集合与简易逻辑【概念、方法、题型、易误点及应试技巧总结】

时间:2019-05-13 07:38:28下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《集合与简易逻辑【概念、方法、题型、易误点及应试技巧总结】》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《集合与简易逻辑【概念、方法、题型、易误点及应试技巧总结】》。

第一篇:集合与简易逻辑【概念、方法、题型、易误点及应试技巧总结】

概念、方法、题型、易误点及应试技巧总结

基本概念、公式及方法是数学解题的基础工具和基本技能,为此作为临考前的高三学生,务必首先要掌握高中数学中的概念、公式及基本解题方法,其次要熟悉一些基本题型,明确解题中的易误点,还应了解一些常用结论,最后还要掌握一些的应试技巧。本资料对高中数学所涉及到的概念、公式、常见题型、常用方法和结论及解题中的易误点,按章节进行了系统的整理,最后阐述了考试中的一些常用技巧,相信通过对本资料的认真研读,一定能大幅度地提升高考数学成绩。

集合与简易逻辑

一.集合元素具有确定性、无序性和互异性.在求有关集合问题时,尤其要注意元素的互异性,如

(1)设P、Q为两个非空实数集合,定义集合P+Q={ab|aP,bQ},若P{0,2,5},Q{1,2,6},则P+Q中元素的有________个。

(答:8)

(2)设U{(x,y)|xR,yR},A{(x,y)|2xym0},B{(x,y)|xyn0},那么点P(2,3)A(CuB)的充要条件是________

(答:m1,n5);

(3)非空集合S{1,2,3,4,5},且满足“若aS,则6aS”,这样的S共有_____个

(答:7)

二.遇到AB时,你是否注意到“极端”情况:A或B;同样当AB时,你是否忘记A的情形?要注意到是任何集合的子集,是任何非空集合的真子集。如 集合A{x|ax10},Bx|x23x20,且ABB,则实数a=___.1(答:a0,1,)

2三.对于含有n个元素的有限集合M,其子集、真子集、非空子集、非空真子集的个数依次

2n1,为2n,2n1,2n2.如

满足{1,2}M{1,2,3,4,5}集合M有______个。

(答:7)

四.集合的运算性质:

⑴ABABA;

⑵ABBBA;

⑶AB痧uAuB;

⑷A痧uBuAB;

⑸ðuABUAB;

⑹CU(AB)CUACUB;

⑺CU(AB)CUACUB.如:设全集U{1,2,3,4,5},若AB{2},(CUA)B{4},(CUA)(CUB){1,5},则A=_____,B=___.(答:A{2,3},B{2,4})

五.研究集合问题,一定要理解集合的意义――抓住集合的代表元素。如:x|ylgx—函数的定义域;y|ylgx—函数的值域;(x,y)|ylgx—函数图象上的点集,如

(1)

设集合M{x|y,集合N=y|yx2,xM,则MN___

(答:[4,));



(2)设集合M{a|a(1,2)(3,4),R,N{a|a(2,3)(4,5),R},则MN_____

(答:{(2,2)})

六.数轴和韦恩图是进行交、并、补运算的有力工具,在具体计算时不要忘了集合本身和空集这两种特殊情况,补集思想常运用于解决否定型或正面较复杂的有关问题。如:

已知函数f(x)4x22(p2)x2p2p1在区间[1,1]上至少存在一个实数c,使f(c)0,求实数p的取值范围。

(答:(3,))

七.复合命题真假的判断。“或命题”的真假特点是“一真即真,要假全假”;“且命题”的真假特点是“一假即假,要真全真”;“非命题”的真假特点是“真假相反”。如: 在下列说法中:⑴“p且q”为真是“p或q”为真的充分不必要条件;⑵“p且q”为假是“p或q”为真的充分不必要条件;⑶“p或q”为真是“非p”为假的必要不充分条件;⑷“非p”为真是“p且q”为假的必要不充分条件。其中正确的是__________

(答:⑴⑶)

八.四种命题及其相互关系。若原命题是“若p则q”,则逆命题为“若q则p”;否命题为“若

﹁p 则﹁q” ;逆否命题为“若﹁q 则﹁p”。提醒:

(1)互为逆否关系的命题是等价命题,即原命题与逆否命题同真、同假;逆命题与否命题同真同假。但原命题与逆命题、否命题都不等价;(2)在写出一个含有“或”、“且”命题的否命题时,要注意“非或即且,非且即或”;(3)要注意区别“否命题”与“命题的否定”:否命题要对命题的条件和结论都否定,而命题的否定仅对命题的结论否定;

(4)对于条件或结论是不等关系或否定式的命题,一般利用等价关系“ABBA”判断其真假,这也是反证法的理论依据。(5)哪些命题宜用反证法? 如:

(1)“在△ABC中,若∠C=900,则∠A、∠B都是锐角”的否命题为__________

(答:在ABC中,若C90,则A,B不都是锐角); x

2,a1,证明方程f(x)0没有负数根。(2)已知函数f(x)ax

x

1九.充要条件。关键是分清条件和结论(划主谓宾),由条件可推出结论,条件是结论成立的充分条件;由结论可推出条件,则条件是结论成立的必要条件。从集合角度解释,若AB,则A是B的充分条件;若BA,则A是B的必要条件;若A=B,则A是B的充要条件。如:(1)给出下列命题:

① 实数a0是直线ax2y1与2ax2y3平行的充要条件; ② 若a,bR,ab0是abab成立的充要条件;

③ 已知x,yR,“若xy0,则x0或y0”的逆否命题是“若x0或y0则xy0”;

④“若a和b都是偶数,则ab是偶数”的否命题是假命题。

其中正确命题的序号是_______

(答:①④);

(2)设命题p:|4x3|1;命题q:x2(2a1)xa(a1)0。若┐p是┐q的必要而不充分的条件,则实数a的取值范围是

(答:[0,])

十.一元一次不等式的解法:通过去分母、去括号、移项、合并同类项等步骤化为axb的bb

形式,若a0,则x;若a0,则x;若a0,则当b0时,xR;当b0时,x。

aa

已知关于x的不等式(ab)x(2a3b)0的解集为(,),则关于x的不等式

(a3b)x(b2a)0的解集为_______

(答:{x|x3})

十一.一元二次不等式的解集(联系图象)。尤其当0和0时的解集你会正确表示吗?

设a0,x,x是方程ax2bxc0的两实根,且xx,则其解集如下表: 如解关于x的不等式:ax(a1)x10。

(答:当a0时,x1;当a0时,x1或x当a1时,1

11x;;当0a1时,当a1时,x;

aa

x1)a

十二.对于方程ax2bxc0有实数解的问题。首先要讨论最高次项系数a是否为0,其次

若a0,则一定有b24ac0。对于多项式方程、不等式、函数的最高次项中含有参数时,你是否注意到同样的情形? 如:(1)a2x22a2x10对一切xR恒成立,则a的取值范围是_______

(答:(1,2]);(2)关于x的方程f(x)k有解的条件是什么?(答:kD,其中D为f(x)的值域),特别

地,若在[0,]内有两个不等的实根满足等式cos2x2xk1,则实数k的范围是

_______.(答:[0,1))

十三.一元二次方程根的分布理论。方程f(x)ax2bxc0(a0)在(k,)上有两根、在(m,n)上有两根、在(,k)和(k,)上各有一根的充要条件分别是什么?

0f(m)0、f(k)0)。根的分布理论成立的前提是开f(n)0

mbn2a

f(x)0有实数解的情况,可先利用在开区间(m,n)上实根分布的情况,得出结果,再令xn和xm检查端点的情况.

b

2如实系数方程x2ax2b0的一根大于0且小于1,另一根大于1且小于2,则的取值

a

1范围是_________

(答:(,1))

0

(f(k)0、b

k2a

十四.二次方程、二次不等式、二次函数间的联系你了解了吗?二次方程ax2bxc0的两

个根即为二次不等式ax2bxc0(0)的解集的端点值,也是二次函数yax2bxc的图象与x轴的交点的横坐标。

如(1)ax的解集是(4,b),则a=__________

(答:);

(2)若关于x的不等式ax2bxc0的解集为(,m)(n,),其中mn0,则关于x的不等式cx2bxa0的解集为________

(答:(,

11)(,)); mn

(3)不等式3x22bx10对x[1,2]恒成立,则实数b的取值范围是_______

(答:)。

第二篇:概念、方法、题型、易误点及应试技巧总结:一、集合与简易逻辑

概念、方法、题型、易误点及应试技巧

9、已知函数f(x)4x22(p2)x2p2p1在区间[1,1]上至少存在一个实数c,使f(c)0,求实数p的取值范围。(答:(3,))

3考点7.复合命题真假的判断。“或命题”的真假特点是“一真即真,要假全假”;“且命题”的真假特点是“一假即假,要真全真”;“非命题”的真假特点是“真假相反”。例10在下列说法中: ⑴“p且q”为真是“p或q”为真的充分不必要条件;

⑵“p且q”为假是“p或q”为真的充分不必要条件; ⑶“p或q”为真是“非p”为假的必要不充分条件; ⑷“非p”为真是“p且q”为假的必要不充分条件。其中正确的是__________(答:⑴⑶)

考点8.四种命题及其相互关系。若原命题是“若p则q”,则逆命题为“若q则p”;否命题为“若﹁p 则﹁q” ;逆否命题为“若﹁q 则﹁p”。提醒:(1)互为逆否关系的命题是等价命题,即原命题与逆否命题同真、同假;逆命题与否命题同真同假。但原命题与逆命题、否命题都不等价;(2)在写出一个含有“或”、“且”命题的否命题时,要注意“非或即且,非且即或”;(3)要注意区别“否命题”与“命题的否定”:否命题要对命题的条件和结论都否定,而命题的否定仅对命题的结论否定;(4)对于条件或结论是不等关系或否定式的命题,一般利用等价关系“ABBA”判断其真假,这也是反证法的理论依据。例

11、“在△ABC中,若∠C=900,则∠A、∠B都是锐角”的否命题为; C90,则A,B不都是锐角)

12、命题p:“有些三角形是等腰三角形”,则┐p是()A.有些三角形不是等腰三角形B.所有三角形是等腰三角形

C.所有三角形不是等腰三角形D.所有三角形是等腰三角形

解析:像这种存在性命题的否定命题也有其规律:命题p:“存在xA使P(x)成立”,┐p为:“对任意,它恰与全称性命题的否定命题相反,故的答案为C。xA,有P(x)不成立”

13、用反证法证明:已知x、y∈R,x+y≥2,求 证x、y中至少有一个不小于1。证明:假设x<1且y<1,由不等式同向相加的性质x+y<2与已知x+y≥2矛盾, ∴ 假设不成立∴ x、y中至少有一个不小于

1[注]反证法的理论依据是:欲证“若p则q”为真,先证“若p则非q”为假,因在条件p下,q与非q是对立事件(不能同时成立,但必有一个成立),所以当“若p则非q”为假时,“若p则q”一定为真。

考点9.充要条件。关键是分清条件和结论(划主谓宾),由条件可推出结论,条件是结论成立的充分条件;由结论可推出条件,则条件是结论成立的必要条件。从集合角度解释,若AB,则A是B的充分条件;若BA,则A是B的必要条件;若A=B,则A是B的充要条件。

例14给出下列命题:①实数a0是直线ax2y1与2ax2y3平行的充要条件;②若“若xy0,则x0或y0”的a,bR,ab0是abab成立的充要条件;③已知x,yR,

(答:在ABC中,若

逆否命题是“若x0或y0则xy0”;④“若a和b都是偶数,则ab是偶数”的否命题是假命题。其中正确命题的序号是_______(答:①④);

例15设命题p:|4x3|1;命题q:x2(2a1)xa(a1)0。若┐p是┐q的必要而不充分的条件,则实数a的取值范围是(答:[0,])

考点10.一元一次不等式的解法:通过去分母、去括号、移项、合并同类项等步骤化为axb的形式,若

a0,则x

ba

;若a0,则x

ba

;若a0,则当b0时,xR;当b0时,x。

例16已知关于x的不等式(ab)x(2a3b)0的解集为(,),则关于x的不等式

(a3b)x(b2a)0的解集为_______(答:{x|x3})

考点11.一元二次不等式的解集(联系图象)。设a0,x1,x2是方程ax2bxc0的两实根,且x1x2,例17解关于x的不等式:ax(a1)x10。(答:当a0时,x1;当a0时,x1或x当a1时,1a

x1)

1a

;当0a1时,1x

1a

;当a1时,x;

考点12.对于方程ax2bxc0有实数解的问题。首先要讨论最高次项系数a是否为0,其次若a0,则一定有b24ac0。对于多项式方程、不等式、函数的最高次项中含有参数时,注意同样的情形。

18、a2x2a2x10对一切xR恒成立,则a的取值范围是_______(答:(1,2]);

例19若在[0,

]内有两个不等的实根满足等式cos2x

2xk1,则实数k的范围是_______.(答:[0,1))

考点13.二次方程、二次不等式、二次函数间的联系。二次方程ax2bxc0的两个根即为二次不等式22

axbxc0(0)的解集的端点值,也是二次函数yaxbxc的图象与x轴的交点的横坐标。例20

ax

例21若关于x的不等式axbxc0的解集为(,m)(n,),其中mn0,则关于x的不等

32的解集是(4,b),则a=__________(答:

18);

式cxbxa0的解集为________(答:(,

例23不等式3x2bx10对x[1,2]恒成立,则实数b的取值范围是_______(答:)。

1m)(

1n,));

第三篇:集合与简易逻辑测试题(高中)

思南县第九中学2015届高三第一轮复习《集合与简易逻辑》单元测试

一、单项选择题(本大题共10小题,每小题5分)

1.设合集U=R,集合M{x|x1},P{x|x21},则下列关系中正确的是()A.M=P B.

MP C. P

M D.MP 2.如果集合U1,2,3,4,5,6,7,8,A2,5,8,B1,3,5,7,那么(U

()

(A)充分非必要条件(C)充要条件9.“m

(B)必要非充分条件

(D)既非充分又非必要条件

”是“直线

2(m2)x3my10与直线(m2)x(m2)y30相互垂直”的(B)充分而不必要条件

3.设P、Q为两个非空实数集合,定义集合足的关系是()P+Q={ab|aP,bQ},若P{0,2,5},111111101010(D)a、b的(A)(B)(C)()Q{1,2,6},则P+Q中元素的个数是()

ababab

(A)6(B)7(C)8(D)9

关系不能确定

4.设集合Ax|1x2,Bx|xa,若AB,则a的取值

二、填空题(本大题共5小题,每小题5分,共25分,把答案填在题中横线上)

范围是()

11.对任意实数a,b,c,给出下列命题:

(A)a2(B)a2(C)a1(D)1a

2①“ab”是“acbc”充要条件;②“a5是无理数”是“a是无理数”

x

15. 集合A={x|<0},B={x || x -b|<a},若“a=1”是“A∩B≠”的充要条件

x1

③“a>b”是“a2>b2”的充分条件;④“a<5”是“a<3”的必要条件.的充分条件,则b的取值范围是()

其中为真命题的是(A)-2≤b<0(B)0<b≤2(C)-3<b<-1(D)-1≤b<2 6.设集合A={x|

A)B等于()

(D)既不充分也不必要条件

(A)5(B)1,3,4,5,6,7,8(C)2,8(D)1,3,710.已知0a1b,不等式lg(axbx)1的解集是{x|1x0},则a,b满

()

(A)充分必要条件(C)必要而不充分条件

x1

<0},B={x || x -1|<a},若“a=1”是“A∩B≠x1

12.若集合A1,3,x,B1,x

,且AB1,3,x,则x

213.两个三角形面积相等且两边对应相等,是两个三角形全等的条件 φ ”的()(A)充分不必要条件(B)必要不充分条件(C)充要条件(D)

既不充分又不必要条件

14.若(x1)(y2)0,则x1或y2的否命题是

7.已知p:225,q:32,则下列判断中,错误的是..()

(A)p或q为真,非q为假(B)p或q为真,非p为真(C)p且q为假,非p为假(D)p且q为假,p或q为真

8.a1、b1、c1、a2、b2、c2均为非零实数,不等式a1x2+b1x+c1<0和a2x2+b2x

15.已知集合M={x|1≤x≤10,x∈N},对它的非空子集A,将A中每个元素k,都乘以(-1)k再求和(如A={1,3,6},可求得和为(-1)·1+(-1)3·3+(-1)6·6=2,则对M的所有非空子集,这些和的总和是.

三、解答题(本大题共6小题,共74分,解答应写出文字说明,证明过程或演算

abc

+c2<0的解集分别为集合M和N,那么“111”是“M=N”步骤)

a2b2c

216.(本小题满分12分)

x(x21)(x1)(x2x1)

用列举法写出集合xZ|

12x3(x9)

17.(本小题满分12分)

已知p:方程x+mx+1=0有两个不等的负实根,q:方程4x+4(m-2)x+1=0无实根。若p或q 为真,p且q为假。求实数m的取值范围。18.(本小题满分12分)设aR,函数f(x)

ax2x2若a.f(x)0的解集为A,21.(本小题满分14分)

已知函数f(x)lg(x2axb)的定义域为集合A,函数

g(x)kx24xk

3的定义域为集合B,若

(CRA)BB,(CRA)B{x|2x3},求实数a,b的值及实数k的取值

范围.思南第九中学《集合与简易逻辑》单元测试题参考答案

一、选择题:

1、C;

2、D;

3、C;

4、C;

5、D;

6、A;

7、C;

8、D;

9、B;

10、B;

5.答案:D评述:本题考查了分式不等式,绝对值不等式的解法,及充分必要条件相关内容。

解:由题意得:A:-1

则A:-1

6.答案:A评述:本题考查分式不等式,绝对值不等式的解法,充分必要条件等知识.解:由题意得A:-1

1(1)由a=1.A:-1

Bx|1x3,AB,求实数a的取值范围。

19.(本小题满分12分)

解关于x的不等式:(x2)(ax2)020.(本小题满分13分)

已知集合A={x|| x

|≤

1

3}, 集合B={y| y= -cos2x-2asinx+,22

2

x∈A}, 其中≤a≤, 设全集U=R, 欲使BA, 求实数a的取值范围.6

分性成立.(2)反之:AB,不一定推得a=1,如a可能为

1.2

综合得.”a=1”是: AB”的充分非必要条件.故选A.二、填空题:

11、②④ ;

12、3;0;

13、必要不充分;

14、若x1y20,则x1且y2;

15、2560

三、解答题:

16、{1,2,3,4,5};

17、由题意p,q中有且仅有一为真,一为假,p真

0x1x2m0m>2,q真<01

210若p假q真,则m2

31

18、解:

aR,当a=0时,f(x)=-2x,A={xx<0},AB=

∴a0,令f(x)=0

解得其两根为x11

a1x2a由此可知x10,x20

(i)当a0时,A{x|xx1}{x|xx2}

AB的充要条件是x

3,即1a623解得a7

(ii)当a0时,A{x|x1xx2}

AB的充要条件是x2

1,即1a1解得a

2综上,使AB成立的a的取值范围为(,2)(6

7,)

a1,x2

a或x2a1,x219、

0a1,x2或x

2

a

a0,x2

a0,2ax220、解: 集合A={x|-6

≤x≤5226}, y=sinx-2asinx+1=(sinx-a)+1-a

2.∵x∈

A, ∴sinx∈[12,1].①若6

≤a≤1, 则y2122

5min=1-a, ymax=(-2-a)+1-a=a+4.又∵

6

≤a≤1, ∴B非空(B≠φ).∴B={y|1-a2≤y≤a+52

4}.欲使BA, 则联立1-a

≥-6和a+54≤56,解得

6≤a≤1.②若1

4}.欲使BA, 则联立2-2a≥-6

和a+54≤56

解得a≤1+12.又1

12.综上知a的取值范围是

[

6,1+12].21、解:A{x|x2

axb0},B{x|kx4xk30,kR}

(CRA)BB,BCRA,又(CRA)B{x|2x3} CRA{x|2x3}.A{x|x2或x3}

即不等式x2

axb0的解集为{x|x2或x3}a1,b6

由B且BC2

RA可得,方程F(x)kx4xk30的两根都在[2,3]内

k0

0

3

F(2)0解得4k



F(3)0



22k3故a1,b6,2k[4,3

]

第四篇:期中考试应试技巧与总结

华附在线学习中心

期中考试应试技巧与总结

爱学网编辑

期中考试临近,很多同学都感觉到了空前的学习压力。然而,最终考试成绩的取得一方面是对基础知识的掌握,另一方面就是考试中的技巧了。有的同学平时学习成绩好,但在考试中往往出现发挥不佳的情况;另外,相当一部分同学总感觉考试时间不够用,也是缺乏应试技巧的表现。下面就针对同学们考试中存在的情况谈一谈具体的应试技巧。

一、自我暗示,消除焦虑

考试一旦怯场,面对试题就会头脑空空,平时熟悉的公式、定理回忆起来也变得困难,注意力不能集中,等到心情平静下来,已浪费了许多时间,看到许多未作的题目,则会再次紧张,形成恶性循环。这时要迅速进行心理调节,使自己快速进入正常应考状态,可采用以下两种方法调节焦虑情绪:

①自我暗示法。用平时自己考试中曾有优异成绩来不断暗示自己:我是考生中的佼佼者;我一定能考得理想的成绩;我虽然有困难的题目,但别人不会做的题目也很多。

②决战决胜法。视考场为考试的大敌,用过去因怯场而失败的教训鞭策自己决战决胜。

二、整体浏览,了解卷情

拿到试卷后,看看这份试卷尽早调换,避免不必要的损失;重要的是初步了解下试卷的难易度,避免会做的没有做,不会做的却浪费了时间。

三、“两先两后”,合理安排

试卷的难易、此时大脑里的思维状态由启动阶段进入亢奋阶段。解题应注意“两先两后”的安排:

但这同样一个题目,对他人来说是难的,对自己来说也许是容易的,“这个题目做不出,下面的题目更别提了。”事实情况往往是:下面一个题目反而容易!由此,不可拘泥于从前往后的顺序,根据情况可以先绕开那些难攻的堡垒,等容易题解答完,再集中火力攻克之。

②先熟后生。通览全卷后,考生会看到较多的驾轻就熟的题目,也可能看到一些生题或新型题,对前者--熟悉的内容可以采取先答的方式。万一哪个题目偏难,也不要惊慌失措,而要冷静思考,变生为熟,想一想能不能把所谓的生题化解为若干个熟悉的小问题,或转化为熟悉的题型。总之要记住一句名言:“我易人易,我不大意;我难人难,我不畏难”。

四、“一慢一快”,慢中求快

一慢一快,指的是审题要慢要细,做题要快。题目本身是解题方法、技巧的信息源,特别是每卷必有的选择题中的题干中有许多解答该题的规定性。例如:选出完全正确的一项还是错误的一项,选一项还是两项等,这些一定要在读题时耐心地把它们读透,弄清要求,否则是在做无用功。考卷大多是容易的,在大家容易的情况下就看谁更细心,而细心最主要的就是审题时要慢要细心。

当找到解决问题的思路和方法后,答题时速度应快。做到这一点可从两方面入手:一是书写速度应快,不慢慢吞吞;二是书写的内容要简明扼要,不拖泥带水、啰嗦重复,尽量写出得分点就行了。

华附在线学习中心

五、分段得分,每分必争

考试中,有的同学写出的最终答案是错误的,但依然得了分,这说明写出了得分点。而有的同学甚至一点解题思路都没有,只是将公式进行了罗列,也依然得到了分,都是同样的道理。尤其是有问的解答中,如果第一个不会千万不要放弃,一定要浏览完全部的问题,做到每分必争,切忌出现大量空题的情况。

对于会做的题目。对会做的题目要解决对而不全的老大难问题,如果出现跳步,往往就会造成丢分的情况,因此,答题过程一定规范,重要步骤不可遗漏,这就是分段得分。对于不会做的题目,这里又分两种情况,一种是一大题分几小题的,一种是一大题只有一问的。对于前者,我们的策略是“跳步解答”,第一小题答不出来,就把第一小题作为已知条件,用来解答第二小题,只要答得对,第二小题照样得分。对于后者,我们的策略是“缺步解题”,能演算到什么程度就什么程度,不强求结论。这样可以最大程度地得到分数。

六、重视检查环节

答题过程中,尽量立足于一次成功,不出差错。但百密不免一疏,如果自己的考试时间还有些充裕,那么更不可匆忙交卷,而应作耐心的复查。将模棱两可的及未做的题目最后要进行检查、作答,特别是填空题、选择题不要留空白。

第五篇:2014年高考集合与简易逻辑(理)

2014年高考集合与简易逻辑(理)

1.[北京卷]已知集合A{x|x22x0},B{0,1,2},则A

}D.{0,1, 2}A.{0}B.{0,1}C.{0,22、[安徽卷]“x0”是“ln(x1)0”的()

A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件

3、.[北京理卷] 设{an}是公比为q的等比数列,则“q1”是“{an}”为递增数列的()B()

A.充分且不必要条件B.必要且不充分条件

C.充分必要条件D.既不充分也不必要条件

4、[福建]直线l:ykx1与圆O:x2y21相交于A,B两点,则“k1”是“ABC的1面积为”的()2

A.充分而不必要条件B.必要而不充分条件

C.充分必要条件D.既不充分又不必要条件

5、[广东]已知集合M{1,0,1},N{0,1,2},则MN

A.{1,0,1}B.{1,0,1,2}C.{1,0,2}D.{0,1}

6、[2014·湖北卷] U为全集,A,B是集合,则“存在集合C使得A⊆C,B⊆∁UC”是“A∩B=∅”的()

A.充分而不必要条件

B.必要而不充分条件

C.充要条件

D.既不充分也不必要条件

7、已知命题p:若xy,则xy;命题q:若xy,则x2y2.在命题 ①pq;②pq;③p(q);④(p)q中,真命题是()

A①③B.①④C.②③D.②④

8、[辽宁]已知全集UR,A{x|x0},B{x|x1},则集合CU(A B)()

A.{x|x0}B.{x|x1}C.{x|0x1}D.{x|0x1}

9、[辽宁]设a,b,c是非零向量,学科 网已知命题P:若ab0,bc0,则ac0;命题q:若a//b,b//c,则a//c,则下列命题中真命题是()

A.pqB.pqC.(p)(q)D.p(q)

210、[全国]设集合M{x|x3x40},N{x|0x5},则MN()

A.(0,4]B.[0,4)C.[1,0)D.(1,0]

x11、[山东]设集合A{xx2},B{yy2,x[0,2]},则AB

A.[0,2]B.(1,3)C. [1,3)D.(1,4)

12、[山东]用反证法证明命题“设a,bR,则方程xaxb0至少有一个实根”时要做的假设是

A.方程xaxb0没有实根B.方程xaxb0至多有一个实根

C.方程xaxb0至多有两个实根D.方程xaxb0恰好有两个实根

13、[陕西]已知集合M{x|x0},N{x|x1,xR},则M222222N()

A.[0,1]B.[0,1)C.(0, 1 ]D.(0,1)

14、[陕西]原命题为“若z1,z2互为共轭复数,则z1z2”,关于逆命题,否命题,逆否命题真假性的判断依次如下,正确的是()

(A)真,假,真(B)假,假,真(C)真,真,假(D)假,假,假

15、[上海]设a,bR,则“ab4”是“a2,且b2”的()

(A)充分非必要条件(B)必要非充分条件

(C)充要条件(D)既非充分也非必要条件

16、[天津]设a,bÎR,则|“a>b”是“aa>bb”的()

(A)充要不必要条件(B)必要不充分条件

(C)充要条件(D)既不充要也不必要条件

217、[全国]已知集合A={x|x2x30},B=x2x2,则AB= 

A.[-2,-1]B.[-1,2)C.[-1,1]D.[1,2)

18、[全国]不等式组xy1的解集记为D.有下面四个命题:

x2y4

p1:(x,y)D,x2y2,p2:(x,y)D,x2y2,P3:(x,y)D,x2y3,p4:(x,y)D,x2y1.其中真命题是

B.p1,p4C.p1,p2D.p1,PA.p2,P3319、已知命题

xp:对任意xR,总有20;

“"x2”的充分不必要条件q:"x1是

则下列命题为真命题的是()

A.pqB.pqC.pqD.pq 20、[江苏]已知集合A{2,1,3,4},B{1,2,3},则AB

下载集合与简易逻辑【概念、方法、题型、易误点及应试技巧总结】word格式文档
下载集合与简易逻辑【概念、方法、题型、易误点及应试技巧总结】.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    高一数学集合与简易逻辑测试卷(A)

    高一数学检测题——集合与简易逻辑 班级姓名学号分数 一、选择题 :本大题共8题;每小题5分共40分。 1、已知M{xR|x2},a,则下列四个式子 ① aM② {a}M ③ aM④ {a}M ,其中正确的是......

    高中数学-公式-集合与简易逻辑5篇

    集合与简易逻辑 1.必须弄清集合的元素是什么,是函数关系中自变量的取值?还是因变量的取值?还是曲线上的点?… ; 2.数形结合是解集合问题的常用方法,解题时要尽可能地借助数轴、直......

    高一数学集合与简易逻辑3教案

    第三教时证明:设 x 是 A 的任一元素,则xA 教材:子集 目的:让学生初步了解子集的概念及其表示法,同时了解等集与真子集的有关概念. 过程: 一 提出问题:现在开始研究集合与集合......

    高一数学集合与简易逻辑2教案

    第二教时 教材: 1、复习2、《课课练》及《教学与测试》中的有关内容 目的: 复习集合的概念;巩固已经学过的内容,并加深对集合的理解。 过程: 一、 复习:(结合提问) 1.集合的概念含集......

    初高中学习方法与应试技巧总结

    学习方法总结 前言:这里就不用讲学习的重要性,家长老师都讲腻了,学生也听够了,但是学生一定要摆正心态,不要以为道理全都懂,真正把一个简单的道理在实际生活中做到的能有几个?你要......

    高一数学 集合与简易逻辑教案1 苏教版

    江苏省白蒲中学2013高一数学 集合与简易逻辑教案1 苏教版 教材:集合的概念 目的:要求学生初步理解集合的概念,知道常用数集及其记法;初步了解集合的分类及性质。 过程: 一、引言:(......

    高一数学教案:第一章“集合与简易逻辑”教材分析.

    学而思教育·学习改变命运 思考成就未来!高考网 第一章“集合与简易逻辑”教材分析 本章安排的是“集合与简易逻辑”,这一章主要讲述集合的初步知识与简易逻辑知识两部分内容.......

    高一数学集合与简易逻辑9~10教案

    第九教时 (可以考虑分两个教时授完) 教材: 单元小结,综合练习 目的: 小结、复习整单元的内容,使学生对有关的知识有全面系统的理解。 过程: 一、复习: 1.基本概念:集合的定义、元素、......