第一篇:推理及其证明复数的练习题
推理与证明及其复数测试题
i2i3i4
1.(重庆理1)复数1i
1111ii
A.22 B.22
8(2010山东理数)(2)已知
a2ia2i
bi(a,b)bi(a,bii
13.用数学归纳法证明:
∈R),其中i为虚数单位,则a+b=()
11(A)-1(B)1(C)2(D)3 i
9.计算: 1222n2n(n1)
;
1335(2n1)(2n1)2(2n1)D.212i
2.(浙江理)把复数z的共轭复数记作z,i为虚数单位,若z1i,则(1z)
z=
.3-i
B.3+i
C.1+3i
2i
3(山东理2)复数z=2i(i为虚数单位)在复平面内对应的点所
在象限为
A.第一象限
B.第二象限
C.第三象限
4(全国大纲理1)复数z1i,z为z的共轭复数,则zzz1A.2iiC.i类比平面几何中的勾股定理:若直角三角形ABC中的两边AB、AC
互相垂直,则三角形三边长之间满足关系:AB2AC2BC2。
若三棱锥A-BCD的三个侧面ABC、ACD、ADB两两互相垂直,则三棱锥的侧面积与底面积之间满足的关系为.6.设
f0(x)sinx,f1(x)f'
0(x),f2(x)f'1(x),,fn1(x)f'n(x),n∈N,则f2007(x)
A.sinx B.-sinx
C.cosx
D.-cosx
7(上海理19)已知复数z1满足(z12)(1i)1i(i为虚数单位),复数z2的虚部为2,z1z2是实数,求z2。
(1)
2i15
12i
2i
1i2999
2
(2)1+i+3i+…+1000i
D.3
10.△ABC三边长a,b,c的倒数成等差数列,求证:角B 900.D.2i
11.已知ΔABC的三条边分别为a,b,c求证:ab1abc
1c
12.在各项为正的数列an中,数列的前n项和Sn满足
S1n21
a(1)求ana1,a2,a3;(2)由(1)猜想数列ann的通项公式;(3)求Sn
14.用数学归纳法证明:(Ⅰ)72n42n297能被264整除;(Ⅱ)an1(a1)2n1能被a2
a1整除(其中n,a为正整数)
15.用数学归纳法证明:
(Ⅰ)112131412n1n;(Ⅱ)11n
n11n21
n
21(n1);
第二篇:复数与推理证明练习题
复数与推理证明练习题
1.若复数z134i,z212i,则z1z2。2.若复数(1i)(ai)是实数,则实数a。3.已知复数z的实部为1,虚部为2,则
i13iz的虚部为。
4.(i是虚数单位)对应的点在第象限。
5.复数za23a2(lga)i(aR)是纯虚数,则a_________。
6.在平面上,若两个正三角形的边长的比为1:2,则它们的面积比为1:4,类似地,在空间内,若两个正四面体的棱长的比为1:2,则它们的体积比为。7.已知cos
π1π2π1π2π3π1cos=coscos,…,根据这些结果,猜想325547778
出的一般结论是。8.已知:f(x)=
x
1-x
f1(x)=f(x),fn(x)=fn-1(n>1且n∈N),则f3(x)的表达式为
*
______ ______,猜想fn(x)(n∈N*)的表达式为________。
9.设平面内有n条直线(n≥3),其中有且仅有两条直线互相平行,任意三条直线不过同一点.若用f(n)表示这n条直线交点的个数,则f(4)=;当n>4时,(用n表示)f(n)=。
10.设P是ABC内一点,ABC三边上的高分别为hA、hB、hC,P到三边的距离依次为la、lb、lc,则有
lahA
lbhB
lchC
1;类比到空间,设P是四面体ABCD内一点,四顶点
到对面的距离分别是hA、hB、hC、hD,P到这四个面的距离依次是la、lb、lc、ld,则有_________________。
11.在长方形中,设一条对角线与其一顶点出发的两条边所成的角分别是,,则有
coscos1,类比到空间,在长方体中,一条对角线与从某一顶点出发的三条棱
2所成的角分别是,,,则有。12.在等差数列an中,若a100,则有等式a1a2an
类比上述性质,相应地:在等比数列bn中,a1a2a19n(n19,nN)成立,若b91,则有等式 13. 把偶数按一定的规则
排成了如图所示的三角形数表.2设aij(i,j∈N)是位于这个三角形数表中46 从上往下数第i行、从左往右数第j个数,如8 101
2*
a42=16,若aij=2 012,则i与j的和为14161820。
14.现有一个关于平面图形的命题:如图,同一个平面内有两个边长都是a的正方形,其中一个的某顶点在另一个的中心,则这两个正方形重叠 部分的面积恒为
a
.类比到空间,有两个棱长均为a的正方体,其中一个的某顶点在另一
个的中心,则这两个正方体重叠部分的体积恒为。
15.已知扇形的圆心角为2(定值),半径为R(定值),分别按图一、二作扇形的内接矩形,若按图一作出的矩形面积的最大值为为。
2Rtan,则按图二作出的矩形面积的最大值
图一
第15题图
图二
第14题
16.若从点O所作的两条射线OM、ON上分别有点M1、M2与点N1、N2,则三角形面积之比为:
SOM1N1SOM2N
2OMOM
ONON
.若从点O所作的不在同一个平面内的三条射线OP、OQ
和OR上分别有点P1、P2与点Q1、Q2和R1、R2,则类似的结论为:。
17.一同学在电脑中打出如下图若干个圆(○表示空心圆,●表示实心圆)
○●○○●○○○●○○○○●○○○○○●○……
问:到120个圆中有个实心圆。
iii1i
18.求值(1)复数
(2)复数z,求z
(3)若(xi)iy2i,x,yR,求复数xyi
(4)已知复数z1满足(z12)(1i)1i(i为虚数单位),复数z2的虚部为2,且z1z2是实数,求z2.
19.已知abc,且abca
.
20.(1)设函数f(x)
12
x,类比课本中推导等差数列前n项和公式的方法,可求2
得f(4)f(0)f(5)f(6)的值为。
(2)已知数列{an}满足a11,anan1()n(nN*,n≥2),令
Tna12a22an2,类比课本中推导等比数列前n项和公式的方法,可求得3Tnan2
n1
2n
=。
第三篇:推理证明复数
《推理与证明、复数》备课教案
2011-2-14
闫英
一、推理与证明 考纲要求:
(一)合情推理与演绎推理
1.了解合情推理的含义,能利用归纳和类比等进行简单的推理,了解合情推理在数学发现中的作用。2.了解演绎推理的重要性,掌握演绎推理的基本模式,并能运用它们进行一些简单推理。3.了解合情推理和演绎推理之间的联系和差异。
(二)直接证明与间接证明
1.了解直接证明的两种基本方法:分析法和综合法;了解分析法和综合法的思考过程、特点。2.了解间接证明的一种基本方法──反证法;了解反证法的思考过程、特点。
(三)数学归纳法
了解数学归纳法的原理,能用数学归纳法证明一些简单的数学命题.重、难点:推理及证明方法
考向预测:
1.推理与证明的内容是高考的新增内容,主要以选择填空的形式出现。2.推理与证明与数列、几何、等有关内容综合在一起的综合试题多。
二、复数 考纲要求:
(1)在问题情境中了解数系的扩充过程,体会实际需求与数学内部的矛盾在数系扩充过程中的作用,感受人类理性思维的作用以及数与现实世界的联系。
(2)掌握复数的有关概念,如虚数、纯虚数、复数的实部与虚部、两复数相等、复平面、实轴、虚轴、共轭复数、共轭虚数的概念。正确对复数进行分类,掌握数集之间的从属关系;
(3)理解复数的几何意义,初步掌握复数集C和复平面内所有的点所成的集合之间的一一对应关系。(4)能进行复数形式的四则运算,了解复数形式的加、减运算的几何意义。(5)培养学生数形结合的数学思想,训练学生条理的逻辑思维能力. 教学建议
(一)教材分析
1、知识结构
本节首先介绍了复数的有关概念,然后指出复数相等的充要条件,接着介绍了有关复数的几何表示,最后指出了有关共轭复数的概念.
2、重点、难点分析
(1)正确复数的实部与虚部
对于复数 是,虚部是,实部是,虚部是
.注意在说复数
时,一定有,否则,不能说实部,复数的实部和虚部都是实数。
这一标准形式以及
是实数这一概念,这对于解有关复数的问题将有很说明:对于复数的定义,特别要抓住
大的帮助。
(2)正确地对复数进行分类,弄清数集之间的关系
分类要求不重复、不遗漏,同一级分类标准要统一。根据上述原则,复数集的分类如下:
注意分清复数分类中的界限:
①设,则 为实数
②
为虚数
③ 且。④ 为纯虚数 且
(3)不能乱用复数相等的条件解题.用复数相等的条件要注意:
①化为复数的标准形式 ②实部、虚部中的字母为实数,即
(4)在讲复数集与复平面内所有点所成的集合一一对应时,要注意:
①任何一个复数 些书上就是把实数对(②复数 都可以由一个有序实数对()叫做复数的. 用复平面内的点Z()表示.复平面内的点Z的坐标是(),而不是(),也就)唯一确定.这就是说,复数的实质是有序实数对.一是说,复平面内的纵坐标轴上的单位长度是1,而不是 .由于 =0+1·,所以用复平面内的点(0,1)表示 时,这点与原点的距离是1,等于纵轴上的单位长度.这就是说,当我们把纵轴上的点(0,1)标上虚数 时,不能以为这一点到原点的距离就是虚数单位,或者 就是纵轴的单位长度.
③当 数.但当时,时,对任何,是纯虚数,所以纵轴上的点()()都是表示纯虚是实数.所以,纵轴去掉原点后称为虚轴.
由此可见,复平面(也叫高斯平面)与一般的坐标平面(也叫笛卡儿平面)的区别就是复平面的虚轴不包括原点,而一般坐标平面的原点是横、纵坐标轴的公共点.
④复数z=a+bi中的z,书写时小写,复平面内点Z(a,b)中的Z,书写时大写.要学生注意.(5)关于共轭复数的概念
设,则,即
与 的实部相等,虚部互为相反数(不能认为
与 或
是共轭复数).
(6)复数能否比较大小
教材最后指出:“两个复数,如果不全是实数,就不能比较它们的大小”,要注意:
①根据两个复数相等地定义,可知在
两式中,只要有一个不成立,那么
.两个复数,如果不全是实数,只有相等与不等关系,而不能比较它们的大小.
②命题中的“不能比较它们的大小”的确切含义是指:“不论怎样定义两个复数间的一个关系‘<’,都不能使这关系同时满足实数集中大小关系地四条性质”:
三、例题及习题讲解
学案3考点整合、考点精炼、考点二及对应演练、考点七及对应演练。
学案4考点整合、考点精炼、考点一、二、三、及对应演练、考点四七及考点六对应演练。课时作业66:1到8,感受高考;课时作业67:1到6,8,9,10,感受高考
四、讨论复数几何意义讲解到什么程度,是否需要加题。
第四篇:14推理证明和复数
2010届高三第二轮知识点归类
推理证明和复数
一、考纲要求
二、考点考题:
考点1合情推理与演绎推理
题1在等差数列an中,若a100,则有等式a1a2ana1a2a19n(n19,nN)成立,类比上述性质,相应地:在等比数列bn中,若b91,则有等式成立.题2观察下列两式:① tan10tan20tan20tan60tan60tan101 ; ②tan5tan10tan10tan75tan75tan51.分析上面的两式的共同特点,写出反映一般规律的等式,并证明你的结论。
题3(在平面几何中,对于RtABC,设ABc,ACb,BCa,则
(1)abc;(2)cosAcosB1;(3)RtABC的外接圆半径为r.2
把上面的结论类比到空间写出相类似的结论。
xxxx,分别计算f(4)5f(2)g(2)和f(9)5f(3)g(3)的值,,g(x)
并由此概括出涉及函数f(x)和g(x)对所有不等于零的实数x都成立的一个等式,并加以证明。
题4已知函数f(x)
222
题5在DEF中有余弦定理:DEDFEF2DFEFcosDFE.拓展到空间,类比三角形的余弦定理,写出斜三棱柱ABC-A1B1C1的3个侧面面积与其中两个侧面所成二面角之间的关系式
考点2分析法和综合法考点
题6若a6,.13
1313
·1·
2010届高三第二轮知识点归类
题7若|x|1,|y|1,试用分析法证明:|题8已知:a0,b0,求证:
考点3反证法 xy|1.1xyabab ba
2222题9假设a,b,c,dR,且adbc1,求证:abcdabcd1.题10
考点4复数运算
题11(上海卷3)若复数z满足zi(2z)(i是虚数单位),则z=.1+i 题12(北京卷9)已知(ai)2i,其中i是虚数单位,那么实数a题13(江苏卷3)
21i表示为abia,bR,则ab=. 1i
·2·
第五篇:“推理与证明、复数”测试卷
龙源期刊网 http://.cn
“推理与证明、复数”测试卷 作者:
来源:《新高考·高二数学》2013年第03期
一、填空题(共14小题,每小题5分,共70分)