七年级数学上册 一元一次方程应用题七种类型都有教案 人教新课标版[最终定稿]

时间:2019-05-13 11:08:18下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《七年级数学上册 一元一次方程应用题七种类型都有教案 人教新课标版》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《七年级数学上册 一元一次方程应用题七种类型都有教案 人教新课标版》。

第一篇:七年级数学上册 一元一次方程应用题七种类型都有教案 人教新课标版

一元一次方程的典型题型

1.和、差、倍、分问题:

(1)倍数关系:通过关键词语“是几倍,增加几倍,增加到几倍,增加百分之几,增长率„„”来体现.(2)多少关系:通过关键词语“多、少、和、差、不足、剩余„„”来体现.2.等积变形问题:

“等积变形”是以形状改变而体积不变为前提.常用等量关系为:

①形状面积变了,周长没变;

②原料体积=成品体积.3.劳力调配问题:

这类问题要搞清人数的变化,常见题型有:

(1)既有调入又有调出;

(2)只有调入没有调出,调入部分变化,其余不变;

(3)只有调出没有调入,调出部分变化,其余不变

4.数字问题

(1)要搞清楚数的表示方法:一个三位数的百位数字为a,十位数字是b,个位数字为(其中a、cb、c均为整数,且1≤a≤9,0≤b≤9,0≤c≤9)则这个三位数表示为:100a+10b+c.(2)数字问题中一些表示:两个连续整数之间的关系,较大的比较小的大1;偶数用2n表示,连续的偶数用2n+2或2n—2表示;奇数用2n+1或2n—1表示.5.工程问题:

工程问题中的三个量及其关系为:工作总量=工作效率×工作时间

6.行程问题:

(1)行程问题中的三个基本量及其关系: 路程=速度×时间.(2)基本类型有

① 相遇问题;

② 追及问题;常见的还有:相背而行;行船问题;环形跑道问题.7.商品销售问题

有关关系式:

商品利润=商品售价—商品进价=商品标价×折扣率—商品进价

商品利润率=商品利润/商品进价

商品售价=商品标价×折扣率

8.储蓄问题

⑴ 顾客存入银行的钱叫做本金,银行付给顾客的酬金叫利息,本金和利息合称本息和,存入银行的时间叫做期数,利息与本金的比叫做利率.利息的20%付利息税

⑵ 利息=本金×利率×期数

本息和=本金+利息

利息税=利息×税率(20%)

【典型例题】

【典型例题】

一、一元一次方程的有关概念

专心爱心用心 1

例1.一个一元一次方程的解为2,请写出这个一元一次方程.1分析与解:这是一道开放性试题,答案不唯一.如,x-2=0等等.2

【点拨】 解答这类开放性问题时要敢于大胆猜想,然后利用一元一次方程的定义与解来完成.二、一元一次方程的解

例2.若关于x的一元一次方程2xk

3x3k

21的解是x1,则k的值是()

A. 2B.1C.13D.0

711

分析:根据方程解的定义,一元一次方程的解能使方程左、右两边的值相等,把x=-1代入原方程得到一个关于k的一元一次方程,解这个方程即可得到k的值.解:把x=-1代入2xk

3x3k

21中得,-2-k-1-3k=1,解得:k=1.答案为B.32

【点拨】根据方程解的概念,直接把方程的解代入即可.三、一元一次方程的解法

例3.如果2005200.5x20.05,那么x等于()

(A)1814.55(B)1824.55(C)1774.45(D)1784.45

分析与解:移项,得2005-200.5+20.05=x,解得:x=1824.55.答案为A.【点拨】由于一元一次方程的形式、结构多种多样,所以在解一元一次方程时除了要灵活运用解一元一次方程的步骤外,还要根据方程的特定结构运用适当的解题技巧,只有这样才能降低解题难度.231例4.[(x-1)-3]-3}=3 322

分析:观察本题中各个系数的特点,可以选择由外到内去括号的方法,从而可以一次性去掉大括号和中括号,既简化了解题过程,又能避开一些常见解题错误的发生.1解:去大括号,得 [(x-1)-3]-2=3 2

1去中括号,得(x-1)-3-2=3 2

11去小括号,得x-22

11移项,得+3+2+3 22

117合并,得 22

系数化为1,得:x = 17四、一元一次方程的实际应用

例5.某高校共有5个大餐厅和2个小餐厅.经过测试:同时开放1个大餐厅、2个小餐厅,可供1680名学生就餐;同时开放2个大餐厅、1个小餐厅,可供2280名学生就餐.

(1)求1个大餐厅、1个小餐厅分别可供多少名学生就餐;

(2)若7个餐厅同时开放,能否供全校的5300名学生就餐?请说明理由.

分析:可以先设1个小餐厅可供y名学生就餐,这样的话,2个小餐厅就可供2y个学生就餐,因此大餐厅就可共(1680-2y)名学生就餐.然后在根据开放2个大餐厅、1个小餐

厅可以就餐的人数列出方程2(1680-2y)+y=2280

解:(1)设1个小餐厅可供y名学生就餐,则1个大餐厅可供(1680-2y)名学生就餐,根据题意,得

2(1680-2y)+y=2280

解得:y=360(名)

所以1680-2y=960(名)

答:(略).

(2)因为9605360255205300,所以如果同时开放7个餐厅,能够供全校的5300名学生就餐.

【点拨】第⑴问属于直接列方程解应用题,而第⑵问属于说理题,关键是求出这7个餐厅共能容纳多少人就餐,然后比较即可.例6.工艺商场按标价销售某种工艺品时,每件可获利45元;按标价的八五折销售该工艺品8件与将标价降低35元销售该工艺品12件所获利润相等.该工艺品每件的进价、标价分别是多少元?

分析:根据利润=售价-进价与售价=标价×折扣率这两个等量关系以及按标价的八五折销售该工艺品8件与将标价降低35元销售该工艺品12件所获利润相等,就可以列出一元一次方程.解:设该工艺品每件的进价是x元,标价是(45+x)元.依题意,得:

8(45+x)×0.85-8x=(45+x-35)×12-12x

解得:x=155(元)

所以45+x=200(元)

答:(略).【点拨】这是销售问题,在解答销售问题时把握下列关系即可:

商品售价=商品标价×折扣率

商品利润=商品售价—商品进价=商品标价×折数—商品进价

商品利润商品利润率=×100%商品进价

例7.(2006·益阳市)八年级三班在召开期末总结表彰会前,班主任安排班长李小波去商店买奖品,下面是李小波与售货员的对话:

李小波:阿姨,您好!

售货员:同学,你好,想买点什么?

李小波:我只有100元,请帮我安排买10支钢笔和15本笔记本.售货员:好,每支钢笔比每本笔记本贵2元,退你5元,请清点好,再见.根据这段对话,你能算出钢笔和笔记本的单价各是多少吗?

分析:这是一道情景对话问题,具有一定的新颖性.解答这类问题的关键是要从对话中捕捉等量关系.从对话中可以知道每支钢笔比每本笔记本贵2元,同时还可以发现买10支钢笔和15本笔记本共消费(100-5)=95元.根据上述等量关系可以得到相应的方程.解:设笔记本每本x元,则钢笔每支为(x+2)元,据题意得

10(x+2)+15x=100-5

解得,x=3(元)

所以x+2=5(元)

答:(略).

第二篇:七年级人教版上册数学一元一次方程应用题归纳

在一个日历中,任意圈出排列在一横排上的4个日期数,若这4个数的和是58,则这4个数分别是()

A.2,10,18,28B.13,14,15,16C.1,9,17,27D.14,15,16,17

2.小明买了0.8元与2元的邮票共16枚,花了18元8角,若设他买了0.8元的邮票x枚,可列方程为()

A.80x+2(16—x)=188B.80x+2(16—x)=18.8 C.0.8x+2(16—x)=18.8D.8x+2(16—x)=188

3.数学兴趣小组的女生占全组人数的 ,再加5名女生后就占全组人数的一半,设原来数学兴趣小组有x名同学,列方程得----------------------

4.小王第一天做了x个零件,第二天比第一天多做5个,第三天做的零件是第二天的2倍,若三天共做零件75个,则第一天做了()个 A.15B.14C.10D.20

5.有一旅客携带了30千克行李从南京绿口国际机场乘飞机去天津,按民航规定:旅客最多可免费携带20千克行李,超重部分每千克按飞机票价格的1.5%购买行李票,现该旅客购买了120元的行李票,则它的飞机票价是()A.1000元B.800元C.600元D.400元

6.甲比乙大15岁,5年前甲的年龄是乙的年龄的两倍,乙现在的年龄是()A.10岁B.15岁C.20岁D.30岁

7.某人以八折优惠价买一套服装省了25元,那么买这套服装实际用了()A.31.25元B.60元C.125元D.100元

8.一个两位数的十位数字与个位数字的和是7,把这两个数加上45后,结果恰好成为数字对调后组成的两位数,则这个两位数是()A.16B.25C.34D.6

1二、填空题

1.某月日历上竖列相邻的三个数,若设第一个数为,则中间的一个数为______,第三个数为______.

2.某养殖专业户养鸡、鸭、鹅,鸡比鸭多50只,比鹅少70只,鹅的只数是鸭的2倍,若设养了 只鸭,则养了______只鹅,养了_____只鸡,列方程是_____. 3.小华的妈妈为爸爸买了一件衣服和一条裤子,共用306元.其中衣服按标价打七折,裤子按标价打八折,衣服的标价为300元,则裤子的标价为---------元. 4.已知4个矿泉水空瓶可以换矿泉水一瓶,现有15个矿泉水空瓶,若不交钱,最多可以喝_____瓶矿泉水.

5.为了节约用电,某地区按下列规定收取每月电费:用电不超过140度,按每度0.43元收费;如果超过140度,超过部分按每度0.57元收费.小李家6月份的电费平均每度0.5元,那么他家在该月应交电费_______元.

6.轮船沿江从A港顺流行驶到B港,比从B港返回A港少用3小时,若船速为26千米/时,水速为2千米/时,则A港和B港相距______千米

三、解答题

1.一批零件按计划生产需15天完成,实行承包后,调动了工人的生产积极性, 每天可多生产30个零件,因此提前3天完成任务,求原计划每天生产多少个零件?

(1)(7分)一个两位数个位数字与十位数字的和为10,如果将个位数字与十位数字交换位置,得到的新的两位数字比原来的两位数大18,求原来的两位数?

(2).(8分)某生产车间有60名工人生产太阳镜,1名工人每天可生产镜片200片或镜架50个。应如何分配工人生产镜片和镜架,才能使每天生产的产品配套?

(3)包装厂有工人42人,每个工人平均每小时可以生产圆形铁片120片,或长方形铁片80片,两张圆形铁片与一张长方形铁片可配套成一个密封圆桶,问每天如何安排工人生产圆形和长方形铁片能合理地将铁片配套?

(4)一个三角形3条边长的比是2:4:5,最长的一条边比最短的一条边长6cm,求这个三角形的周长。

(5)某种商品进货价每件为若干元,零售价为每件1100元,若商店按八折出售,仍可获利10%,求进货时每件多少元?

(6)一件工程,甲独做需10天,乙独做需12天,丙独做需15天,甲、乙合作3天后,甲因事离开,丙参加工作,问还需多少天完成?

(7)货车以30千米/小时的速度从车站开出3小时后,一辆摩托车以50千米/小时的速度沿货车行驶路线追去,问几小时可以追上货车?

(8)某人步行速度10公里/小时,骑车速度是步行的3倍,他从甲地到乙地一半路程步行,一半路程骑车,然后沿原路回来时,一半时间骑车,一半时间步行,结果返回时间比去时少用40分钟,求甲、乙两地间的距离?

(9)A、B两码头相距若干千米,某船从A顺水行至B用3小时,返回

A地要多用30分钟,若船在静水中速度为26千米/时,求水流速度?

(10)某厂第一月和第二月共生产化肥848吨,已知增长率为12%,求一月的产量是多少吨?9.一件皮衣的进价是1400元,按标价1700元的9折出售;一件呢子大衣的进价是300元,按标价若干元的8折出售,结果每件皮衣的利润比每件呢子大衣的利润多70元,问呢子大衣的标价是多少元?

第三篇:3.2解一元一次方程(一)教案(人教新课标七年级上)

初中数学辅导网http://www.xiexiebang.com/

初中数学辅导网http://www.xiexiebang.com/

初中数学辅导网http://www.xiexiebang.com/

第四篇:七年级数学一元一次方程教后反思

《一元一次方程》教学反思

七年级数学上册第三章一元一次方程,是在第二章整式的加减和小学学过的方程的基础上而展开的,第一节内容从算式到方程,重在让学生体验用方程的思想解决实际问题,了解基本概念,认识一元一次方程,会列出简单问题的方程。《课程标准》对本节课的要求是通过具体实例归纳出方程及一元一次方程的概念,根据相等关系列出方程。让学生归纳和总结的过程中,初步建立数学模型思想,训练学生自动探究的能力,能结合情境发现并提出问题,体会在解决问题中与他人合作的重要性,获得解决问题的经验。

在进行本节课的教学中,我利用练习册,引领学生通过自学教材、解决问题,从而掌握知识内容。首先设计了猜年龄游戏,激发学生的浓厚兴趣,引出方程的概念,再利用简单的实际问题,让学生列出小学学过的方程。接下来自学方程、一元一次方程、解方程、方程的解、检验方程的解等概念和方法。学生利用已有的知识和经验能够完成。对于个别问题可通过合作讨论处理。变式训练环节则针对自学题目强化练习。教师再补充强调,让学生体会到从算式到方程是数学的进步,渗透化未知为已知的重要数学思想。体验数学与生活密切相关,认识到许多实际问题可以用数学方法解决,激发学生的热情。在本节课的教学中,还有以下几点需要改进:

(1)引入情境没有充分利用。猜年龄游戏提高了学生的兴趣,仅仅作为引出式子,使用的不够,可以深化成用未知数来解决实际问题,并教会学生去应用,效果会更好。相信学生一定希望自己学会猜年龄的方法,和其中的数学道理。

(2)对列方程的方法指导还不够。考虑到本节只是引出方程,没有将分析问题中的数量关系,列出方程作为重点进行训练,使得部分基础稍差的学生没有很好接受。

(3)问题设置的梯度根据学生的情况需要调整,第一个小题目有点偏难,在问题设置中,应该从前一章学过的用字母表示数入手,复习引导,可能会更好一些。直接从列简单的方程着手,有些学生没能很快找出数量关系列出方程。

(4)语言不够精炼、环节之间过渡不够自然、板书不够精炼等问题,今后教学中一定注意改造提高。

第五篇:七年级数学一元一次方程教案

七年级数学一元一次方程教案

篇一:新人教版初一数学第三章《一元一次方程》教案

第三章

一元一次方程

教学内容:

本章主要内容包括:一元一次方程及其相关概念,一元一次方程的解法,利用一元一次方程分析和解决实际问题。分析实际问题中的数量关系并用一元一次方程表示是始终贯穿这些内容的主线,而且始终渗透着“数学建模”和“化归”的思想方法。

通过丰富实例,从算式到方程建立一元一次方程,展开方程是刻划现实生活的有效数学模型;通过观察、归纳引出不等式的两条性质,为进一步讨论较复杂的一元一次方程的解法准备理论依据;从实际问题出发,运用等式的性质解方程,归纳“移项”、“合并”、“去括号”等法则,逐步展现求解方程的一般步骤;运用方程解决实际问题,通过探究活动,加强数学建模思想,提高学生分析问题和解决问题的能力。

教学目标:

1、理解一元一次方程及有关概念和等式的基本性质;

2、熟练掌握一元一次方程的解法(数字系数)并学会运用一元一次方程解决简单的实际问题。

3、在解决实际问题中,体会数学的应用价值,激发学习数学的欲望,提高分析问题和解决问题的能力。

重点:一元一次方程的解法和运用是重点。

难点:列一元一次方程解决实际问题是难点。

课时分配:

3.1 从算式到方程 2课时

3.2 解一元一次方程的讨论(一)?? 3课时

3.3 解一元一次方程的讨论(一)?? 4课时

3.4 实际问题与一元一次方程

?? 3课时

本章小结 ???2课时

3.1.1一元一次方程

教学目标:

1、理解一元一次方程的概念;

2、会识别一元一次方程;

3、了解方程的解,会验证方程的解;

4、知道怎样列方程解决实际问题;

5、感受方程作为刻画现实世界有效模型的意义。

教学重点:一元一次方程和方程的解的概念是重点;

教学难点:怎样列方程解决实际问题是难点。

教学方法:指导探究,合作交流

教学资源:小黑板

教学过程

一、问题导入

含有未知数的等式叫做方程。方程把问题中的未知数与已知数的联系用等式的形式表示出来。研究问题时,要分析数量关系,用字母表示未知数,列出方程,然后求出未知数。

怎样根据问题中的数量关系列出方程?怎样解方程?

二、怎样列方程

问题汽车匀速行驶途径王家庄、青山、秀水三地的时间如表所示,翠湖在青山、青山 秀水 王家庄翠湖

1、汽车从王家庄行驶到青山用了多少时间?从青山到秀水用了多少时间?

2、请你用算术方法解决这个问题。

3、如果设王家庄到翠湖的路程为x千米,那么王家庄距青山多少千米?王家庄距秀水多少千米?

4、由于汽车是匀速行驶,可知各段路程的车速相等。你能据此列出方程吗?

列方程时,要先设字母表示未知数,然后根据问题中的相等关系,写出含未知数的等式——方程。

列方程的过程可以表示如下:

设未知数,列方程

分析实际问题中的数量关系,利用其中的相等关系列出方程,是用数学解决实际问题的一种方法。

三、一元一次方程的概念:

例1 根据下列问题,设未知数并列出方程:

(1)用一根长24㎝的铁丝围成一个正方形,正方形的边长是多少?

(2)一台计算机已使用1700小时,预计每月再使用150小时,经过多少月这台计算机的使用时间达到规定的检修时间2450小时?

(3)某校女生占全体学生数的52%,比男生多80人,这个学校有多少学生? 解:(1)设正方形的边长为x厘米,可列方程4x=24①

(2)设x月后这台计算机的使用时间达到规定的检修时间。1700+150 x=2450②

(3)设这个学校的学生人数为x人,那么女生人数是多少?男生人数是多少?

女生人数为0.52 x人,男生人数为(1-0.52)x人。0.52 x-(1-0.52)x=80③ 观察方程①②③,它们有什么共同的特点?

只含有一个未知数;未知数的次数是1。

只含有一个未知数,并且未知数的次数是1,这样的方程叫做一元一次方程。思考:下列式子中,哪些是一元一次方程?

①2x+3;②2×6=12;③1/2x-3=2;④1/x+3x=5;⑤y=0.四、方程的解:

列方程是解决实际问题的一种方法,利用方程可以解出未知数。

想一想:(1)x等于多少时,方程①的左右两边相等?

(2)x=5能使②的左右两边相等吗?

能使方程左右两边相等的未知数的值,叫做方程的解。

思考:x=2是方程3x-1=2x+1的解吗?为什么?

五、课堂练习:

课本82页1、2、3题。

六、课堂小结:

1、怎样列方程?怎样解决实际问题?

解决实际问题就是把实际问题抽象成数学问题,通过解决数学问题来解决实

际问题.2、什么叫一元一次方程?

3、什么是方程的解?你怎样知道某个未知数的值是方程的解? 作业:

课本84页1、2; 85页5、6、10(2)题。

教学后记:

3.1.2等式的性质

教学目标:

1、了解等式的概念;

2、利用天平的经验分析得出等式的性质;

3、会利用等式的性质解方程。

教学重点:等式的性质和运用;

教学难点:利用天平经验抽象出等式的性质;

教学方法:指导探究,合作交流;

教学资源:多媒体设备;

教学过程:

一、问题导入:

我们知道未知数的某个值是方程的解,但怎样才能知道方程的解是什么呢?方程是含有未知数的等式,我们先来看看等式有什么性质。

二、等式及其性质:

1、等式

用等号表示相等关系的式子叫等式。如:m+n=n+m,x+2x=3,3×3+1=5×2,3x+1=5y,等等。

注意:等式中一定含有等号。

我们可以用a=b来表示一般的等式。

2、等式的性质

观察天平的变化,你能发现了什么?

在平衡天平的两边都加上(或减去)同样的量,天平还保持平衡。

如果把天平看成等式,球和正方体看成数或式,那么你能得到什么结论?

等式性质1等式两边加上(或减去)同一个数(或式子),结果仍相等。用字母表示为:如果a=b,那么a±c=b±c ×3 ÷3

观察天平的变化,你能发现了什么?

把平衡天平的两边都扩大(或缩小)相同的倍数,天平仍保持平衡。

同样地,如果把天平看成等式,球和正方体看成数,那么你能得到什么结论? 等式性质2等式两边乘以同一个数,或除以同一个不为0的数,结果仍相等。用字母表示为:如果a=b,那么ac=bc;如果a=b,那么a/c=b/c(c≠0)。

注意:①等式两边除以一个数时,这个数必须不为0;②对等式变形必须同时进行,且是同一个数或式。

思考:回答下列问题:

(1)从a+b=b+c,能否能到a=c,为什么?

(2)从a-b=b-c,能否能到a=c,为什么?

(1)从ab=bc,能否能到a=c,为什么?

(1)从a/b=c/b,能否能到a=c,为什么?

(1)从xy=1,能否能到x=1/y,为什么?

三、例题:

例1 利用等式的性质解下列方程:

(1)x+7=26;(2)-5x=20;(3)-1/3x-5=4.分析:解方程的结果就是将方程转化为x=a的形式,为此,解方程就要将未知项移到一边,常数项移到另一边。

解:(1)将常数项移到右边,得

x=26-7 化为x=a的形式,得 x=19。

篇二:新人教版七年级上册数学第3章 一元一次方程全章教案

第三章

一元一次方程

3.1从算式到方程

3.1.1一元一次方程

(一)教学目标:

知识与技能:

通过处理实际问题,让学生体验从算术方法到代数方法是一种进步; 过程与方法:

初步学会如何寻找问题中的相等关系,列出方程,了解方程的概念; 情感、态度、价值观:

培养学生获取信息,分析问题,处理问题的能力。

教学重点:从实际问题中寻找相等关系

教学难点:从实际问题中寻找相等关系

教学过程:

一、情境引入

提出教科收第78页的问题,并用多媒体直观演示,同进出现下图:

问题1:从上图中你能获得哪些信息?(可以提示学生从时间、路程、速度、四地的排列顺序等方面去考虑。)

可以在学生回答的基础上做回顾小结

问题2:你会用算术方法求出王家庄到翠湖的距离吗·

教师可以在学生回答的基础上做回顾小结:

1、问题涉及的三个基本物理量及其关系;

2、从知的信息中可以求出汽车的速度;

3、从路程的角度可以列出不同的算式:

50?70 15?13??15?10??70?230 50?70 15?13??13?10??50?230 问题3:能否用方程的知识来解决这个问题呢?

二、学习新知

1、引导学生设未知数,并用含未知数的字母表示有关的数量.

如果设王家庄到翠湖的路程为x千米,那么王家庄距青山

千米,王家庄距秀水千米.

2、引导学生寻找相等关系,列出方程.

问题1:题目中的“汽车匀速行驶”是什么意思?

问题2:汽车在王家庄至青山这段路上行驶的速度该怎样表示?你能表示其他各段路程的车速吗?

问题3:根据车速相等,你能列出方程吗?

根据学生的回答情况进行分析,如:

依据“王家庄至青山路段的车速=王家庄至秀水路段的车速”可列方程:

王皮溜二中 七(3)班 x?50 3?x?70 5,50?70 2依据“王家庄至青山路段的车速=青山至秀水路段的车速” 可列方程: x?503?

3、给出方程的概念,介绍等式、等式的左边、等式的右边等概念.

4、归纳列方程解决实际问题的两个步骤:

(1)用字母表示问题中的未知数(通常用x,y,z等字母);

(2)根据问题中的相等关系,列出方程.

三、举一反三,讨论交流

1、比较列算式和列方程两种方法的特点.

列算式:只用已知数,表示计算程序,依据是间题中的数量关系;

列方程:可用未知数,表示相等关系,依据是问题中的等量关系。

2、思考:对于上面的问题,你还能列出其他方程吗?如果能,你依据的是哪个相等关系?

如果直接设元,还可列方程:x?70 5?60 xx 3?x?120 5 如果设王家庄到青山的路程为x千米,那么可以列方程: ?60;3 说明:要求出王家庄到翠湖的路程,只要解出方程中的x即可,我们在以后几节课中再来学习.

四、初步应用

1、例题(补充):根据下列条件,列出关于x的方程:

(1)x与18的和等于54;

(2)27与x的差的一半等于x的4倍.

本例题可以先让学生尝试解答,然后教师点评.

解:(1)x+18=54;

(2)1 2(27-x)=4x.2、练习(补充):

(1)列式表示:

① 比a小9的数; ② x的2倍与3的和;

③ 5与y的差的一半; ④ a与b的7倍的和.

(2)根据下列条件,列出关于x的方程:

(1)12与x的差等于x的2倍;

(2)x的三分之一与5的和等于6.五、课堂小结

1、本节课我们学了什么知识?

2、你有什么收获?

说明方程解决许多实际问题的工具。

六、作业设计

课本P84~85:

1、5 王皮溜二中 八(1)班

3.1.1 一元一次方程

(二)教学目标: 1.理解一元一次方程、方程的解等概念;

2.掌握检验某个值是不是方程的解的方法;

3.培养学生根据间题寻找相等关系、根据相等关系列出方程的能力;

4.体验用估算方法寻求方程的解的过程,培养学生求实的态度。

教学重点:寻找相等关系、列出方程.

教学难点:对于复杂一点的方程,用估算的方法寻求方程的解,需要多次的尝试,也需要一定的估计能力

教学过程:

一、情境引入

问题:小雨、小思的年龄和是25.小雨年龄的2倍比小思的年龄大8岁,小雨、小思的年龄各是几岁?

如果设小雨的年龄为x岁,你能用不同的方法表示小思的年龄吗?

学生回答,教师加以引导:小思的年龄可以用两个不同的式子25-x和2x-8来表示,这说明许多实际问题中的数量关系可以用含字母的式子来表示.

由于这两个不同的式子表示的是同一个量,因此我们又可以写成:25-x=2x-8.这样就得到了一个方程.

二、自主尝试

1.尝试:

让学生尝试解答课本第67页的例1。对于基础比较差的学生,教师可以作如下提示:

(1)选择一个未知数,设为x,(2)对于这三个问题,分别考虑:

用含x的式子表示这台计算机的检修时间;

用含x的式子分别表示长方形的长和宽;

用含x的式子分别表示男生和女生的人数.

(3)找一个问题中的相等关系列出方程.

2.交流:

在学生基本完成解答的基础上,请几名学生汇报所列的方程,并解释方程等号左右两边式子的含义.

3.教师在学生回答的基础上作补充讲解,并强调:

(1)方程等号两边表示的是同一个量;

(2)左右两边表示的方法不同.

4.讨论:

问题1:在第(1)题中,你还能用两种不同的方法来表示另一个量,再列出方程吗?

让学生在学习小组内讨论,然后分组汇报交流:

选“已使用的时间”可列方程:2 450-150x=1 700.选“还可使用的时间”可列方程:150x=2 450-1 700.问题2:在第(3)题中,你还能设其他的未知数为x吗?

在学生独立思考、小组讨论的基础上交流:

王皮溜二中 七(3)班

设这个学校的男生数为x,那么女生数为(x+80),全校的学生数为(x+x+80).列方程:x+80=52%(x+x+80).

三、建立概念

1.概念的建立.

让学生在观察上述方程的基础上,教师进行归纳:各方程都只含有一个未知数,并且未知数的指数都是1,这样的方程叫做一元一次方程.

“一元”:一个未知数;“一次”:未知数的指数是一次.

判断下列方程是不是一元一次方程:

(1)23-x=一7:(2)2a-b=3(3)y+3=6y-9;(4)0.32 m-(3+0.02 m)=0.7.(5)x2=1(6)1 2y?4?1 3y 2.引导学生归纳:

从上面的分析过程我们可以发现,用方程的方法来解决实际问题,一般要经历哪几个步骤?在学生回答的基础上,教师用方框表示:

分析实际问题中的数量关系,利用其中的相等关系列出方程,是用数学解决实际问题的一种方法.

四、估算求解

列出方程后,还必须解这个方程,求出未知数的值.对于简单的方程,我们可以采用估算的方法.

①问题:你认为该怎样进行估算?

可以采用“尝试—发现—归纳”的方法:让学生尝试后发现,要求出答案必须用一些具体的数值代入,看方程是否成立,最后教师进行归纳.

可以像课本那样用列表的方法进行尝试,也可以像下面的示意图那样按程序进行尝试. ②在此基础上给出概念:能使方程左右两边的值相等

的未知数的值,叫做方程的解.求方程的解的过程,叫做

解方程.

一般地,要检验某个值是不是方程的解,可以用这个

值代替未知数代人方程,看方程左右两边的值是否相等.

五、课堂练习

练习课本第82页中练习

六、课堂小结

着重引导学生从以下几个方面进行归纳:

①这节课我们学习了什么内容?

②用列方程的方法解决实际问题的一般思路是什么?

③列方程的实质就是用两种不同的方法来表示同一个量.

④估算是一种重要的方法.

思考:课本第81页中的“思考”.(目的是体验用估算的方法有时会很麻烦)

七、作业设计

课本第84--85页习题3.1第2,6,7,8题

第11题.

王皮溜二中 八(1)班

3.1.2 等式的性质

(一)教学目标:

1.了解等式的两条性质;

2.会用等式的性质解简单的(用等式的一条性质)一元一次方程;

3.培养学生观察、分析、概括及逻辑思维能力;

4.渗透“化归”的思想. 教学重点:理解和应用等式的性质

教学难点:应用等式的性质把简单的一元一次方程化成“x=a”

教学过程:

一、提出问题

用估算的方法我们可以求出简单的一元一次方程的解.你能用这种方法求出下列方程的解吗?

(1)3x-5=22;(2)0.28-0.13y=0.27y+1.第(1)题要求学生给出解答,第(2)题较复杂,估算比较困难,此时教师提出:我们必须学习解一元一次方程的其他方法.

二、探究新知

1.实验演示:

教师先提出实验的要求:请同学们仔细观察实验的过程,思考能否从中发现规律,再用自己的语言叙述你发现的规律.然后按课本第71页图2.1-2的方法演示实验.

教师可以进行两次不同物体的实验.

2.归纳:

请几名学生回答前面的问题.

在学生叙述发现的规律后,教师进一步引导:等式就像平衡的天平,它具有与上面的事实同样的性质.比如“8=8”,我们在两边都加上6,就有“8-11=8-11”.3.表示:

问题1:你能用文字来叙述等式的这个性质吗?

在学生回答的基础上,教师必须说明:等式两边加上的可以是同一个数,也可以是同一个式子.

问题2:等式一般可以用a=b来表示.等式的性质1怎样用式子的形式来表示? 字母a、b、c可以表示具体的数,也可以表示一个式子。

4.观察课本P71图2.1-3,你又能发现什么规律?你能用实验加以验证吗? 在学生观察图2.1一3时,必须注意图上两个方向的箭头所表示的含义.观察后再请一名学生用实验验证.

然后让学生用两种语言表示等式的性质2.王皮溜二中 七(3)班

篇三:七年级数学_3.1.1一元一次方程课堂教学设计

一元一次方程课堂教学设计

单元要点分析

教学内容

方程就是将众多实际问题“教学化”的一个重要模型.因此,课本从学生熟悉的实际问题开始,从算式到方程,展开方程的学习,以使学生认识到方程的出现源于解决问题的需要,体会学习方程的意义和作用.

本章内容主要分为以下三个部分:

1.通过丰富实例,从算式到建立一元一次方程,?展开方程是刻画现实生活的有效数学模型.

2.运用等式的基本性质解方程,归纳移项法则,运用分配律,?归纳“合并”、“去括号”等法则,逐步展现求解方程的一般步骤,这些内容的学习不是孤立进行的,始终从实际问题出发,使学生经历模型化的过程,激发学生的好奇心和主动学习的欲望.

3.运用方程解决丰富多彩的、贴近学生生活的实际问题,?展现运用方程解决实际问题的一般过程.

为了使学生经历“建立方程模型”这一数学化的过程,理解学习方程的意义,培养学生的抽象概括等能力,课本内容的呈现都以求解决一个实际问题为切入点,让学生经历抽象、符号变号、应用等活动,在活动中培养学生解决问题的兴趣和能力,提高学生的思维水平和应用数学知识去解决实际问题的意识.

三维目标

1.知识与技能

根据具体问题中的数量关系,经历形成方程模型,解方程和运用方程解决实际问题的过程,体会方程是刻画现实世界的有效数学模型.

2.过程与方法

(1)了解一元一次方程及其相关概念,会解一元一次方程.(数学系数)

(2)能以一元一次方程为工具解决一些简单的实际问题,包括列方程,?求解方程和解释结果的实际意义及合理性,提高分析问题、解决问题的能力.

3.情感态度与价值观

激发学生的好奇心和主动学习的欲望,体会数学的应用价值.

重、难点与关键

1.重点:一元一次方程有很多直接应用,?解一元一次方程是解其他方程和方程组的基础.因此本章重点在于使学生能根据具体问题中的数量关系列出一元一次方程,掌握解一元一次方程的基本方法,能运用一元一次方程解决实际问题.

2.难点:正确地列出一元一次方程的解决实际问题.

3.关键:(1)熟练地解一元一次方程的关键在于正确地了解方程、方程解的意义和运用等式的两个性质.

(2)正确地列出方程的关键在于正确地分析问题中的已知数、未知数,?并找出能够表示应用题全部含义的相等关系.

3.1.1 一元一次方程

教学内容

课本第78页至第82页.

教学目标

1.知识与技能

(1)通过观察,归纳一元一次方程的概念.

(2)根据方程解的概念,会估算出简单的一元一次方程的解.

2.过程与方法.

通过对多种实际问题的分析,感受方程作为刻画现实世界有效模型的意义.

3.情感态度与价值观

鼓励学生进行观察思考,发展合作交流的意识和能力.

重、难点与关键

1.重点:了解一元一次方程的有关概念,会根据已知条件,设未知数,?列出简单的一元一次方程,并会估计方程的解.

2.难点:找出问题中的相等关系,列出一元一次方程以及估计方程的解.

3.关键:找出能表示实际问题的相等关系.

教具准备

投影仪.

教学过程

一、复习提问

在小学里,我们已学习了像2x=50,3x+1=4等简单方程,那么什么叫方程呢?什么叫方程的解和解方程呢?

答:含有未知数的等式叫方程;能使方程等号两边相等的未知数的值叫方程的解,求方程解的过程叫解方程.

方程是应用广泛的数学工具,把问题中未知数与已知数的联系用等式形式表示出来.在研究问题时,要分析数量关系,用字母表示未知数,列出方程,然后求出未知数.

怎样根据问题中的数量关系列出方程?怎样解方程?这是本章研究的问题.

通过本章中丰富多彩的问题,你将进一步感受到方程的作用,并学习利用一元一次方程解决问题的方法.

二、新授

1.怎样列方程?

让学生观察章前图表,根据图表中给出的信息,回答以下问题.

(1)根据图中的汽车匀速行驶途经王家庄、青山、秀水三地的时间表,?你知道,汽车从王家庄行驶到青山用了多少时间?青山到秀水呢?

(2)青山与翠湖、秀水到翠湖的距离分别是多少?

(3)本问题要求什么?

(4)你会用算术方法解决这个实际问题呢?不妨试试列算式.

(5)如果设王家庄到翠湖的路程为x(千米),你能列出方程吗?

解:(1)汽车从王家庄行驶到青山用了3小时,青山到秀水用了2小时.

(2)青山与翠湖的距离为50千米,秀水与翠湖的距离为70千米.

(3)王家庄到翠湖的距离是多少千米?

(4)分析:要求王家庄到翠湖的距离,只要求出王家庄到青山的距离,?而王家庄到青山的时间为3小时,所以必需求汽车的速度.

如何求汽车的速度呢?

这里青山到秀水的时间为2小时,路程为(50+70)千米,因此可求的汽车的平均速度为(50+70)÷2=60(千米/时)

王家庄到青山的路程为:60×3=180(千米)

所以王家庄到翠湖的路程为:180+50=230(千米)

列综合算式为:50?70×3+50 2(5)分析:先画出示意图,示意图往往有助于分析问题.

从上图中可以用含x的式子表示关于路程的数量:

王家庄距青山(x-50)千米,王家庄距秀水(x+70)千米.

从章前图表中可以得出关于时间的数量:

从王家庄到青山行车3小时,从王家庄到秀水行车5小时.

由路程数量和行车时间的数量,可以得到行车速度的表达式.

汽车从王家庄开往青山时的速度为x?50千米/时,汽车从王家庄开往秀水的速度为3 x?70千米/时. 5 要列出方程,必需找出“相等关系”,题目中还有哪些相等关系吗?

根据汽车是匀速行驶的,可知各段路程的车速相等.

于是列出方程:

x?50x?70= 35 以后我们将学习如何解这个方程,求出未知数x的值,?从而得出王家庄到翠湖的路程.

思考:对于以上的问题,你还能列出其他方程吗?如果能,你依据的是哪个相等关系?

根据汽车匀速行驶,可知各段路程的车速相等.

所以还可以列方程:

x?5050?70x?7050?70=或= 3252(前者是汽车从王家庄到青山与从青山到秀水,这两段路程的车速相等,后者是汽车从王家庄到翠湖与从青山到秀水,这两段路程的车速相等)

比较用算术方法和列方程方法解应用题,用算术方法解题时,列出的算式表示用算术方法解题的计算过程,其中只能用已知数,对于较复杂的问题,列算式比较困难;而方程是根据问题中的等量关系列出的等式,其中既含有已知数,又含有用字母表示的未知数,有了这个未知数,问题中的已知量与未知量之间的关系就很容易用含有这个未知数的式子表示,再根据“相等关系”列出方程.

有了方程后人们解决许多问题就更方便了,通过今后的学习,你会逐步认识:从算式到方程是数学的进步.

列方程时,要先设字母表示未知数,通常用x、y、z等字母表示未知数,?然后根据问题中的相等关系,写出含有未知数的等式即方程.

例1:根据下列问题,设未知数并列出方程.

(1)用一根长24cm的铁丝围成一个正方形,正方形的边长是多少?

分析:设正方形的边长为x(cm),那么周长为4x(cm),依题意,得4x=24.

(2)一台计算机已使用1700小时,预计每月再使用150小时,经过多少月这台计算机的使用时间达到规定的检修时间2450小时?

分析:设再经过x月这台计算机的使用时间达到规定的检测时间,?根据每月再使用150小时,那么x月共使用150x小时.

能表示这个问题的相等关系是什么?

相等关系是:已使用的时间1700小时+还可以使用的时间150x小时=规定的检测时间2450小时.

从而列出方程:1700+150x=2450.

找出表达问题意义的相等关系是列出方程的关键.

(3)某校女生占全体学生的52%,比男生多.....80人,这个学校有多少学生?

问:女生占全体学生数的52%,那么男生占全体学生数的(1-52%),?如果设这个学校有x个学生,那么用含x的式子表示女、男学生数.

女生有52%x人,男生有(1-52%)x人;

问题中的相等关系是什么?

(女生比男生多80人)即女生人数-男生人数=80或女生人数=男生人数+80.

列方程:0.52x-(1-0.52)x=80或0.52x=(1-0.52)x+80.

2.一元一次方程的概念.

观察以上所列出的各方程,有什么特点?每个方程有几个未知数,?未知数的指数是多少?

只含有一个未知数,并且未知数的指数是1,这样的方程叫做一元一次方程.

例如方程2x-3=3x+1,y2-3=2y等都是一元一次方程,而x+y=5,x+3x=2都不是一元2 一次方程.

以上分析过程可归纳为:

分析问题中的数量关系──设未知数x──用含x的式子表示实际问题中的数量关系──找出相等关系,利用相等关系列出方程(一元一次方程).

列方程是解决实际问题的一种重要方法,利用方程可以解出未知数.

观察方程4x=24,不难发现,当x=6时,4x的值是24,?这时方程等号左右两边相等,x=6叫做方程4x=24的解,这就是说,方程4x=24中未知数x的值应是6.

从方程1700+150x=2450,你能估算出x的值吗?

这里x是正整数,如果x=1,那么方程左边=1700+150×1=1850≠右边

所以x≠1. 如果x=2,则方程左边=1700+150×2=2000≠右边,所以x≠2.

这时方程1700+150x=2450等号左右两边相等,x=5叫做方程1700+150x=2450的解,这就是说,方程1700+150x=2450中未知数x的值应是5.

解方程就是求出使方程中等号两边相等的未知数的值的过程,?这个值就是方程的解.

你能从表中发现方程1700+150x=2600的解吗?

当x=6时,1700+150x的值为2600,即x=6时方程等号两边的值相等,所以这个方程的解是x=6.

思考:你能估算出方程2(x+1.5x)=24和方程0.52x-(1-0.52)x=80的解吗?

以上估算难度较大,第一个方程,当x=4时,方程左边=20<24;当x=5?时方程左边=25>24,所以取x=4.7或x=4.8.试一试,结果当x=4.8时,方程左边=24=右边,所以方程的解为x=4.8.第二个方程的解为x=2000,困难更大了,可以告诉学生,?当我们学习了方程的解法后,就很容易求出x的值了.

思考:x=1000和x=2000中哪一个是方程0.52x-(1-0.52)x=80的解?

三、巩固练习

课本第80页练习.

1.设沿跑道跑x周,可以跑3000m,根据相等关系──x周共长3000m.

所以列方程:400x=3000,如果x=7,则400x=2800<3000,如果x=8,?则400x=?3200>3000,如果x=7.5,则400x=4007.5=3000,所以沿跑道跑7周半,可以跑3000m.

2.如果设买甲种铅笔x枝,那么买乙种铅笔(20-x)枝,买甲种铅笔用去0.3x元,乙种铅笔用去0.6(20-x)元,相等关系是:

下载七年级数学上册 一元一次方程应用题七种类型都有教案 人教新课标版[最终定稿]word格式文档
下载七年级数学上册 一元一次方程应用题七种类型都有教案 人教新课标版[最终定稿].doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐