第一篇:怎样证明一个四边形是梯形
怎样证明一个四边形是梯形?
答:一组对边平行而另一组对边不平行的四边形叫做梯形,梯形的定义明确指出,作为一种特殊四边形的梯形,必须具备两个条件,即“一组对边平行”和“另一组对边不平行”,因此判定一个四边形是否是梯形,也必须以是否满足这两个条件为依据,二者缺一不可.
证明两线平行的方法比较多,难点是如何判定两线不平行.
【例1】已知:如图1在梯形ABCD中,AD∥BC,对角线AC、BD相交于点O,A′、B′、C′、D′分别为AO、BO、CO、DO的中点.
求证:四边形A′B′C′D′是梯形.
分析一:由A′、D′分别是AD、DO的中点,易知A′D′∥AD.由B′、C′分别是BO、CO的中点,易知B′C′∥BC.
又AD∥BC,∴A′D′∥B′C′,由A′、B′分别是AO、BO的中点,得A′B′∥AB,由C′、D′分别是CO、DO的中点,得C′D′∥CD,又AB与CD不平行,∴A′B′与C′D′也不平行.
综上所述,四边形A′B′C′D是梯形.
分析二:本题还可以通过证明A′D′∥B′C′且A′D′≠B′C′来判定四边形A′B′C′D′是梯形,即
由A′、D′分别为AO、DO的中点,得
由B′,C′分别为BO、CO的中点,得
∵AD∥BC且AD≠BC,∴A′D′∥B′C′且A′D′≠B′C′,∴四边形A′B′C′D′是梯形.
证明:略.
从以上分析中不难看出,证明一个四边形是梯形有两种方法,一种方法是证明四边形的一组对边平行而另一组对边不平行;另一种方法是证明四边形的一组对边平行且不相等,如果在证题过程中忽视了“一组对边不平行”的条件,只由“一组对边平行”来判定四边形是梯形显然是错误的.
【例2】 已知:如图2,在矩形ABCD中,对角线AC、BD交于O点,E、F分别为OA、OD的中点.
求证:四边形EBCF是等腰梯形.
证明:∵E、F分别是OA、OD的中点,∴EF∥AD,又四边形ABCD是矩形,∴AD∥BC,∴EF∥BC,∵E、F分别为OA、OD的中点,又 AD=BC,∴ EF≠BC
由 EF∥BC,EF≠BC.得
四边形EBCF是梯形,∴ EO=FO,又 ∠1=∠2,BO=OC,∴ △EBO≌△FCO
∴ EB=FC,∴ 四边形EBCF是等腰梯形.
分析:如果只证明了EF∥BC就判定四边形EBCF是梯形,不符合梯形的定义,应继续证明另一组对边EB与CF不平行,或继续证明EF≠BC都可以判定四边形EBCF是梯形,即
证明:略.
第二篇:四边形证明
1.已知:如图,在正方形ABCD中,点E、F分别在BC和CD上,AE = AF.
(1)求证:BE = DF;
(2)连接AC交EF于点O,延长OC至点M,使OM = OA,连接EM、FM.判断四
边形AEMF是什么特殊四边形?并证明你的结论.
B
M D
2.已知:如图,正方形ABCD中,点E在BC的延长线上,AE分别交DC,BD于F,G,点H为EF的中点.
求证:⑴ ∠DAG=∠DCG;
⑵ GC⊥CH.(6分)
AD
B C E
3.小明在研究正方形的有关问题时发现有这样一道题:“如图①,在正方形ABCD中,点E
是CD的中点,点F是BC边上的一点,且∠FAE=∠EAD.你能够得出什么样的正确的结论?”
⑴ 小明经过研究发现:EF⊥AE.请你对小明所发现的结论加以证明;
B F 图① D E C
⑵ 小明之后又继续对问题进行研究,将“正方形”改为“矩形”、“菱形”和“任意平行四边形”(如图②、图③、图④),其它条件均不变,认为仍然有“EF⊥AE”.你同意小明的观点吗?若你同意小明的观点,请取图③为例加以证明;若你不同意小明的观点,请说明理由.(7分)
B 图②E F C 图③B F C
图④
4.如图,矩形ABCD和矩形AEFG关于点A中心对称,(1)试说明:BD=ED=EG=BG;
(2)若矩形ABCD面积为2,求四边形BDEG的面积。(本题6分)
5如图,点O是等边△ABC内一点,∠AOB=110º,∠BOC=a.将△BOC绕点C按顺时针方向旋转60º得△ADC,连结OD.
(1)求证:△COD是等边三角形;
(2)当a=150º时,试判断△AOD的形状,并说明理由;
(3)探究:当a为多少度时,△AOD是等腰三角形?
第三篇:怎样证明根号2是一个无理数
怎样证明2是一个无理数
第一个发现并坚持这个结果的希帕索斯因此付出了生命的2是一个非常著名的无理数,代价——后世的数学史家所说的“第一次数学危机”盖源于此.风暴过去后,唤醒的却是数学家们对数的重新认识,实数的概念开始确立,在此意义上讲,2的发现是人们对真理的追求、探索以致明朗的一个极好例证.换一个角度来看这个数,我们可以把它看作一根“晾衣绳”,上面挂着许多有趣的方法,值得你仔细玩味.我们准备从不同的角度来证明2是一个无理数,从而体会这一点.证法1:尾数证明法.假设2是一个有理数,即2可以表示为一个分数的形式2=a.b其中(a,b)=1,且a与b都是正整数.则a22b2.由于完全平方数b2的尾数只能是0、1、4、5、6、9中的一个,因此2b2的尾数只能是0、2、8中的一个.因为a22b2,所以a2与2b2的尾数都是0,因此b2的尾数只能是0或5,因此a与b有公因数5,与(a,b)=1矛盾!因此2是无理数.这个证法可以证明被开方数的尾数是2、3、7、8的平方根都是无理数.a证法2:奇偶分析法.假设2=.其中(a,b)=1,且a与b都是正整数.则a22b2.可知ab
是偶数,设a=2c,则4c22b2,b22c2,可知b也是偶数,因此a、b都是偶数,这与(a,b)=1矛盾!因此2是无理数.希帕索斯就是用这种方法证明了2不是有理数,动摇了毕达哥拉斯学派的“万物皆数(任何数都可表示成整数之比)”的数学信仰,使毕达哥拉斯学派为之大为恐慌,希帕索斯因此葬身海底.证法3:仿上,得到a22b2,易见b>1,否则b=1,则2=a是一个整数,这是不行
aaa.因为b>1,因此b有素因子p,因此p整除或a,总之,p整除2
2a,因此p同时整除a与b,这与(a,b)=1矛盾.的.a22b2改写成b2
证法4:仿上,得到a22b2,等式变形为b2a2b2(ab)(ab),因为b>1,因此存在素因子p,p整除a+b或a-b之一,则同时整除a+b与a-b,因此p整除a,因此p是a、b的公因数,与(a,b)=1矛盾.证法5:利用代数基本定理,如果不考虑素因子的顺序,任何一个正整数都可以唯一地写成素数幂的积的形式,因此ap11p22pmm,bq11q22qnn,其中p1,,pm与q1,,qn都是素数,r1,,rm与s1,sn都是正整数,因此p11p22r2r2rrrssspm2rm=2q11q22s2s2qn2sn,素数2在等式左边是偶数次幂,但在右边是奇数次幂,矛盾,因此2是无理数.aa证法6:假设2=,其中右边是最简分数,即在所有等于的分数中,a是最小的正bb
整数分子,在a22b2的两边减去ab有a2ab2b2ab,a(ab)b(2ba),即2a2ba,右边的分子2b-a 证法7:连分数法.因为(21)(21)=1,因此21 12112112,12 11221,将分母中的2用1代替,有21,不断重复这 个过程,得2=11 2 211 2,这是一个无限连分数.而任何有理数都可以表示为分子都是 1分母为正整数的有限连分数,因此2是无理数.证法8:构图法。以上诸多证法的关键之处在于,证明a22b2没有正整数解。若不然,可以b、a为边构造正方形(b 证明直角三角形全等 三组对应边相等的两个三角形全等(SSS) 两组对应边和一组对应的夹角相等的两个三角形全等(SAS) 两组对应角和一组对应的对边相等的两个三角形全等(AAS) 直角三角形中一组斜边和一组直角边相等的三角形全等(HL) 证明三角形相似 两三角形的对应边要的比例,所以“边边边”就是三条对应边的比例都相等“边角边”就是夹角相等的两边比例相等。 证明平行四边形 连结一条对角线,得到两个三角形,可证明它们全等,从而得到内错角相等,进而得到平行,由定义知是平行四边形 ⑵由四边形内角和等于360°,而两组对角相等,因此四个内角的和变成一组邻角的和的两倍,即一组邻角的和是180°,得到一组对边平行,类似地可得另一组对边平行,从而得证 ⑶由SAS可证全等,进而得到内错角相等,得到两组对边平行,问题得证证明菱形 1、一组邻边相等的平行四边形是菱形 2、四边相等的四边形是菱形 3、对角线互相垂直的平行四边形是菱形 4、对角线互相垂直且平分的四边形是菱形。 证明矩形 1.一个角是直角的平行四边形是矩形 2.对角线相等的平行四边形是矩形 3.有三个角是直角的四边形是矩形。 证明正方形 1:对角线相等的菱形是正方形。 2:有一个角为直角的菱形是正方形。 3:对角线互相垂直的矩形是正方形。 4:一组邻边相等的矩形是正方形。 5:一组邻边相等且有一个角是直角的平行四边形是正方形。 6:对角线互相垂直且相等的平行四边形是正方形。 7:对角线互相垂直,平分且相等的四边形是正方形。 8:一组邻边相等,有三个角是直角的四边形是正方形。 9:既是菱形又是矩形的四边形是正方形。 我是一个怎样的人?也许很难回答。选择某一个角度写一写,因为写的过程是对思维进行整理的过程。(以下活动可自由选择) 1.我的个性 用幽默的笔调介绍自己的个性特点,幽默可是最受欢迎的哦。 2.我的兴趣爱好 把自己的兴趣和爱好向老师和同学作一个介绍,注意要尽可能说明理由,同时要尽可能引起别人的共鸣。3我为自己喝彩 用欣赏的笔调充分肯定自我。注意扬长避短,同时也要实事求是,真我才能赢得别人的欣赏。 4我的苦乐年华 说说自己学习和生活中的烦恼与快乐,你能自己分析一下产生的原因吗?试一试。请相信一个真实的自我一定能赢得同学和老师的肯定。 5我这样设计自己 自己对未来的设想 告诉同学和老师,以取得同学和老师的理解和帮助。第四篇:证明四边形
第五篇:我是一个怎样的人