鲁教版初三第三章证明(一)·平行线的性质习题精选(共5篇)

时间:2019-05-13 15:10:08下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《鲁教版初三第三章证明(一)·平行线的性质习题精选》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《鲁教版初三第三章证明(一)·平行线的性质习题精选》。

第一篇:鲁教版初三第三章证明(一)·平行线的性质习题精选

平行线的性质习题精选

1.如图1所示,AB∥CD,则与∠1相等的角(∠1除外)共有()A.5个B.4个C.3个D.2个

A

AC

BD

DA

C

EDFB

B

E

DF

EF

G

(1)(2)(3)(4)(5)2.如图2所示,已知DE∥BC,CD是∠ACB的平分线,∠B=72°,∠ACB=40°,•那么∠BDC等于()A.78°B.90°C.88°D.92°

3.下列说法:①两条直线平行,同旁内角互补;②同位角相等,两直线平行;•③内错角相等,两直线平行;④垂直于同一

直线的两直线平行,其中是平行线的性质的是()A.①B.②和③C.④D.①和④4.若两条平行线被第三条直线所截,则一组同位角的平分线互相()A.垂直B.平行C.重合D.相交

5.如图3所示,CD∥AB,OE平分∠AOD,OF⊥OE,∠D=50°,则∠BOF为()A.35°B.30°C.25°D.20°6.如图4所示,AB∥CD,则∠A+∠E+∠F+∠C等于()A.180°B.360°C.540°D.720°

7.如图5所示,AB∥EF∥CD,EG∥BD,则图中与∠1相等的角(∠1除外)共有()个•A.6B.5C.4D.38.如图6所示,如果DE∥AB,那么∠A+______=180°,或∠B+_____=180°,根据是______;如果∠CED=∠FDE,那么

________∥_________.根据是________.9.如图7所示,一条公路两次拐弯后和原来的方向相同,即拐弯前、•后的两条路平行,若第一次拐角是150°,则第二 次拐角为________.10.如图8所示,AB∥CD,∠D=80°,∠CAD:∠BAC=3:2,则∠CAD=_______,∠ACD=•_______.A

B

FB

D

E

A

A

D

DC

A

B

E

D

C

(6)(7)(8)(9)(10)(11)

11、如图9所示,AD∥BC,∠1=78°,∠2=40°,求∠ADC的度数.12、如图10所示,AB∥CD,AD∥BC,∠A的2倍与∠C的3倍互补,求∠A和∠D的度数.•

13、如图11所示,已知AB∥CD,∠ABE=130°,∠CDE=152°,求∠BED的度数.14、如图12所示,∠1=72°,∠2=72°,∠3=60°,求∠4的度数.(12)

15、如图13所示,已知直线MN的同侧有三个点A,B,C,且AB∥MN,BC∥MN,试说明A,•B,C三点在同一直线上.16、如图14所示,把一张长方形纸片ABCD沿EF折叠,若∠EFG=50°,求∠DEG的度数.M

N

(13)(14)

17、如图所示,已知AB∥CD,分别探索下列四个图形中∠P与∠A,∠C的关系,•请你从所得的四个关系中任选一个加以说明.AP

B

A

PC

D

B

AC

PBD

AC

P

BD

(a)(b)(c)(d)

18、如图15所示,已知AB∥CD,直线EF分别交AB,CD于E,F,EG•平分∠BEF,若∠1=72°,则求∠2的度数。

19.如图16所示,已知直线AB,CD被直线EF所截,若∠1=∠2,•则∠AEF+∠CFE的度数。

20.如图17,E是DF上一点,B是AC上一点,∠1=∠2,∠C=∠D,求证:∠A=∠F。

21.如图18,已知AB∥CD,∠3=30°,∠1=70°,求∠A-∠2的度数.D

E

F

AC

E

B

AD

E

BD

A

231

C

C

BC

B

(15)(16)(17)(18)

第二篇:x平行线性质习题精选

平行线的性质习题精选

一、选择题:(每小题3分,共21分)

1.如图1所示,AB∥CD,则与∠1相等的角(∠1除外)共有()

A.5个B.4个C.3个D.2个

AC

二、填空题:(每小题3分,共9分)

1.如图6所示,如果DE∥AB,那么∠A+______=180°,或∠B+_____=180°,根据

是______;如果、∠CED=∠FDE,那么________∥_________.根据是________.2.如图7所示,一条公路两次拐弯后和原来的方向相同,即拐弯前、•后的两条

路平行,若第一次拐角是150°,则第二次拐角为

________.B

A

B

AD

A

D

CA

EDFB

D

D

(1)(2)(3)

2.如图2所示,已知DE∥BC,CD是∠ACB的平分线,∠B=72°,∠ACB=40°,•那么

∠BDC等于()A.78°B.90°C.88°D.92°

3.下列说法:①两条直线平行,同旁内角互补;②同位角相等,两直线平行;•③内-错角相等,两直线平行;④垂直于同一直线的两直线平行,其中是平行线的性质的是()A.①B.②和③C.④D.①和④4.若两条平行线被第三条直线所截,则一组同位角的平分线互相()A.垂直B.平行C.重合D.相交

5.如图3所示,CD∥AB,OE平分∠AOD,OF⊥OE,∠D=50°,则∠BOF为()A.35°B.30°C.25°D.20°6.如图4所示,AB∥CD,则∠A+∠E+∠F+∠C等于()

A.180°B.360°C.540°D.720°

EF

(7)(8)(9)

3.如图8所示,AB∥CD,∠D=80°,∠CAD:∠BAC=3:2,则∠CAD=_______,∠

ACD=•_______.三、训练平台:(每小题8分,共32分)

1.如图9所示,AD∥BC,∠1=78°,∠2=40°,求∠ADC的度数.2.如图所示,AB∥CD,AD∥BC,∠A的2倍与∠C的3倍互补,求∠A和∠D的度

数.•

D

C

B

E

DA

F

3.如图所示,已知AB∥CD,∠ABE=130°,∠CDE=152°,求∠BED的度数.B

E

C

B

A

(4)(5)(6)

7.如图5所示,AB∥EF∥CD,EG∥BD,则图中与∠1相等的角(∠1除外)共有()•A.6个B.5个C.4个D.3个

4.如图所示,∠1=72°,∠2=72°,∠3=60°,求∠4的度数.四、提高训练:(每小题9分,共18分)

1.如图所示,已知直线MN的同侧有三个点A,B,C,且AB∥MN,BC∥MN,试说明

A,•B,C三点在同一直线上.(1)(2)(3)(4)

六、中考题与竞赛题:(每小题4分,共8分)

1.(2002.河南)如图a所示,已知AB∥CD,直线EF分别交AB,CD于E,F,EG•平分∠BEF,若∠1=72°,则求∠2的度数。

AC

E

B

(a)

D

M

BCN

2.如图所示,把一张长方形纸片ABCD沿EF折叠,若∠EFG=50°,求∠DEG的度

数.A

GM

NE

D

2.(2002.哈尔滨)如图b所示,已知直线AB,CD被直线EF所截,若∠1=∠2,•则∠AEF+∠CFE的度数。

AC

E

BD

B

C

(b)

3.如图,E是DF上一点,B是AC上一点,∠1=∠2,∠C=∠D,求证:

五、探索发现:(共12分)

如图所示,已知AB∥CD,分别探索下列四个图形中∠P与∠A,∠C的关系,•请你从所得的四个关系中任选一个加以说明.AP

∠A=∠F。

D

E

F

B

A

C

D

B

P

AC

BD

AC

P

BD

C

31B

C

B

A

4.如图,已知AB∥CD,∠3=30°,∠1=70°,求∠A-∠2的度数.一.判断题:

1.两条直线被第三条直线所截,只要同旁内角相等,则两条直线一定平行。2.如图①,如果直线l1⊥OB,直线l2⊥OA,那么l1与 l2一定相交。(3.如图②,∵∠GMB=∠HND(已知)∴AB∥CD(同位角相等,两直线平行)(二.填空题:

1.如图③ ∵∠1=∠2,∴ ___∥___()。∵∠2=∠3,∴ ___∥___()。2.如图④ ∵∠1=∠2,∴ ___∥__()。∵∠3=∠4,∴ __∥__()。

3.如图⑤ ∠B=∠D=∠E,那么图形中的平行线有___。4.如图⑥ ∵ AB⊥BD,CD⊥BD(已知)∴ AB∥CD()又∵∠1+∠2 =180(已知)∴ AB∥EF()∴ CD∥EF()三.选择题:

1.如图⑦,∠D=∠EFC,那么()

A.AD∥BC B.AB∥CDC.EF∥BCD.AD∥EF 2.如图⑧,判定AB∥CE的理由是()

A∠B=∠ACEB∠A=∠ECDC∠B=∠ACB D∠A=∠ACE

3.如图⑨,下列推理错误的是()

A.∵∠1=∠3,∴a∥bB.∵∠1=∠2,∴a∥bC.∵∠1=∠2,∴c∥dD.∵∠1=∠2,∴c∥d

4.如图,直线a、b被直线c所截,给出下列条件,①∠1=∠2,②∠3=∠6,③∠4+∠7=180°,④∠5+∠8=180°其中能判断a∥b的是()

3.①③B.②④C.①③④D.①②③④ 四.完成推理,填写推理依据:

1如图⑩ ∵∠B=∠___,∴ AB∥CD()∵∠BGC=∠____,∴ CD∥EF()∵AB∥CD,CD∥EF,∴ AB∥___()2.如图⑾ 填空:

(1)∵∠2=∠3(已知)∴ AB____()(2)∵∠1=∠A(已知)∴_____()(3)∵∠1=∠D(已知)∴_____()(4)∵_______=∠F(已知)∴AC∥DF()3.填空。如图,∵AC⊥AB,BD⊥AB(已知)∴∠CAB=90°,∠______=90°()∴∠CAB=∠___()∵∠CAE=∠DBF(已知)∴∠BAE=∠______∴_____∥_____()4.已知,如图∠1+∠2=180°,填空。

∵∠1+∠2=180°()又∠2=∠3()

∴∠

+∠

180

°∴

_________

()))

五.证明题

1.已知 CE平分∠ACD,∠1=∠B,求证:AB∥CE

2.如图:∠1=53,∠2=127,∠3=53,试说明直线AB与CD,BC与DE的位置关系。

3.如图:已知∠A=∠D,∠B=∠FCB,能否确定ED与CF的位置关系,请说明理由。

.已知:如图,,且

.求证:EC∥DF.5.∠1∶∠2∶∠3 = 2∶3∶4,∠AFE =60°,∠BDE =120°,写出图中平行的直线,并说明理由.

3B D C

图10

6.如图11,直线AB、CD被EF所截,∠1 =∠2,∠CNF =∠BME。求证:AB∥CD,MP∥NQ.E

B A

P

C D

Q F

17.已知:如图:∠AHF+∠FMD=180°,GH平分∠AHM,MN平分∠DMH。求证:GH∥MN。

8.如图已知∠AOE+∠BEF=180°∠AOE+∠CDE=180°,求证:CD∥BE。9.如图,已知:∠A=∠1,∠C=∠2。求证:求证:AB∥CD。

10.如图AB//CD,A120,172则D的度数为

11.如图,己知AB//DE,ABC80,CDE140,则BCD__

12.如图,AB//CD,若ABE120,DCE35,则BEC度.13.如图试探索A,E,C之间具备什么关系时,AB//CD,并说明理由。

6. 已知:如图,AB∥CD,直线EF分别交AB、CD于点E、F,∠BEF的平分线与∠DFE的平分线相交于点P.说明∠P=90.

1、如图,在AB两地之间要修一条笔直的公路,从A地测得公路走向是北偏东48度,A、B两地同时开工,若干天后公路准确接通。

① B地所修公路的走向是南偏西多少度?

② 若公路AB长8千米,另一条公路BC长6千米且BC的走向是北偏西42度,试求A地到公路BC的距离。

2、如图:把一张长方形的纸片ABCD沿EF折叠后,ED交BC于G,点D、C分别落在P、Q位置上,若∠EFG=55度,求∠

1、∠2的度数

3、如图:已知∠1和∠D互余,CF⊥DF,试证明AB∥CD4、如图已知:AB∥CD,∠1=40度,∠2=70度,求∠3的度数

第三篇:平行线的性质学教稿

七年级数学(上)学教稿

课题平行线的性质

制作人:高润平审核人:时间:2013.12 教师寄语;不为失败找借口,只为成功找方法。学习目标:(知道学什么!)

(1)掌握平行线的三个性质,能够进行简单的推理.(2)能区分平行线的性质和判定.温馨提示:(知道怎么学!)

从平行线的判定我们知道,想判定两条线是否平行,只要清楚“同位角、内错角、同旁内角”是否存在相等或互补,就可以准确得出结果。如果知道两直线平行,那么“同位角、内错角、同旁内角” 是否存在相等或互补?同学们大家动手量一量,算一算,结果和你想的一样吗?

课前热身:(温故而知新,大家都知道吧。加油!)

回顾平行线的判断,结合图形说明。即图形语言、符号语言、文字语言之间的相互转化。

课堂探究:(我自信,我参与,我快乐)

一. 自主学习

聚焦目标一

猜想:如果两条直线平行,那么这两条平行线被第三条直线所截而成的同位角有什么数量关系?

聚焦目标二

猜想:如图: 已知:a// b,那么2与3有什么关系?

聚焦目标三

猜想:如图:已知a//b,那么4与 3有什么关系呢?

合作探究:(组长组织组员对自主学习解决不了的问题展开讨论)

二. 展示讲解:(组内解决不了的,由已经掌握的学生展示,学生都不会的教师讲)

三. 分层训练:(一份耕耘,一份收获,仔细梳理,收获一

定不小)

巩固提升:(这里是你展示成果的舞台!)

必做题:(比一比,赛一赛,看看谁最棒)

1.找出图中的同位角,内错角,同旁内角

2.如图,直线a∥b,∠1=54°∠2, ∠3, ∠4各是多少度

?

4.如图是一块梯形铁片的线全部分,量得∠A=100°,∠B=115°,梯形另外两个角分别是多少度?

3.∠1和∠2是直线AB、CD被直线EF所截而成的内错角,那么∠1和∠2 的大小关系是()

A.∠1=∠2B.∠1>∠2;

C.∠1<∠2D.无法确定

选做题:(拼一拼,你一定赢)

1.若两个角的两边互相平行, 那么这两个角的关系是().

A.相等B.互补C.相等且互补D.相等或互补

2.如图,D是AB上一点,E是AC上一点.∠ADE=60 °∠B=60 °

∠AED=40°

(1)DE和BC平行吗?为什么?

(2)∠C是多少度,为什么?

B

学后记:(学习也需要不断反思哦!)

第四篇:平行线的性质(一)

教案背景

课题:5.3.1平行线的性质

(一)教学任务分析

教材分析

板书设计

教学过程设计

教学反思

第五篇:证明、公理、平行线性质定理

证明的必要性、公理与定理、平行线的判定(公)定理、平行线的性质(公)定理

基础知识1.证明:

2.公理:3.定理:

4.等量代换:公理:

5.平行线的判定定理:定理:公理

6.平行线的性质定理定理:基础习题 1.下列说法正确的是()

A.所有的定义都是命题B.所有的定理都是命题

C.所有的公理都是命题D.所有的命题都是定理 22.若P(P5)是一个质数,而P1除以24没有余数,则这种情况()

A.绝不可能B.只是有时可能

C.总是可能D.只有当P=5时可能

3.下列关于两直线平行的叙述不正确的是()

A.同位角相等,两直线平行;B.内错角相等,两直线平行毛

C.同旁内角不互补,两直线不平行;D.如果a∥b,b⊥c,那么a∥c 14.如左图,下列说法错误的是()lllll3A、∵∠1=∠2,∴3∥4B、∵∠3=∠4,∴3∥4 lllll4C、∵∠1=∠3,∴3∥4D、∵∠2=∠3,∴1∥2 ll55.已知:如图,下列条件中,不能判断直线1∥2的()l1A、∠1=∠3B、∠2=∠

3C、∠2=∠4D、∠4+∠5=180 6.若两条平行线被第三条直线所截,则下列说法错误的()l

2A、一对同位角的平分线互相平行B、一对内错角的平分线互相平行

C、一对同旁内角的平分线互相平行D、一对同旁内角的平分线互相垂直

7.如图,AB∥CD,∠α=()BAA、50°B、80°C、85°D、95° C8.已知∠A=50°,∠A的两边分别平行于∠B的两边,则∠B=()AB

A、50°B、130°C、100°D、50°或130° 9.如图,AB∥CD,AD、BC相交于O,∠BAD=35°,∠BOD=76°,则∠C的度数是()A、31°B、35° C、41°D、76°

填空

10.如图,(1)如果AB∥CD,必须具备条件∠______=∠________,D根据是____________________。(2)要使AD∥BC,必须具备条件∠______=∠________,根据是

4____________________。B

11.如图,给出了过直线外一点作已知直线的平行线的方法,其依据是________。

D12.如图,已知∠1=30°,∠B=60°,AB⊥AC。(1)计算:∠DAB+∠B=

(2)AB与CD平行吗?()AD与BC平行吗?()B

简答题:

13.如图,已知∠ADE=60°,DF平分∠ADE,∠1=30°,求证:DF∥BE 证明:∵DF平分∠ADE(已知)A 1∴________=∠ADE()

2∵∠ADE=60°(已知)D∴_________________=30°()

∵∠1=30°(已知)

∴____________________()BC∴____________________()

14.已知:如图,∠B=∠C.(1)若AD∥BC,求证:AD平分∠EAC;

(2)AD平分∠EAC,求证:AD∥BC.15、如图,已知DE∥BC,CD是∠ACB的平分线,∠B=70°,∠ACB=50°,求∠EDC和∠BDC的度数.能力提升

16.(1)如图(1),AB∥EF.求证:(1)∠BCF=∠B+∠F.(2)当点C在直线BF的右侧时,如

图(2),若AB∥EF,则∠BCF与∠B,∠F的关系如何?请说明理由.D

BC

下载鲁教版初三第三章证明(一)·平行线的性质习题精选(共5篇)word格式文档
下载鲁教版初三第三章证明(一)·平行线的性质习题精选(共5篇).doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    平行线的性质及证明 2

    龙华中英文实验学校2013年七(下)初中数学学案(24) 班级学生姓名:日期:月日星期课题:平行线的性质1课型:新授课【学习目标】掌握平行线的性质,并能解决一些问题【学习任务】环节一:课......

    平行线的性质_课后习题答案

    课后习题答案 习题2.4 1.相等.事实上,两个人眼睛所在的水平线是彼此平行的,而两个人的视线与水平线所成的角是一对内错角. 2.∠D,∠C都等于45°,∠B等于135°. 3.∠A,∠E都等于120°,它......

    平行线的性质(一)教案

    平行线的性质(一)教案 教学目标 1.使学生理解平行线的性质和判定的区别. 2.使学生掌握平行线的三个性质,并能运用它们作简单的推理. 重点难点 重点:平行线的三个性质. 难点:平行线的三......

    平行线的性质和判定证明练习题

    1.已知如图,∠BMD=∠BAC, ∠1=∠2,EF⊥BC,求证:AD⊥BC2.已知如图,AC⊥BC,CD⊥AB,FG⊥AB, ∠1=∠2,求证:3.已知如图,∠1=∠2,∠C=∠F,求证∠A=∠DDE⊥AC4. 已知如图, AD⊥BC, EF⊥BC,......

    平行线的有关证明复习一

    平行线的有关证明复习一1.在手工制作课上,小明和小华各自用铁丝制作楼梯模型,如图,他们制作模型所用的铁丝一样长吗?请通过计算说明.2.判断下列说法是否正确,并说明理由.(1)小红的数......

    平行线的性质教学反思一(合集5篇)

    平行线的性质教学反思一: 反思本节课的教学有以下成功之处: 1、这节课是在学生已学习习近平行线判断方法的基础上进行的,所以我通过创设一个疑问:能不能通过两直线平行,来得到同位角......

    平行线的性质1(共五则范文)

    第六周七年级数学晨练(星期四) 一、填空 1.如图1,已知∠1 = 100°,AB∥CD,则∠2 =,∠3 =,∠4 =. 2.如图2,直线AB、CD被EF所截,若∠1 =∠2,则∠AEF +∠CFE =.F 1 BB ED DF B C A B D 图1 图......

    初三数学证明三习题

    九年级上第三章证明(三)达标测试题一、选择题:(每小题4分,共20分)(1)如图,在平行四边形ABCD中,对角线AC、BD相交于点O,若BD、AC的和为18cm,CD:DA=2:3,⊿AOB的周长 D13cm为(A) ,那么BC的长是BC......