第一篇:关于数学与应用数学的论文提纲
关于数学与应用数学的论文提纲
一、目的培养和提高学生综合运用所学知识分析、解决问题的能力(包括数学理论研究和应用研究的能力、教学研究能力、文献检索、科技论文的写作能力)。使学生获得科学、教学研究方法的初步训练。培养学生的独立研究能力和重视开发学生的创新能力。
二、论文选题
论文选题应贯彻为我国社会主义物质文明和精神文明建设服务的方针,在基础数学、应用数学和数学教育等学科的以下几个方面加以考虑:
1.结合自己所学的专业知识,进行某一专业方向上的学术探讨;
2.结合自己所学的专业知识,进行教学研究方面的专题研究或专题综合;
3.结合自己所学的专业知识,联系实际解决一些应用问题;
4.对中学有关数学课程的教材、教学方法进行专题研究;
5.结合本人所教数学课程,对中等教育的教育理论和教育实践进行探讨;
6.对新课程改革的理论与实践进行探讨。
三、对毕业论文的基本要求
1.立论、观点要符合马克思主义基本原理;
2.对学术的探讨要符合科学性和逻辑性;
3.对论述的主要问题要正确地运用所学专业、基础理论、基本知识和基本方法;
4.论证严谨,结论明确。所运用的研究方法基本正确,所收集的数据资料完整、充分,所设计的实验方法、步骤、正确可行,所提出的观点正确.
第二篇:数学论文 数学与建筑
数学与建筑
身为一名建筑学的学生,虽只学习了几个月,对建筑的认识也是浅薄之浅薄,但还是忍不住从建筑的角度去看问题,分析生活中的例子,也发现了许多微妙而有趣的联系。在此,阐述下本人对建筑与数学的联系的认识。建筑的艺术因数学的科学而美丽,而数学的科学因建筑而生辉。其中有趣的联系着实让本人有些吃惊与着迷。时间仓促,多有不足,愚昧之处,还请谅解。
几千年来,数学一直是用于设计和建造的一个很宝贵的工具。它一直是建筑设计思想的一种来源,也是建筑师用来得以排除建筑上的试错技术的手段。下面我们列出一部分长期以来用在建筑上的数学概念:如,角锥、棱柱、黄金矩形、视错觉、立方体、多面体、网格球顶、三角形、毕达哥拉斯定理、正方形、矩形、平行四边形、圆,半圆、球,半球、多边形、角、对称、抛物线、悬链线、双曲抛物面、比例、弧、重心、螺线、螺旋线所、椭圆、镶嵌图案、透视等等。而这些概念在建筑中随处可见,运用得如此之深之广泛,让人惊叹。
影响一个结构的设计的有它的周围环境、材料的可得性和类型,以及建筑师所能依靠的想像力,智慧,还有数学能力。而回望过去,历史上不乏很多体现数学光芒的例子,下面列举一些,而这些也只是其中很少很少的一部分。①为建造埃及、墨西哥和尤卡坦的金字塔而计算石块的大小、形状、数量和排列的工作,依靠的是有关直角三角形、正方形、毕达哥拉斯定理、体积和估计的知识。②秘鲁古迹马丘比丘的设计的规则性,没有几何计划是不可能的。③希腊雅典的巴台农神庙的构造依靠的是利用黄金矩形、视错觉、精密测量和将标准尺寸的柱子切割成呈精确规格(永远使直径成为高度的 1/3)的比例知识。④埃皮扎夫罗斯古剧场的布局和位置的几何精确性经过专门计算,以提高音响效果,并使观众的视域达到最大。⑤圆、半圆、半球和拱顶的创新用法成了罗马建筑师引进并加以完善的主要数学思想。⑥拜占庭时期的建筑师将正方形、圆、立方体和半球的概念与拱顶漂亮地结合在一起,就像君士坦丁堡的圣索菲亚教堂中所用的那样。⑦哥特式教堂的建筑师用数学确定重心,以构成一个可调整的几何设计,使拱顶汇于一点,将石结构的巨大重量引回地面,而不是横向引出。⑧文艺复兴时期的石结构显示出对称方面的精心设计,它是依靠明和暗、实和虚来实现的。时光飞逝,随着数学的发展,以及新建筑材料的发现,人们用一些新的数学思想来使这些材料的潜力达到最大。利用品种繁多的现成建筑材料──石、木、砖、混凝土、铁、钢、玻璃、合成材料(如塑料)、钢筋混凝土、预应力混凝土,建筑师们实际上已经能设计任何形状。建筑得到了突飞猛进的发展,其中与数学无疑有着千丝万缕的联系。而数学的发展显而易见的为建筑领域注入了新的血液。我们现在已经目睹了各种的构造;巴克明斯特·富勒的网格结构、保罗·索莱里的模数制设计、抛物线飞机吊架、模仿游牧民帐篷的立体合成结构、支撑东京奥林匹克体育馆的悬链线缆索,甚至还有带着椭圆形圆顶天花板的八边形住宅。这些设计均是数学在建筑中的运用,使建筑得到了极大的发展。其中一个引人注目的例子便是旧金山圣母玛利亚大教堂所用的双曲抛物面设计.该设计出自P·A·鲁安、J·李以及罗马的工程顾问P·L·奈维、马萨诸塞州工程学院的P·比拉斯奇等人.在剪彩仪式上,当人们问到对于该教堂米开朗基罗会怎么想时,奈维回答道:“他不可能想到它,这个设计是来自那时尚未证明的几何理论.”建筑物的顶部是一个2135立方英尺的双曲抛物面体的顶阁,楼面的上方有200英尺上升的围墙,由四根巨大的钢筋混凝土塔支撑着,该塔延伸到94英尺的地下.每座塔重达九百万磅.墙由1680间钢筋混凝土结构的库房组成,含有128种不同的规格.正方形基础的大小为 255×255平方英尺. 一个双曲抛物面是抛物面(一条抛物线绕它的对称轴旋转)和一条三维的双曲线的结合。如此复杂的结构,没有数学理论的支撑是不可能实现的。
建筑是一个进展中的领域,建筑师们研究、改进、提高、在利用过去的思想,同时创造新思想。归根到底,建筑师有想象任何设计的自由,只要存在着支持所设计结构的数学和材料。
在21世纪中将会设计出什么类型的结构和居住空间呢?什么对象能充填空间呢?如果设计特点包括预制、适应性和扩展性,则平面和空间镶嵌的思想将起重要的作用。能镶嵌平面的任何形状像三角形、正方形、六边形和其他多边形可以改造得适用于空间居住单元。另一方面,建筑师可能要考虑填塞空间的立体,最传统的是立方体和直平行六面体。有些模型直可能用菱形十二面体或戴头八面体。
建筑师现在有众多的选择,因而他们今天在确定哪些立体在一起效果最好,如何把空间充填得使设计和美达到最优,怎样创造出舒服的开居住面积等方面受到了挑战。而这一切的可行性都受制于数学和物理的规律,数学和物理既是工具,又是量尺。
不仅在形体方面,在功能方面,数学也为建筑设计带来的活泼的生命力。SMG是一个和全球最著名的建筑工作室Foster+Partners有过许多合作的设计团队,他们用数学知识帮助建筑师们解决了很多难题,比如位于伦敦金融区、有“小黄瓜”之称的Gherkin,堪称几何学知识在建筑上成功应用的典范。180米高的它,在一片摩天大厦中脱颖而出,引人注目的特点有三:圆形而非方形;中间部分凸出,逐渐向顶部收缩,呈现为锥形;螺旋形表面外观。这些很容易被看作是一种美学追求,但其实自有其重要应用价值。Gherkin的硕大身躯容易使得气流在底部产生旋风,这样周边场所就会让人呆得不舒服。为解决这个问题,SMG建议建筑师用基于湍流计算的计算机模型来模拟建筑的动力学特征。最终他们确定做成圆柱形,并且把最凸部分设置在第16楼,使底部产生的风力最小。即使没有大风,站在一座摩天楼的旁边,也要顿感压迫和威慑,不过Gherkin的中凸造型让你在下面时仰头也看不到上面,所以无从感叹渺小,更不必抱怨挡住了阳光和视线。这幢大楼每一层都被“挖”去了6个三角形的楔形,楔形部分深深嵌入建筑内部,从上到下形成一个光井式几何构造,如此能够最大化地利用空气流通和得到最充分的自然采光,最终使得能量消耗比同规格建筑少50%。
综上,我们可以得出,数学与建筑的联系不仅体现在数学几何对于建筑外观的设计方面,数学及物理力学对于建筑设计的可实施性方面,还体现在数学对于建筑设计的功能方面所扮演的重要角色。数学在建筑设计中得到了充分的运用,使得建筑设计更趋于逻辑,规律,洋溢着有次序的美感,更彰显了其理性的魅力,同时,也辅助了建筑设计,使得建筑设计更加的理性,更加的符合人类的居住所需,可以说数学在人类的建筑史上扮演着无可替代的重要角色,而在未来,我们有理由相信,数学将用它的智慧在建筑史创造新的神话和奇迹。
Fl
2009-12-24。
第三篇:数学与应用数学
数学与应用数学
学科:理学
门类:数学类
专业名称:数学与应用数学
业务培养目标:本专业培养掌握数学科学的基本理论与基本方法,具备运用数学知识、使用计算机解决实际问题的能力,受到科学研究的初步训练,能在科技、教育和经济部门从事研究、教学工作或在生产经营及管理部门从事实际应用、开发研究和管理工作的高级专门人才。
业务培养要求:本专业学生主要学习数学和应用数学的基础理论、基本方法,受到数学模型、计算机和数学软件方面的基本训练,具有较好的科学素养,初步具备科学研究、教学、解决实际问题及开发软件等方面的基本能力。
毕业生应获得以下几方面的知识和能力:
1.具有扎实的数学基础,受到比较严格的科学思维训练,初步掌握数学科学的思想方法;
2.具有应用数学知识去解决实际问题,特别是建立数学模型的初步能力,了解某应用领域的基本知识;
3.能熟练使用计算机(包括常用语言、工具及一些数学软件),具有编写简单应用程序的能力;
4.了解国家科学技术等有关政策和法规;
5.了解数学科学的某些新发展和应用前景;
6.有较强的语言表达能力,掌握资料查询、文献检索及运用现代信息技术获取相关信息的基本方法,只有一定的科学研究和教学能力。
主干学科:数学
主要课程:分析学、代数学、儿何学、概率论、物理学、数学模型、数学实验、计算机基础、数值法、数学史等,以及根据应用方向选择的基本课程。
主要实践性教学环节:包括计算机实习、生产实习、科研训练或毕业论文等,一般安排10-20周。
修业年限:四年
授予学位:理学学士
开设院校
全部高校>> 北京大学 云南大学 武汉大学 北京航空航天大学 北京师范大学 内蒙古大学 长安大学 北京林业大学 北京邮电大学 河北科技大学 大连海事大学 西北大学 湖南大学 辽宁大学 河北经贸大学 哈尔滨工业大学 河北工业大学 中国人民大学 西南交通大学 西安电子科技大学
第四篇:小学数学论文:小学数学阅读浅析
小学数学论文:
小学数学阅读浅析
现代社会已进入信息化时代,要求人们不仅要“学会”,更要“会学”。要想让学生从“学会”到“会学”,就是要培养学生的自学能力.创新心理学的研究表明,自学能力对于人的未来具有头等重要的意义,是各种能力中最重要的能力。而阅读是自学的主要形式,自学能力的核心是阅读能力。数学阅读能力是一种重要的数学能力,它是数学思维的基础和前提。“阅读”,乍一看好像是语文课和外语课中的专用名词,但实际上,数学课更离不开阅读能力培养这一环节。我们有一些偏见,认为阅读只是语文教学的事,在数学的教与学的过程中,仅注意数式的演算步骤,而忽略对数学语言的理解。然而,随着社会的发展、科学技术的进步及“社会的数学化”,仅具语文阅读能力的社会人已明显地显露出其能力的不足,如他们看不懂某些产品使用说明书,看不懂股市走势图,等等。由此可见,加强数学阅读的教学,显得尤为重要。叶圣陶老先生有一句名言:“教是为了不教。”要想使数学素质教育目标落到实处,使学生最终能独立自主地学习,就必须重视数学阅读,特别是引导学生如何进行数学阅读至关重要。
一、读练结合习惯的养成
我们知道,动手操作是促进理解、减少数学学习困难的有效手段。而解题练习又是巩固数学知识、形成技能技巧、培养把数学知识应用于实际的重要途径。与其它学科相比,数学学习尤其离不开操作、练习。在阅读 学习中,倡导读做结合、读练结合,实际上就是引导学生把已初步理解的一些知识,运用到新的知识情境中去,用新的知识体系去解释新的现象。这种过程既是知识的复现,又有助于学生加深对新学知识的理解记忆,同 时也有助于学生把凝固的认知结构转化为能动的能力,提高理论联系实际、解决实际问题的素质。
如“圆的认识”中,学习圆的画法。当学生阅读了画圆的基本操作步骤以后,及时要求根据教材中规定的步骤试着先画一个圆。画好后讨论:①画圆时,有一只脚固定不动,是哪只脚?②在纸面上不停移动的是哪只 脚?它是怎样移动的?③同学们画出来的圆有大有小,那么什么情况下画出来的圆较大,什么情况下较小?最后再要求学生画指定大小的圆。经常进行这样读练结合的教学,潜移默化中,学生便逐步养成了读练结合的良好习惯
二、应用题的阅读
应用题是小学数学的重点和难点,新课程背景下的应用题教学,应用题的呈现要更加贴近社会生产、生活的实际情况,应该努力实现应用题呈现形式的多样化,除文字叙述外,还可以用表格、图画、对话等方式,适当增加有多余条件和开放性的问题,向学生提供鲜活的、真实的、有趣味的和具有探索思考价值的数学问题,以凸显应用题的问题特征,培养学生的搜集信息、处理信息的能力和分析问题、解决问题的能力。可现在经常发现解应用题不会分析,有的题孩子解答不出时,只要教师将题目读一遍,有时甚至读到一半时,他就会叫道“哦,原来如此!”?原因就出在学生的阅读能力上,特别是在解应用题上显得非常重要。我认为学生在读题时没有养成良好的阅读习惯。通过我平日的观察,有的同学在做题时,根本没把题读完就动手解答;又或者在读题的过程中,添字、漏字,关键性词没有注意到,理解错误了,题做错也就不足为怪了。所以教师在平时的教学中,要注意指导学生读题,从整体入手,把关键性的词作上记号,深入地理解。学生自然而然就养成良好的阅读习惯,也提高了阅读应用题的能力和经验,为顺利、正确的解答应用题打好了基础。
三、推荐数学课外阅读书籍,加强阅读指导。
苏霍姆林斯基曾经说:“课外阅读用形象的话来说,既是思考的大船借以航行的帆,也是鼓帆前进的风。没有阅读,就既没有帆,也没有风。阅读就是独立地在知识的海洋里航行。”
为了提高学生的数学阅读兴趣,扩展学生的数学视野,使他们多方面领会数学的美和数学的应用,我向学生推荐了适合他们阅读的课外书籍,如我国张景中院士的科普读物:《数学家的眼光》、《数学传奇》等。同时指导学生写阅读体会。
总之,数学教学中的阅读教学,应当是一种意识,一种旨在培养学生阅读、理解、自学能力和习惯的意识,而不是一种形式它应当渗透到教学的各个环节中去。数学阅读既可以拓展学生的知识面与深度,增加学习兴趣,又可以使学生在陌生领域施展才华,学会用数学的眼光看待社会、人生、世界,使批判性思维能力,创新能力得到充分地发挥。重视数学阅读,培养阅读能力,还有助于学生个性的全面的发展,以真正达到“教学生学会学习”的教育目标。
第五篇:初中数学论文初中数学德育论文
毕业设计课程定做 Q*Q=1714879127 初中数学论文初中数学德育论文:初中数学德育渗透初探
【摘要】德育教育在整个教育教学中有着重要的地位,新的课程标准更是把它放在首要位置,作为基础学科的数学当然也要明确德育教育的重要性。在数学教学中,我们数学教师不但要重视数学的思维和创造性的教学,而且要注意根据数学学科的特点,在数学课堂中渗透德育教育。下面我将结合自己的教学实践,谈谈自己对初中数学德育渗透的一些认识。
【关键词】初中数学;德育;途径 1 德育的概念
广义的德育指所有有目的、有计划地对社会成员在政治、思想与道德等方面施加影响的活动。狭义的德育专指学校德育,学校德育是指教育者按照一定的社会或阶级要求,有目的、有计划、有系统地对受教育者施加思想、政治和道德等方面的影响,并通过受教育者积极的认识、体验与践行,以使其形成一定社会与阶级所需要的品德的教育活动。在初中数学中渗透德育的必要性
“百年教育,德育为先”。新的课程标准把德育教育放在了十分重要的位置,德育工作是教育事业的重要组成部分,是素质教育的灵魂和核心,是塑造学生心灵的奠基工程,其效果是衡量教育质量的重要标准之一,所以教师要寻求科学、有效的德育渗透途径和方法,从而提高德育教育的实效
毕业设计课程定做 Q*Q=1714879127
毕业设计课程定做 Q*Q=1714879127 性。在初中数学中渗透德育有效途径 3.1 教师的个人素质是德育渗透的关键。
教师的个人素质是德育渗透的关键因素,教师在教育的过程中起着潜移默化的作用。孔子曾经说过:“其身正,不令而行。其身不正,虽令不从。”教师不仅给学生传授数学知识,而且他的人生观、价值观、治学态度等都将潜移默化地感染学生,教师的素质直接影响着学生的素质提高和发展,对学生产生深远的影响。一个好数学老师,不仅对学生有学习上的影响力,而且更重要的是具有人格上的感召力。因此,教师要做到言传身教,为人师表,用自己的优秀的道德素质去感染学生。例如教师在上课时,讲普通话,语言清楚、明白、有逻辑性;板书整齐,书写规范。另外教师还要注意有突出表现的学生,用实例来激励其他同学。总之,教师要让学生在自己的表率作用下,潜移默化地受到有益的熏陶和教育。
3.2 利用数学史渗透德育教育
3.2.1 利用数学史对学生进行爱国主义教育。爱国主义教育是学校德育的主要任务之一,在现行初中数学教材中,有着丰富的爱国主义教育素材。如果教师适当地利用这些爱国主义素材对学生进行思想教育,会达到事半功倍的效果。教师可以通过讲解一些我国古代和现代的优秀
毕业设计课程定做 Q*Q=1714879127
毕业设计课程定做 Q*Q=1714879127 数学研究成果来培养学生的爱国思想、民族自尊心。例如我国著名的数学典籍《九章算术》中,首次提出了正负数的概念及运算法则,使得代数学早于西方于公元前2000年;著名的勾股定理是西周数学家商高最早提出来的,称商高定理;刘徽首创“割圆术”,科学地得出徽率(圆周率)3.14;陈景润、熊庆来、陈建功、华罗庚、苏步青等数学家的研究成果居于世界前列;美籍华裔科学家杨振宁、李政道、吴健雄因在科学上的巨大成就而荣获诺贝尔奖等。这些真实典型的数学史不仅可以激发学生强烈的爱国情和民族自豪感,而且也可以激励起学生积极进取精神。
3.2.2 利用数学史中数学家的事迹培养学生意志和科学态度。
在数学史中有很多数学家勇于克服困难,坚持真理的事例。我们教师可以利用这些数学家的事迹培养学生科学态度和学习方法。例如俄国数学家罗巴契夫斯基在他的非欧几何不被理解时毫不气馁,坚持研究新几何学,为新几何学能被人们理解和承认奋斗不息;欧拉临终时还在石板上演算刚被天文学赫舍尔发现的天王星轨道;阿基米德在罗马侵略者闯进家门时还在专心研究数学;华罗庚28岁时,穷得连买米都困难,却完成了60万字的“堆垒数论”,并放弃美国优厚的生活条件毅然回国。数学家们的这些事迹能深深地感染学生,培养学生勇于战胜困难的意志和科学的态度,对学生
毕业设计课程定做 Q*Q=1714879127
毕业设计课程定做 Q*Q=1714879127 树立正确的人生观、价值观有很大的作用。
3.2.3 利用数学应用教学,培养学生理论联系实际的作风。
数学应用的广泛性是数学学科的基本特征之一,加强数学与实际的应用联系,强化应用已逐渐成为人们的共识。教师可以利用应用数学对学生进行思想教育。例如教学初三几何《解直角三角形应用举例》引言课时,教师可以针对学生不重视这类问题的通病,向学生讲述了这样的事实:早在公元前两千年,我国的治水英雄大禹为了解决在治水中的地势测量问题,巧妙地利用了解直角三角形的主要依据直角三角形的边角关系,解决了不少治水工程的难题,这种方法比西方三角术的研究达早两千多年。此外,教师还可以给学生布置了一些实践型作业,如测量学校旗杆的高度,到工厂参观学习,了解数学知识在工厂的应用等。通过这些实践活动可以更好地培养学生理论联系实际的能力。
3.2.4 利用数学美培养学生集体主义观念。
数学并不是一门枯燥乏味的学科,它实际上包含着许多美学因素。数学美的特征表现在和谐、对称、秩序、统一等方面。比如圆是平面图形中最完美的图形,它的完美不仅在于它的完全对称性,而且在于它体现着一种伟大的精神——集体主义精神。这是因为圆本身就是把无数零散的点,有秩序地、对称地、和谐地、按统一的规律排列而成的封闭图形,毕业设计课程定做 Q*Q=1714879127
毕业设计课程定做 Q*Q=1714879127 就像一个和美的大家庭,每个成员都有自己的位置和作用,同时也遵循着集体的纪律。根据圆的特性,教师可以这样启发学生:每个同学就像圆上一个个孤立的点,咱们的班集体就好比一个圆,集体的形象与荣誉与大家的努力是分不开的。这样用形象生动的语言将集体主义教育自然地渗透到学生的心田。
3.2.5 利用课外数学活动进行德育教育。
德育渗透不能只局限在课堂上,而应该与课外学习进行有机地结合。教师要根据学生的爱好开展一些数学主题活动。例如,教师可以让学生调查一只花炮燃放后对空气的污染数据,并计算每人在春节放十只花炮对空气的污染数据。通过这样的调查活动,学生既可以掌握有关数学知识,又接受了环保教育。
毕业设计课程定做 Q*Q=1714879127