内的一条直线,那么这条直线与这个平面平行.2.应用:反证法(证明直线不平行于平面)

二.平面与平面平行的(判定)

1.判定定理:一个平面上两条相交直线都平行于另一个平面,那么这两个平面平行

2.关键:判定两个平面是否有公共点

三.直线与平面平行的(性质)

1.性质:一条直线与一个平面平行,则过该直线的任一与此平面的交线与该直线平行2.应用:过这条直线做一个平面与已知平面相交,那么交线平行于这条直线

四.平面与平面平行的(性质)

1.性质:如果两个平行平面同时和第三个平面相交,那么他们的交线平行

2.应用:通过做与两个平行平面都相交的平面得到交线,实现线线平行

五:直线与平面垂直的(定理)

1.判定定理:一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直

2.应用:如果一条直线与一个平面垂直,那么这条直线垂直于这个平面内所有的直线(线面垂直→线线垂直)

六.平面与平面的垂直(定理)

1.一个平面过另一个平面的垂线,则这两个平面垂直

(或者做二面角判定)

2.应用:在其中一个平面内找到或做出另一个平面的垂线,即实现线面垂直证面面垂直的转换

七.平面与平面垂直的(性质)

1.性质一:垂直于同一个平面的两条垂线平行

2.性质二:如果两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直

3.性质三:如果两个平面互相垂直,那么经过第一个平面内的一点垂直于第二个平面内的直线,在第一个平面内(性质三没什么用,可以不用记)

以上,是立体几何的定理和性质整理.是一定要记住的基本!

31推论1等腰三角形顶角的平分线平分底边并且垂直于底边

32等腰三角形的顶角平分线、底边上的中线和高互相重合33推论3等边三角形的各角都相等,并且每一个角都等于60°34等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)

35推论1三个角都相等的三角形是等边三角形

36推论2有一个角等于60°的等腰三角形是等边三角形

37在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半

38直角三角形斜边上的中线等于斜边上的一半

39定理线段垂直平分线上的点和这条线段两个端点的距离相等

40逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上

41线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42定理1关于某条直线对称的两个图形是全等形

43定理2如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线

44定理3两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上

45逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称

46勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a+b=c

47勾股定理的逆定理如果三角形的三边长a、b、c有关系a+b=c,那么这个三角形是直角三角形

48定理四边形的内角和等于360°

49四边形的外角和等于360°

50多边形内角和定理n边形的内角的和等于(n-2)×180°

51推论任意多边的外角和等于360°

52平行四边形性质定理1平行四边形的对角相等

53平行四边形性质定理2平行四边形的对边相等

54推论夹在两条平行线间的平行线段相等

55平行四边形性质定理3平行四边形的对角线互相平分

56平行四边形判定定理1两组对角分别相等的四边形是平行四边形

57平行四边形判定定理2两组对边分别相等的四边形是平行四边形

58平行四边形判定定理3对角线互相平分的四边形是平行四边形

59平行四边形判定定理4一组对边平行相等的四边形是平行四边形

60矩形性质定理1矩形的四个角都是直角

61矩形性质定理2矩形的对角线相等

62矩形判定定理1有三个角是直角的四边形是矩形。

第五篇:数学定理证明

一.基本定理: 1.(极限或连续)局部保号性定理(进而证明保序性定理)2.局部有界性定理. 3.拉格朗日中值定理.

4.可微的一元函数取得极值的必要条件. 5.可积函数的变上限积分函数的连续性. 6.牛顿——莱布尼茨公式.

7.多元函数可微的必要条件(连续,可导). 8.可微的二元函数取得极值的必要条件. 9.格林定理.

10.正项级数收敛的充要条件:其部分和数列有界. 11.幂级数绝对收敛性的阿贝尔定理. 12.(数学三、四)利润取得最大值的必要条件是边际成本与边际收入相等. 二.基本方法:

1.等价无穷小替换:若xa时,有(x)~(x),试证明lim(x)f(x)lim(x)f(x)。

xa

xa

2.微元法:若f(x)是区间[a,b](a0)上非负连续函数,试证明曲边梯形D(x,y)axb,0yf(x) 绕 轴旋转,所得的体积为V2

ba

xf(x)dx。

3.常数变易法:若P(x)和Q(x)是连续函数,试证明微分方程yP(x)yQ(x)的通解为

P(x)dxyeC



Q(x)e

P(x)dx

dx。

三.一些反例也是很重要的:

1.函数的导函数不一定是连续函数。反例是:函数点不连续。

2.f(a)0,但不一定存在xa点某个邻域使函数f(x)在该邻域内单调增加。反例是:函数

1

x100x2sin,f(x)x

0,

x0, x0,12

xsin,f(x)x

0,

x0,在x0点可导,但f(x)x0,在x0

3.多元函数可(偏)导点处不一定连续。反例是:函数

xy,2

f(x,y)xy2

0,

(x,y)(0,0),(x,y)(0,0),4.多元函数在不可(偏)导点处,方向导数不一定不存在。反例是:函数 f(x,y)处两个一阶偏导数都不存在,但是函数在在(0,0)点处沿任一方向的方向导数都存在。

an1an

xy

在(0,0)点

5.1,既不是正项级数an收敛的充分条件,也不是它收敛的必要条件。反例一,正项级数

n1

n1

n

1n

an1an

1但不收敛。反例二,正项级数

n1

53(1)

n

不满足

an1an

a2n

,但是它是收敛的。211 a

2n1

下载塞瓦定理证明word格式文档
下载塞瓦定理证明.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    正弦定理证明

    新课标必修数学5“解三角形”内容分析及教学建议江苏省锡山高级中学杨志文新课程必修数学5的内容主要包括解三角形、数列、不等式。这些内容都是高中数学中的传统内容。其中......

    定理与证明

    定理与证明(一)教学建议(一)教材分析1、知识结构2、重点、难点分析重点:真命题的证明步骤与格式.命题的证明步骤与格式是本节的主要内容,是学习数学必具备的能力,在今后的学习中将......

    原创正弦定理证明

    1.直角三角形中:sinA= ,sinB=, sinC=1即c=∴abc, c= ,c=.sinAsinBsinCacbcabc== sinAsinBsinC2.斜三角形中证明一:(等积法)在任意斜△ABC当中S△ABC=absinCacsinBbcsinA两边同除以abc即......

    MM定理证明过程-MM定理证明过程

    1 无税收条件下的MM定理 1.1 假设条件 假设1:无摩擦市场假设  不考虑税收;  公司发行证券无交易成本和交易费用,投资者不必为买卖证券支付任何费用;  无关联交易存在;  不管举......

    MM定理证明过程-MM定理证明过程

    1 无税收条件下的MM定理 1.1 假设条件 假设1:无摩擦市场假设  不考虑税收;  公司发行证券无交易成本和交易费用,投资者不必为买卖证券支付任何费用;  无关联交易存在;  不管举......

    定理与证明(5篇)

    《定理与证明》学案 【学习目标】 1.了解定理,证明的定义。 2.知定理必须证明是正确的命题后才可运用。 (重点) 3.会用几何语言证明一个命题。 (难点) 【问题导学】 1.阅读课本55......

    中心极限定理证明

    中心极限定理证明一、例子高尔顿钉板试验.图中每一个黑点表示钉在板上的一颗钉子.每排钉子等距排列,下一排的每个钉子恰在上一排两相邻钉子之间.假设有排钉子,从入口中处放......

    高中几何证明定理

    高中几何证明定理一.直线与平面平行的(判定)1.判定定理.平面外一条直线如果平行于平面内的一条直线,那么这条直线与这个平面平行.2.应用:反证法(证明直线不平行于平面)二.平......