第一篇:高数解题技巧
高数解题技巧。高数(上册)期末复习要点
高数(上册)期末复习要点
第一章:
1、极限
2、连续(学会用定义证明一个函数连续,判断间断点类型)
第二章:
1、导数(学会用定义证明一个函数是否可导)注:连续不一定可导,可导一定连续
2、求导法则(背)
3、求导公式 也可以是微分公式
第三章:
1、微分中值定理(一定要熟悉并灵活运用--第一节)
2、洛必达法则
3、泰勒公式 拉格朗日中值定理
4、曲线凹凸性、极值(高中学过,不需要过多复习)
5、曲率公式 曲率半径
第四章、第五章:积分
不定积分:
1、两类换元法
2、分部积分法(注意加C)
定积分:
1、定义
2、反常积分
第六章: 定积分的应用
主要有几类:极坐标、求做功、求面积、求体积、求弧长
第七章:向量问题不会有很难
1、方向余弦
2、向量积
3、空间直线(两直线的夹角、线面夹角、求直线方程)
3、空间平面
4、空间旋转面(柱面)
高数解题技巧。(高等数学、考研数学通用)
高数解题的四种思维定势
●第一句话:在题设条件中给出一个函数f(x)二阶和二阶以上可导,“不管三七二十一”,把f(x)在指定点展成泰勒公式再说。
●第二句话:在题设条件或欲证结论中有定积分表达式时,则“不管三七二十一”先用积分中值定理对该积分式处理一下再说。
●第三句话:在题设条件中函数f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=0或f(b)=0或f(a)=f(b)=0,则“不管三七二十一”先用拉格朗日中值定理处理一下再说。
●第四句话:对定限或变限积分,若被积函数或其主要部分为复合函数,则“不管三七二十一”先做变量替换使之成为简单形式f(u)再说。
线性代数解题的八种思维定势
●第一句话:题设条件与代数余子式Aij或A*有关,则立即联想到用行列式按行(列)展开定理以及AA*=A*A=|A|E。
●第二句话:若涉及到A、B是否可交换,即AB=BA,则立即联想到用逆矩阵的定义去分析。
●第三句话:若题设n阶方阵A满足f(A)=0,要证aA+bE可逆,则先分解因子aA+bE再说。
●第四句话:若要证明一组向量α1,α2,…,αS线性无关,先考虑用定义再说。●第五句话:若已知AB=0,则将B的每列作为Ax=0的解来处理
●第六句话:若由题设条件要求确定参数的取值,联想到是否有某行列式为零再说。
●第七句话:若已知A的特征向量ξ0,则先用定义Aξ0=λ0ξ0处理一下再说。
●第八句话:若要证明抽象n阶实对称矩阵A为正定矩阵,则用定义处理一下再说。
概率解题的九种思维定势
●第一句话:如果要求的是若干事件中“至少”有一个发生的概率,则马上联想到概率加法公式;当事件组相互独立时,用对立事件的概率公式
●第二句话:若给出的试验可分解成(0-1)的n重独立重复试验,则马上联想到Bernoulli试验,及其概率计算公式
●第三句话:若某事件是伴随着一个完备事件组的发生而发生,则马上联想到该事件的发生概率是用全概率公式计算。关键:寻找完备事件组
●第四句话:若题设中给出随机变量X ~ N 则马上联想到标准化 ~ N(0,1)来处理有关问题。
●第五句话:求二维随机变量(X,Y)的边缘分布密度 的问题,应该马上联想到先画出使联合分布密度的区域,然后定出X的变化区间,再在该区间内画一条//y轴的直线,先与区域边界相交的为y的下限,后者为上限,而 的求法类似。●第六句话:欲求二维随机变量(X,Y)满足条件Y≥g(X)或(Y≤g(X))的概率,应该马上联想到二重积分的计算,其积分域D是由联合密度 的平面区域及满足Y≥g(X)或(Y≤g(X))的区域的公共部分。
●第七句话:涉及n次试验某事件发生的次数X的数字特征的问题,马上要联想到对X作(0-1)分解。即令
●第八句话:凡求解各概率分布已知的若干个独立随机变量组成的系统满足某种关系的概率(或已知概率求随机变量个数)的问题,马上联想到用中心极限定理处理。
●第九句话:若 为总体X的一组简单随机样本,则凡是涉及到统计量 的分布问题,一般联想到用卡方分布,t分布和F分布的定义进行讨论。
第二篇:高效法分析:高中生物解题技巧
高效法分析:高中生物解题技巧 高中生物,是高中阶段的一门重要课程。对于理科生来说,尤其如此。要学好高中生物课,不仅要有明确的学习目标,还要有高效的学习方法。《学习科学》高效法是一套针对中学生学习的方法,针对生物学科的特点,以下有几点分析:
一、教科书要熟烂于心
生物,掌握了教材就是取得了一半的成功。书中的图例、实验、涉及的化学式(光合与呼吸),要时常归纳、总结重点。
二、把做题当成积累
在做题中你会逐渐摸清哪些地方经常成为考点。尤其是大题,出题套路会比较固定,答案也很固定。比如一些有“本质是”这样字眼的题一般要答与基因、DNA有关的知识点;又如,问神经递质在神经元之间为什么是单向传递的、要答“神经递质只能由突触前膜释放并作用于突触后膜”。生物是很有规律的一个学科掌握这些常考一些卡点的知识点,会保证得一个中等、稳定的分数。
三、贴心小经验
生物是一个偏文的学科,因此有些知识点一定要记扎实,“当背则背”,没有商量的余地。它不像数学、物理,掌握一个公式、定理,就能在做题是有很大的发挥空间。生物往往会要求你一字不差的答出某概念,所以生物学习有高效的方法很重要。
识图题。注意横纵坐标、交点、拐点、走势、正负半轴所表示的含义。平时要善于总结:种间关系--竞争、捕食、互利共生、寄生的图、光合+呼吸的图(区分好“净光合”即真实光合与表观光合,主要从坐标轴正负判断)等都很重点。
第三篇:高数论文
高数求极限方法小结
高等数学是近代数学的基础,是现代科学技术中应用最广泛的一门学科。在从初等数学这种静态的数量关系的分析到高等数学这种对动态数量关系的研究这一发展过程中,研究对象发生了很大的变化。也正是在这一背景下,极限作为一种研究事物动态数量关系的方法应运而生。极限,在学习高数中具有至关重要的作用。众所周知,高等数学的基础是微积分,而极限又是微积分的基础,我们不难从此看出极限与高等数学之间的相关性。同时根限又将高等数学各重要内容进行了统一,在高等数学中起到了十分重要的作用。极限的概念是高等数学中最重要也是最基本的概念之一。作为研究分析方法的重要理论基础,它是研究函数的导数和定积分的工具,极限的思想和方法也是微积分中的关键内容。在理解的基础上,熟练掌握求极限的方法,能够提高高等数学的学习能力。下面,我总结了一些求极限的方法:
一、几种常见的求极限方法
1、带根式的分式或简单根式加减法求极限:
1)根式相加减或只有分子带根式:用平方差公式,凑平方(有分式又同时出现未知数的不同次幂:将未知数全部化到分子或分母的位置。)
2)分子分母都带根式:将分母分子同时乘以不同的对应分式凑成完全平方式。
2、分子分母都是有界变量与无穷大量加和求极限:
分子分母同时除以该无穷大量以凑出无穷小量与有界变量的乘积结果还是无穷小量。
3、等差数列与等比数列求极限:用求和公式。
4、分母是乘积分子是相同常数的n项的和求极限:列项求和。
5、分子分母都是未知数的不同次幂求极限:看未知数的次幂,分子大为无穷大,分子小为无穷小或须先通分。
6、利用等价无穷小代换: 这种方法的理论基础主要包括:(1)有限个无穷小的和、差、积仍是无穷小。
(有界函数与无穷小的乘积仍是无穷小。(3)非零无穷小与无穷大互为倒数。(等价无穷小代换(当求两个无穷小之比的极限时,分子与分母都可用等价无穷代替。)(5)只能在乘除时使用,但并不是在加减时一定不能用,但是前提必须证明拆开时极限依然存在。)还有就是,一些常用的等价无穷小换
7、洛必达法则:(大题目有时会有提示要你使用这个法则)
首先它的使用有严格的前提!!!!
1、必须是X趋近而不是N趋近!!!(所以当求数列极限时应先转化为相应函数的极限,当然,n趋近是x趋近的一种情况而已。还有一点,数列的n趋近只可能是趋近于正无穷,不可能是负无穷)
2、必须是函数导数存在!!!(假如告诉你g(x),但没告诉你其导数存在,直接用势必会得出错误的结果。)
3、必须是0/0型或无穷比无穷型!!!当然,还要注意分母不能为零。洛必达法则分为三种情况: 1、0/0型或无穷比无穷时候直接用 2、0乘以无穷
无穷减无穷(应为无穷大与无穷小成倒数关系)所以,无穷大都写成无穷小的倒数形式了。通项之后就能变成1中的形式了。3、0的0次方
1的无穷次方
对于(指数幂数)方程,方法主要是取指数还是对数的方法,这样就能把幂上的函数移下来,就是写成0与无穷的形式了。
(这就是为什么只有三种形式的原因)
8.泰勒公式
(含有e的x次方的时候,尤其是含有正余弦的加减的时候,特别要注意!!!)
E的x展开 sina展开 cosa展开 ln(1+x)展开 对题目简化有很大帮助
泰勒中值定理:如果函数f(x)在含有n的某个区间(a,b)内具有直到n+1阶导数,则对任意x属于(a,b),有:
F(x)=f(x0)+
+
+
…………
+
+Rn(X)
其中Rn(X)=。。。。。这里的 ke see 是介于x与x0之间的某个值。
9、夹逼定理
这个主要介绍的是如何用之求数列极限,主要看见极限中的通项是方式和的形式,对之缩小或扩大。
10、无穷小与有界函数的处理方法
面对复杂函数的时候,尤其是正余弦的复杂函数与其他函数相乘的时候,一定注意用这个方法。
面对非常复杂的函数 可能只需要知道他的范围结果就出来了!!!
11、等比等差数列公式的应用(主要对付数列极限)
(q绝对值要小于1)
12、根号套根号型:约分,注意!!别约错了
13、各项拆分相加:(来消掉中间的大多数)(对付的还是数列极限)
可以使用待定系数法来拆分化简函数。
14、利用两个重要极限
这两个极限很重要。。对第一个而言是当X趋近于0的时候sinx比上x的值,第二个x趋近于无穷大或无穷小都有对应的形式
15、利用极限的四则运算法则来求极限
16、求数列极限的时候可以将其转化为定积分来求。
17、利用函数有界原理证明极限的存在性,利用数列的逆推求极限
(1)、单调有界数列必有极限
(2)、单调递增且有上界的数列必有极限,单调递减且有下界的数列必有极限。
18、直接使用1求导的定义求极限
当题目中告诉你F(0)=0,且F(x)的导数为0时,就暗示你一定要用导数的定义:、(1)、设函数y=f(x)在x0的某领域内有定义,当自变量在x在x0处取得增量的他x 时,相应的函数取得增量 的他y=f(的他x+x0)-f(x0)。如果 的他y与 的他x之比的极限存在,则称函数y=f(x)在x0处可导并称这个极限为这个函数的导数。
(2)、在某点处可导的充分必要条件是左右导数都存在且相等。
19、数列极限转化为函数极限求解
数列极限中是n趋近,面对数列极限时,先要转化为x趋近的情况下的极限,当然n趋近是x趋近的一种形式而已,是必要条件。(还有数列的n当然是趋近于正无穷的)
第四篇:高数感悟
学高数感悟
又是一年开学季,我的大一成了过去式,回想大一学习高数的历程,真是感触颇多。大一刚开始学习高数时,就发现与高中截然不同了,大学老师一节课讲的内容很多,速度也很快,我课上没听懂的打算以后找时间再问的,然而不懂的越积越多,能问的时间越来越少。于是期中考只得了二十来分,那时感到害怕极了,感觉期末会挂高数了。但我可不想轻言放弃,于是剩下的半学期,我很认真的对待起高数来。
首先,我开始主动预习课前的内容,然后课上认真听,尽力不让自己睡着,积极标注老师讲的重点,有时没时间预习,就课后看一遍当天讲的内容。看到不懂的题做出了记号,接着就是找时间问同学,这一点真是不容易,有时一道题得问两三个同学才解出来,当然也有些题得问老师才行。问完后,自己又做一遍,真是简单了不少。然后平时的作业也好好做了,尤其是到临近期末时,我更是积极做题,四套模拟练习卷子都写了,应该是能写的都写了。很多题都是自己去找书上近似的题来思考来仿照方法写的。花费的时间可不少,两三个星期的晚上,有时在图书馆,有时在自习室。最后则是参加了老师的答疑,与同学讨论不懂的题型。
功夫不负有心人,最终我的高数是顺利过了,虽然分不高,但也有超高的喜悦感和成就感。现在想想,大学里的课都应重视,只要认真对待,总能学到东西的,只要认真对待,总会过的。
第五篇:高数竞赛(本站推荐)
高数
说明:请用A4纸大小的本来做下面的题目(阴影部分要学完积分之后才能做)
第一章 函数与极限
一、本章主要知识点概述
1、本章重点是函数、极限和连续性概念;函数是高等数学研究的主要对象,而极限是高等数学研究问题、解决问题的主要工具和方法。高等数学中的一些的重要概念,如连续、导数、定积分等,不外乎是不同形式的极限,作为一种思想方法,极限方法贯穿于高等数学的始终。
然而,极限又是一个难学、难懂、难用的概念,究其原因在于,极限集现代数学的两大矛盾于一身。(1)、动与静的矛盾:极限描述的是一个动态的过程,而人的认识能力本质上具有静态的特征。(2)无穷与有穷的矛盾:极限是一个无穷运算,而人的运算能力本质上具有有穷的特征。极限就是在这两大矛盾的运动中产生,这也是极限难学、难懂、难用之所在。
连续性是高等数学研究对象的一个基本性质,又往往作为讨论函数问题的一个先决条件,且与函数的可导性、可积性存在着不可分割的逻辑关系。
2、从2001年第一届天津市大学数学竞赛至今共八届竞赛试题分析,函数极限及其连续性在有的年份占了比较大的比重,连续性、极限与导数、积分等综合的题目也要引起足够的重视;从最近几年的考题也可以看出,有个别题目是研究生入学考试题目的原题,如2004年竞赛试题二为1997年研究生入学考试题目;2006年竞赛试题一为2002年研究生入学考试试题;2005年竞赛试题一为1997年研究生入学考试试题等,这也从侧面反映了部分试题难度系数。
二、证明极限存在及求极限的常用方法
1、用定义证明极限;
2、利用极限的四则运算法则;
3、利用数学公式及其变形求极限;(如分子或分母有理化等)
4、利用极限的夹逼准则求极限;
5、利用等价无穷小的代换求极限;
6、利用变量代换与两个重要极限求极限(也常结合幂指函数极限运算公式求极限);(2)利用洛必达法则求极限;
7、利用中值定理(主要包括泰勒公式)求极限;
8、利用函数的连续性求极限;
9、利用导数的定义求极限;
10、利用定积分的定义求某些和式的极限;11先证明数列极限的存在(常用到“单调有界数列必有极限”的准则,再利用递归关系求极限)
12、数列极限转化为函数极限等。当然,这些方法之间也不是孤立的,如在利用洛必达法则时经常用到变量代换与等价无穷小的代换,这大大简化计算。
对于定积分的定义,要熟悉其定义形式,如
(二)高数
极限的运算
要灵活运用极限的运算方法,如初等变形,不仅是求极限的基本方法之一,也是微分、积分运算中经常使用的方法,常用的有分子或分母有理化、分式通分、三角变换、求和等。
高数
高数
高数
(四)连续函数的性质及有关的证明、极限与导数、积分等结合的综合性题目。
16、(2006年数学一)
(五)无穷小的比较与无穷小的阶的确定常用工具——洛必达法则与泰勒公式。
高数
(六)由极限值确定函数式中的参数
求极限式中的常数,主要根据极限存在这一前提条件,利用初等数学变形、等价无穷小、必
达法则、泰勒公式等来求解。
高数
四、练习题
高数
高数
高数
高数
五、历届竞赛试题
2001年天津市理工类大学数学竞赛
2002年天津市理工类大学数学竞赛
2003年天津市理工类大学数学竞赛
高数
高数
2004年天津市理工类大学数学竞赛
2005年天津市理工类大学数学竞赛
高数
2007年天津市理工类大学数学竞赛
高数
2010年天津市大学数学竞赛一元函数微分学部分试题
一、填空
注:本题为第十届(1998年)北京市大学数学竞赛试题
二、选择
三、计算
四、证明
高数
首届中国大学生数学竞赛赛区赛(初赛)试题2009年
一、填空
二、计算