第一篇:初中数学教学论文 培养学生的数学解题能力
培养学生的数学解题能力
前 言
中学数学教学的目的,归根结底在于培养学生的解题能力,提高数学解题能力是数学教学中一项十分重要的任务。提高学生解题能力始终贯穿于教学始终,我们必须把它放在十分重要的位置。那么,如何才能提高学生的解题能力,具体方法上讲主要可以从以下几方面入手:
一、培养“数形”结合的能力
“数”与“形”无处不在。任何事物,剥去它的质的方面,只剩下形状和大小两个属性,就交给了教学去研究了。初中数学两个分支——代数和几何,代数是研究“数”的,几何是研究“形”的。但是研究代数要借助“形”,研究几何要借助“数”,“数形整合”是一种趋势,越学下去,“数”与“形”越密不可分。到了高中就出现了专门用代数方法研究几何问题的一门课,叫做“解析几何”。在初二建立平面直角坐标系后,研究函数的问题就离不开图像了。往往借助图像能使问题明朗化,比较容易找到问题的关键所在,从而解决问题。在今后的数学学习中,要重视“数形结合”的思维训练,任何一道题,只要与“形”沾上了一点边,就应该根据题意画出草图来分析一番。这样做,不但直观,而且全面,整体性强,容易找出切入点,对解题大有益处。尝到甜头的人就会慢慢养成一种“数形结合”的好习惯。
二、培养“方程”的思维能力
数学是研究事物的空间形式和数量关系的,最重要的数量关系是等量关系,其次是不等量关系。最常见的等量关系就是“方程”。比如等速运动中,路程、速度和时间三者之间就有一种等量关系,可以建立一个相关的等式:速度ⅹ时间=路程,在这样的等式中,一般会有已知量,也有未知量,像这样含有未知量的等式就是“方程”,而通过方程里的已知量求出未知量的过程就是解方程。我们在小学就已经接触过简易方程,而初一则比较系统地学习解一元一次方程,并总结出解一元一次方程的五个步骤。如果学会并掌握了这五个步骤,任何一元一次方程都能顺利地解出来。初
二、初三我们还将学习解一元二次方程、二元二次方程组、分式方程,到了高中我们还将学习指数方程、对数方程、线性方程、参数方程、极坐标方程等。解这些方程的思维几乎一致,都是通过一定的方法将它们转化一元一次方程或是一元二次方程的形式,然后用大家熟悉的解一元一次方程的五个步骤或者解一元二次方程的求根公式加以解决。物理中的能量守恒,化学中的化学平衡式,现实中的大量实际运用,都需要建立方程,通过解方程来求出结果。因此同学们一定要将解一元一次方程和解一元二次方程学好,进而学好其它形式的方程。所谓的“议程”思维就是对于数学问题,特别是现实当中碰到的未知量和已知量的错综复杂的关系,善于用“方程”的观点去构建有关的方程,进而用解方程的方法去解决它。
用心 爱心 专心 1
第二篇:初中数学教学论文 浅谈数学教学中学生解题能力的培养
摘要:当今社会处于信息时代,数学教学也应适应时代的要求,走出课堂,走出题海,广泛涉猎资料,紧密贴近生活,着意提高学生的数学素养和知识应用能力.因此,在数学教学中应鼓励学生阅读.一道好题,一种妙解,一丝联系,一点变化都可能给你的解答带来简便.因此,培养学生的解题能力尤其显得重要.关键词:审题 解题能力 解题思路 解题策略 回顾与探讨
数学解题能力是一种综合的能力,一般是指综合运用数学基础知识、基本方法和逻辑思维规律,整体发挥数学的基本能力和思维水平,对数学问题进行分析、解决的能力。对于学生来说,其中包括了思维创造的能力。因此,在教学中,要提高学生的解题能力,除了抓好基础知识、基本能力的学习与培养外,更重要的培养途径就是解题实践,就是遵循科学的解题顺序、有目的、有计划地引导学生“在游泳中学会游泳”,在亲自参与的解题实践过程中,学会解题,从中获得能力。下面就围绕解题的一般程序,来讨论如何培养学生的解题能力。
1、仔细、认真地审查题意的习惯。
仔细、认真地审题,提高审题能力是解题的首要前提。因为审题为探索解题途径提供方向,为选择解法提供决策的依据。因此,教学中要求学生养成仔细、认真的审题习惯,就是要对问题的条件、目标及有关的全部情况进行整体认识,充分理解题意,把握本质和联系,不断提高审题能力。具体地说,就是要做到以下四项要求:
l 了解题目的文字叙述,清楚地理解全部条件和目标,并能准确地复述问题、画出必要的准确图形或示意图;
l 整体考虑题目,挖掘题设条件的内涵、沟通联系、审清问题的结构特征。必要时,要会对条件或目标进行化简或转换,以利于解法的探索; l 发现比较隐蔽的条件;
l 判明题型,预见解题的策略原则。
以上具体要求中,前两项是基本的,后两项是较高的。
事实上,审题能力主要体现在对题目的整体认识、对条件和目标的化简与转换以及发现隐蔽条件等方面的能力上。
例1 已知 a, b, c都是实数,求证;2a-(b+c), 2b-(a+c), 2c-(b+c)三个数中至少有一个数不大于零,而且至少有一个数不少于零。
如果审题中能考虑到“所证的三个数之和正好等于零”这一整体特征,则不难用反证法很容易地得出正确判断,使问题得到解决。
例2 已知△ABC,试求作一点P,使得△PAB、△PAC、△PBC的面积相等。如果在审题中不注意P点的任意性,就会片面地、不自觉地增加条件“P点在△ABC内”,从而求得唯一的一点P,即△ABC的重心。这就改变了原题的题意。事实上,若在平面上,P点的位置还可以有三个:分别以△ABC两相邻边为邻边的平行四边形顶点。若在空间,P点的位置就更多了。例3 在实数范围内解方程:|x-2|+
=3 审查题意就要从题目的特征——含有绝对值和算术根符号——中,善于发现隐含条件。即 ∵1-x≥0, ∴x≤1.有了这一条件,就可以将原方程转化为 2-x+=3, 即=x+1.这样就成为标准的无理方程,它的解法是学生熟悉的。
2、分析解题思路、探求解题途径,发现解题规律、掌握解题方法是培养学生解题能力的核心和关键。
一个正确的解题途径、一条正确的解题思路的形成过程是比较复杂的,它涉及到学生的基础知识水平、解题经验和解题能力等因素。虽然就其思维形式而言,只有由因导果和执果索因的综合法和分析法两种,但就探索解题途径的策略、方法和技巧等问题而言,确是丰富多彩、千变万化和灵活多样的。因此,分析思路、探求途径是解题教学的重点,也是提高学生解题能力的核心、关键所在。这就要求我们教师在教学中做好以下几方面的工作:
(1)帮助学生掌握解题的科学程序。就是把整个解题过程分为前述的四个程序进行。掌握了这个科学程序,使解题过程程序化,就能使学生对解题总过程有一个有序框架,形成一种思维定势和化归的趋势,做到目标清楚、思维方向明确。为此,在教学中对于所有例题的讲解及示范解题,都要充分展现解题过程的四个程序及每个程序进行的过程,并且不断给以总结、反复强调。使学生在日积月累的熏陶中去掌握解题程序,领悟各程序中思维的方向和思维的进程。当然,这样做就必须要求教师事先要对例题的选取和设计进行深入研究,对例题的目的意图、隐含条件的析取、干扰信息的排除、思维偏差的纠正、解题策略的制定、解题关键的把握以及解题后的开拓和引申等都要做到心中有数。只要这样,才能避免就题论题、就事论事、无法展现思维过程的形式主义教学,从而真正达到解题教学的要求。
(2)帮助学生掌握解题的策略原则。探索解题途径,主要是根据审题提供的依据,制定解题策略,探索解题方向(转化命题是关键),沟通靠拢条件,把所面临的问题逐步靠拢和转化为既定解法和程序的规范问题,然后利用已知的理论、方法和技巧,实现问题的解决。因此,在教学中,必须结合例题的示范教学,有计划、有目的地帮助学生掌握解决数学问题的策略原则,培养和提高学生的探索能力。
(3)帮助学生掌握转化的数学方法。在教学中结合例题教学,帮助学生掌握一些常用的变形手段和转化方法,帮助学生理解这些方法的原理,把握方法的要点、作用、使用条件、使用范围以及这些方法的“变式”,学会灵活运用。
在初中数学中,除了上述的分析法、综合法、归纳法等推理方法外,常用的还有换元法,消元法,代定系数法等。
3、理顺解题思路、严格依据逻辑规律表达出规范化的解题过程是培养学生良好的解题习惯的重要途径。
一般来说,各种形式的数学习题都有一定的解答格式,解题中要严格按标准格式表达,当然,根据学生的不同学习阶段,标准格式的详略可以不尽相同,但逻辑顺序不能违反,证明推理中关键步骤的大前提必须表达清楚。这样做,可以培养和提高学生的逻辑思维能力和逻辑表达能力,同时也有助于学生解题能力的提高。
4、回顾与探讨解题过程,养成解题后的反思习惯,也是提高学生解题能力的基本途径。
解题后的回顾与探讨、分析与研究就是对解题的结果和解题的方法进行反省,对解题中的主要思想观点、关键因素及类同问题的解法进行概括、推广,从而帮助 学生从中提炼出数学的基本思想和基本方法加以掌握,成为以后解新的问题时的有力工具。因此,使学生养成解题后的反思习惯,是解题教学非常重要的一环,必须十分重视。
解题后的回顾,包括检验结果、讨论解法和推广三个方面。
(1)检验结果。主要是核查结果是否正确无误,推理是否有据,解答是否详尽无漏。
(2)讨论解法。主要是改进解法或寻求其它不同的解法;分析解法的特征、关键和主要思维过程;总结规律,概括为一般性的解法定势等。这将有利于开拓思维、积累经验、整理方法,有助于增强思维的灵活性和发展提高解题能力。(3)推广。解题后一般可朝三个方向进行推广。一是一般化,就是减弱问题的条件,把结果推广到条件更一般的情形,从而研究结论会有什么变化;二是特殊化,就是强化问题的条件,把结论用于条件更特殊的情形,从而研究结论又会有何变化;三是“发展性推广”,就是在原有条件、结论的基础上,进一步发展其空间形式或数量关系所得到的变化,它既不是一般化,也不是特殊化。例如,证明“任意四边形的四边中点顺次连结成一个平行四边形”以后,可进一步发展推广为:“这个平行四边形的周长等于原四边形的两条对角线长之和”。
解题后的推广,也是培养学生积极思维、发明发现、创造突破能力的有效途径。如果能让学生养成习惯,那么就可以在解题训练中跳出“题海”,通过少而精的解题,收到很大的效益。
5、合理调控解题活动,全面提高学生的解题能力素质。学生的解题活动最能促进思维的发展,要使解题活动在发展学生思维上取得最佳效果,还必须合理地调控学生的活动,全面提高学生解题能力的素质。这是因为数学解题活动必须由学生亲自参加、独立进行,才能在实践中增长才干、提高能力;但是现代心理学的研究表明:学生的解题活动又必须置于教师的合理调控之下,依据学生思维发展的规律,为学生主动、独立地参与解题活动创设情境、启迪思维、指明方向。这就是说,要提高学生的解题能力,在教学中应该发挥教师的主导作用,引导学生发挥积极主动参与的主体作用。具体地说,应该做好以下工作:
(1)创设情境、调动学生积极思维,培养他们的学习兴趣,培养他们独立进行解题的能力。一般来说,解题教学的情境创设,主要包括问题情境的提供;解题基础知识、经验的准备;思维障碍的排除和问题情境激发的情感和动机状态等方面。在教学中,如果教师能针对这些方面,努力为教学情境的创设作好分析、奠基工作,就一定会有助于学生开展有成效的解题活动,从而提高他们的解题能力。(2)有系统、有层次地精心选配习题,合理组织训练、重点培养学生的基本数学思想和数学方法及其运用的能力。一般来说,解题教学中,除了要求例题的选配要具有目的性、典型性、启发性和延伸性等特点外,一般还应提供学生独立练习的习题,在选配时注意适用性、巩固性、实践性和发展性的原则。
这里还应指出,数学习题的题型应该多样化,提高学生的“解题胃口”。但这并不排除传统的、富有启发性的“老题”、“陈题”,不少好的题目仍然有使用价值;同时,也应该反对选编那些一味追求“新花样”的偏题、怪题和难题,这样是不利于学生发展的。总之,培养学生的解题能力要通过掌握科学的解题程序、掌握解题的策略和方法、技巧;要通过我们教师引导下的主动参与活动;通过创设问题情境、调动学生的智力与非智力因素等基本途径。因此,要使学生的解题能力达到较高水平,并上 升为一种创造才能,就要在整个的教学的过程中,始终都要注意培养和发展学生解题能力的各种因素,注意提高学生的整体素质。只有这样,解题能力的提高才有根底和源泉,解题的功底才扎实。
第三篇:浅谈数学解题能力的培养
浅谈数学解题能力的培养
摘要:学生数学解题能力并非通过传授获得的,而是通过培养而逐步发展的。它是一项复杂的系统工程。本文从“教”、“学”、“思”三方面阐述了数学教学中如何有效地培养学生解题能力的问题。
关键词:数学 解题能力 培养
“问题”是数学的心脏,数学学习的优劣,集中表现在解题能力上。我国中学数学教学素有重视“双基”的优良传统,许多教师都在解题教学方面积累了丰富的经验。但在传统的教学模式下,师生大多难以摆脱“题海战术”的巢臼,学生以数学为首当其冲的过重课业负担已成为社会关注的焦点。对于这种大量解题训练的效果到底如何?学生在解题时的思维状况又是怎样?怎样才能提高数学解题能力?怎样实现数学作业的“减负”与“增效”?这一系列问题虽然早就引起许多教师的注意,也取得一些零散经验,但却远远没有得到系统的解决。而今,我国中学数学教育正面临一场深刻的变革,其核心思想是从“以传授知识为本”转变为“以人的发展为本”。所以,如何培养提高中学生数学解题能力,并进而使之演化为人的持续发展能力,就变得比任何时候都意义深远。
任教以来,在培养和提高学生解题能力方面,我进行了一些初步的探索。
九年制义务教育中,由于受应试教育的影响和一些传统观念的束缚,解题教学,往往仅侧重于学习现成的知识、结论、技巧、方法,忽视了数学学科的基本精神、基本特征。因而在数学学习方面所表现出来的思维缺陷具有一定的代表性。就每一次的数学测试而言,学生对于一些按部就班、有固定解题模式和记忆性操作程序的算法型试题就会考得普遍不错。而对于没有固定模式,无须死记硬背,也无法在短时间内准备好所有的解答方法,运算量一般较小,思维容量却大的思辨型试题却败下阵来。
是什么原因造成了学生“解题技能”和“解题智能”发展不均衡?这恐怕要涉及“教”、“学”、“思”三方面的原因。
一、就“教”而言
解题教学的本质是“思维过程”,受年龄等因素的限制,学生思维发展有其特定的规律,这需要解题教学遵循学生认知特点,设置最近发展区,进行有针对性的训练。
在平时的课堂教学中,我非常重视例题的典范作用。因为现在学生的解题仍较依赖例题的解题模式、思路和步骤,从而实现解题的类化。记得在教第四册的《梯形》这部分内容的一节复习课中,我只讲了一道例题: E 如图,梯形ABCD中,AB∥CD,以AD、AC为边作平行四边形ACED,D
C F 延长DC交EB于F,求证:EF=FB。
A B 通过分析、讨论,进行一题多解,总共概括了8种解法,这8种证明方法将梯形问题中重要辅助线添法、中位线的知识等都囊括其中。
可见,一道好例题的教学,对学生思维品质和解题能力的提高有着积极的促进作用。而且在讲解例题的过程中,我也坚持不懈地对学生进行数学思想的培养,并注意与实际联系,收到了较好的效果。
比如像函数部分有这么一道题:
已知抛物线y=ax2+bx+c的对称轴为x=2,且经过点(3,0),则a+b+c的值()A、等于0 B、等于1 C、等于-1 D、不能确定 此题若从数上考虑,可得 =2,9a+3b+c=0,用含a的代数式表示b、c后,代入求解。但若 y 利用函数图象,非常容易发现(3,0)关于对称
x轴x=2的对称点为(1,0),代入函数解析式,即得a+b+c=0。1 3 可见,数形结合思想是一种重要数学思想,不仅达到事半功倍的效果,还可激发学生学习数学的兴趣。现实生活中,我们在解决问题时,常说的一句话:多动脑筋,用较少的钱做更多的事,不正是这个思想的真实写照吗?
当然,在分析、讲题的过程中,我也不忘暴露自己在解题过程中的思维过程。“为什么要这样做”、”怎么想到的?”,这些问题是学生最感困难的。所以我就尽可能地将自身或者前人是如何看待问题、又是如何找出解决问题的办法这一思维进程展示给学生,帮助他们认识和理解知识发生和发展的必然的因果关系,从中领悟到分析、思考和解决问题的思想方法和步骤,而且在适当时机,我也会展示自己思维受阻、失败的探索过程,分析其原因,从反面衬托正确思路的必要性与合理性,给学生以启示。
二、就“学”而言
学生提高解题能力的两条主渠道:一是听课学习、二是解题实践 学生在听课的过程中,确有一部分同学重“结论”胜于“过程”,重“程序”胜于“意义”,对老师精心设计的“知识生长过程”、“结论发生过程”袖手旁观,丝毫没有投身其间、勇于探索的热情,眼巴巴地等待“结论”的出现、“程序”的发生,久而久之,势必造成数学思维的程序化,丧失钻研问题与解决问题的思维锐气,最后只有对见过的题型可以“照猫画虎”,对不熟悉的题型则一筹莫展,消极地等待“外援”。
在解题时,学生多数为完成作业而“疲于奔命”,缺乏解题前的深刻理解题意和解题后的检验回顾,这种急功近利式的解题方式,造成了数学作业量虽大但效益低下。更有甚者,有的学生迫于教师必收作业的压力,盲目抄袭、对答案,老师改后也不改错,形成数学作业“一多”、“二假”、“三无效”(学生解题和老师批阅均为无效劳动)。
为了抵制学生重“结论”的学习倾向,彻底走出数学作业“一多”、“二假”、“三无效”的误区?酝酿再三,我对学生提出了如下两条教学策略:
一是精选数学作业题,使学生脱离“题海”:在作业方面,我能减则减,以学生通过精当的练习,实现教师所期望的发展为度,而且对于不同层次的学生我还采取了分层作业,服从学生“解题技能”和“解题智能”的均衡发展的需要,实现数学题“算法型”和“思辨型”的合理搭配。
二是建立“我能行”数学档案袋,弥补课堂教学的不足
在课堂教学中,由于时间有限,不可能每道题都由学生讲解、分析,这就少了很多给学生锻炼的机会。因而,课后我让学生精选自己认为的好题进行分析,重点写出分析过程、解决这一问题时用到的知识、掌握的技能及最大收获等。通过这一策略,强化学生对所学知识的复习,对所用技能、方法的巩固,是提升解题能力的点睛之笔。
三、就“思”而言
解数学题决不能解一题丢一题,这样做无助于解题能力的提高。解题后的反思是提高解题能力的一个重要途径。一道数学题经过一番艰辛,苦思冥想解出答案之后,必须要认真进行解题反思:命题的意图是什么?考核我们哪些方面的概念、知识和能力?验证解题结论是否正确合理,命题所提供的条件的应用是否完备?求解论证过程是否判断有据,严密完善?本题有无其他解法——一题多解?众多解法中哪一种最简捷?把本题的解法和结论进一步推广,能否得到更有益的普遍性结论——举一反三,多题一解?但许多同学在完成作业方面,因为学习态度和心理状态的不同,或者老师缺少必要的指导和训练,大部分都缺少这一重要环节,未能形成良好的解题习惯,解题能力和思维品质未能在更深和更高层次得到有效提高和升华。学习数学,也就只能登堂未能入室。
为了提高学生的解题能力,我经常倡导和训练学生进行有效的解题反思:鼓励学生从解题方法、解题规律、解题策略等方面进行多角度、多侧面的总结。想想以前有没有做过与原题内容或形式不同,但解法类似或相似的题目。如果将题目的特殊条件一般化,能否推得更为普遍的结论,这样所获得的就不只是一道题的解法,而是一组题、一类题的解法。
就拿以下一题来说,已知如图:AB和DE是直立在地面上的两根石柱,AB=5cm,某一时刻AB在阳光下的投影BC=3cm。⑴请在图中画出此时DE在阳光下的投影;⑵在测量AB的投影时,同时测出DE在阳光下的投影长为6cm,请你计算DE的长。
D 这道题主要是利用相似三角形的知识解决实际问题,A
说明数学知识来源于实际又服务于实际。在分析这一题时,我先做好题前反思,预见学生在解题过程中可能出现的错
B C E 误,先让学生来判断这些做法是否正确,误区一:默认△ABC∽△DEF;误区二:默认∠A=∠D;误区三:由AB∥DE推△ABC∽△DEF。对学生可能出现的典型错误加以评述,让学生在解题中增强识别、改正错误的能力。然后再让学生归纳、总结此题所用到的知识点,以及所用到的数学方法。再进行延伸,是否做过同类型的题,学生很容易就想到测量树高等问题,进而引申到如何测量树高,可有哪些方法?学生想到的比较多,利用物高与影长成比例或是利用光学原理进行解决。由此学生所得到的就不止是一道题的解法,而是一组题、一类题的解法。
长期下来,我培养学生善于总结、善于引伸、善于推广的数学解题能力,学生的数学解题能力也在不同程度上得到了一定的提高,我所任教的两个班级的数学成绩也都一直名列前茅。
除课堂上我积极倡导学生进行反思外,课堂外我曾经让学生建立学习档案:将自己设定的学习目标,好的习题解法或学习方法,容易解错的习题,学习失败的教训等放到档案袋内。我也曾让学生书写数学周记:把课堂上老师示范解题反思的过程中学生自己想到,但未与教师交流的问题,作业中对某些习题不同解法的探讨,学习情感、体验的感受,通过数学周记(或数学日记)的形式宣泄出来,记录下来,使师生之间有了一个互相了解、交流的固定桥梁。
总之,学生解题能力的提高,不是一朝一夕能做到的,也不是仅靠教师的潜移默化和学生的自觉行动就能做好的,需要教师根据教学实际,坚持有目的、有计划地进行培养和训练。只有这样,才能其正把这一工作做好。此外,米卢先生在中国倡导并实施的“快乐足球”,我想,如果能应用到数学教学中来,使培养能力与快乐学数学有机结合起来,必将使学生的能力越来越强,教师越教越松,家长越来越满意,社会越来越放心。
第四篇:谈初中数学教学中解题能力的培养
谈初中数学教学中解题能力的培养
洱源县振戎民族中学 刘利锋
摘 要
“数学的真正部分是问题和解”这是数学家P.R.哈尔莫斯曾说过的一句话。事实也是如此,我们进行数学教学,主要是引导学生在掌握数学基本知识和基本方法的基础上学会解题。而且,检验学生在数学方面的能力情况,我们也往往是通过检查学生能否解题来实现。因此,就数学科而言,可以理解为能否解题是解题能力在数学学习过程中所表现出的行为效果。本文就初中数学教学中怎样培养学生解题能力作探讨。
关键词:解题思路
解题能力
怎样才能使学生学会解题?以期提高解题能力,下面谈几点做法:
一、教学过程中应准确阐明解题思路
在解题教学过程中,既要讲这道题“应该这样做”,更要讲“为什么要这样做”。在教学进程中往往重前者,即教师采用综合叙述方法,基本上按教科书的解题、证明顺序,从题目条件开始,由一步一步的准确推理、一次一次的精确计算来解证例题和定理。这样做其结果可使多数学生信服且能模仿,但方法是怎样想出来的?多数学生却难以捉摸。因此,只讲“应该这样做”是不够的,更应揭示出产生这一解证的思维过程是什么。即“为什么要这样做”,这样才更有利于培养学生的解题能力。例如,对代数课本上的一例题:“求分析过程:
88的立方根,就是要求出一个数,使该数的立方等于。2727882、什么数的立方等于?即:()3。
272783、考虑到立方是负数的数也是个负数,故(-)3。
272284、由于3的立方等于27,2的立方等于8,所以这个数应是,即:()3。
32738的立方根”。我设计了以下的教学271、根据立方根的定义,要求
二、理解题意、广泛联想,培养学生思维的广阔性
解题时,理解题意后,接下来应展开联想。联想些什么?一是联想与该题有关的基础知识,二是联想与这题有关的基本方法。通过联想有利于发展学生思维的广阔性,也有利于在解题思路受阻后探寻新的思路,还能促进知识的灵活运用与对知识的更深层次的认识和系统的理解。
例如:已知如图五角星形ABCDE 求证:∠A+∠B+∠C+∠D+∠E=180° 在学生充分发表看法的基础上,可对
1、考虑到角的和是180°的有关定补;(2)同旁内角互补;(3)三角形的题应该从何下手?
2、要证明五个角的度数和等于180°,联系三角形内角和定理,可考虑将其转化为三角形内角,从而达到目的。通过观察图形,由两个三角形ΔBGD和ΔEFC,又联想到三角形的外角定理,得∠1=∠C+∠E, ∠2=∠B+∠D,又在ΔAFG理,可达到目的。
3、联想到三角形内角和定理,多边形角和定理,可得以下两法:
法一:∠A+∠B+∠C+∠D+∠E = 5个三角形内角和–2(∠1+∠2+∠3+∠4+∠5)= 900°-720° = 180°
法二:分别连结AB、BC、CD、DE、EA,则五边形ABCDE的内角和为外角和定理以及多边形内中运用三角形内角和定解题思路作以下归结。理。可作以下尝试:(1)互内角和定理。针对这一问540°,又由于ΔABF、ΔBCG、ΔCHD、ΔDIE、ΔEJA的内角和是900°。
∴∠A+∠B+∠C+∠D+∠E = 540°-(900°-540°)= 180°
由以上的思考过程,可以看出解题的思维过程是一个尝试中成功的过程。其所以成功,是由于联想到有关的基本知识和基本方法,而且联想越广泛,证法就越多。一题多解是广泛联想的结果。由此可知,使学生懂得“广泛联想”,必将有助于他们解题能力的提高。
三、善于发展学生有价值的解题思路
对于学生来说,数学学习不仅意味着掌握数学知识,形成数学技能,而且是教师引导和帮助下的一种“再创造”。创新是人的头脑中最敏感的机能,也是最容易受到压抑的机能。基础教育阶段,人的创造性思维火花可能光芒四射,也可能渐渐熄灭,教育既有可能为创新提供发展的契机,成为发展的动力,也有可能阻碍,甚至扼杀创新意识的形成和创新能力的发展。学生(特别是中、差学生)要能比较自如地探寻解题思路,这不是短时间训练可以达到的,要靠教师长期坚持不懈的努力。在这一过程中,教师要善于创设开放的教学情景,营造积极的思维状态和宽松的思维氛围,对学生在数学学习过程中的新意思、新思路、新观念、新设计、新意图、新作法、新方法加以肯定,哪怕是错误的,也应该给予宽容。教师不能以自己的解法(或教科书、参考书的解法)为标准,去评价学生的解题思路。而应珍视学生虽然不完善,但却有一定价值的思路,并将其发展下去,帮助学生树立敢于探索大胆创新的信心和勇气。
例如:两圆相交于点A和点B,经过交点B的任意一条直线和两圆分别交于C和D。求证:AC与AD的比等于两圆直径的比。
在思考练习该题的过程中,部分同学提出了跟老师事先准备的方法较一致的思路: 设O1、O2分别是两圆圆心,分别F。连结BE、BF、AB。
由于∠ABE=∠ABF=90°,所以E、ΔAEF~ΔACD,从而可得结论 另有个别同学仅在图形上作了如图∠α,∠β的符号。老师看了,若不假挫伤学生的信心,使学生误认为自己没但反之,老师若能联系正弦定理,将以
B、F三点共线。然后证明
ACAE。ADAF连结AO1、AO2交两圆于E、标记,连结AB,并加上了思索,忘加否定,就容易有探索解题思路的能力。上同学的解题思路发展下
去,即:设两圆半径分别是R1、R2。
ACAD2R2R2 ∵ 1 sinsin∴ AC2R1sin
AD2R2sin又 ∵ sinsin(180)sin
AC2R1∴
AD2R2这样处理,既有利于教育其它学生,也有利于激发没有完成证明的那些学生的学习积极性,从而增强了学生探索解题途径的信心和能力。
总之,只要我们在数学教学中重视学生基础知识的掌握,切实转变教学观念,改变教学方法,突出学生的主体地位,必将对学生解题能力的培养起积极的作用。
参考文献
1.董开福 编著《中学数学教材分析》 云南教育出版社 2.张一民 编著《中学数学教法研究》 云南教育出版社
3.《讲解·阅读·练习·讨论》——中学数学特级教师章保罗教学经验 广西人民出版社 4.《数学》 人民教育出版社(初中版)
第五篇:浅析如何培养学生在数学教学中的解题能力
浅析如何培养学生在数学教学中的解题能力
摘要:教学关键是教会学生用所学的知识解决实际问题,即要提高学生的解题能力。文章从培养学生“数形”整合、“方程”思维、“对应”思维、“转化”能力、增强自信等五个方面谈如何培养学生的数学解题能力。
关键词:培养学生;数学教学;解题能力;转化能力
Abstract: The teaching key is the knowledge solution actual problem which the church student uses to study, namely must sharpen student’s problem solving ability.The article from trains the student “the number shape” the conformity, “the equation” the thought that “the correspondence” the thought that “the transformation” ability, the enhancement self-confidently and so on five aspects to discuss how to raise student’s mathematics problem solving ability.key word: Trains the student;Mathematics teaching;Problem solving ability;Transformed ability 前 言
中学数学教学的目的,归根结底在于培养学生的解题能力,提高数学解题能力是数学教学中一项十分重要的任务。提高学生解题能力始终贯穿于教学始终,我们必须把它放在十分重要的位置。那么,如何才能提高学生的解题能力,具体方法上讲主要可以从以下几方面入
手:
一、培养“数形”结合的能力
“数”与“形”无处不在。任何事物,剥去它的质的方面,只剩下形状和大小两个属性,就交给了教学去研究了。初中数学两个分支——代数和几何,代数是研究“数”的,几何是研究“形”的。但是研究代数要借助“形”,研究几何要借助“数”,“数形整合”是一种趋势,越学下去,“数”与“形”越密不可分。到了高中就出现了专门用代数方法研究几何问题的一门课,叫做“解析几何”。在初二建立平面直角坐标系后,研究函数的问题就离不开图像了。往往借助图像能使问题明朗化,比较容易找到问题的关键所在,从而解决问题。在今后的数学学习中,要重视“数形结合”的思维训练,任何一道题,只要与“形”沾上了一点边,就应该根据题意画出草图来分析一番。这样做,不但直观,而且全面,整体性强,容易找出切入点,对解题大有益处。尝到甜头的人就会慢慢养成一种“数形结合”的好习惯。
二、培养“方程”的思维能力
数学是研究事物的空间形式和数量关系的,最重要的数量关系是等量关系,其次是不等量关系。最常见的等量关系就是“方程”。比如等速运动中,路程、速度和时间三者之间就有一种等量关系,可以建立一个相关的等式:速度ⅹ时间=路程,在这样的等式中,一般会有已知量,也有未知量,像这样含有未知量的等式就是“方程”,而通过方程里的已知量求出未知量的过程就是解方程。我们在小学就已经接触过简易方程,而初一则比较系统地学习解一元一次方程,并总结出解一元一次方程的五个步骤。如果学会并掌握了这五个步骤,任何一元一次方程都能顺利地解出来。初
二、初三我们还将学习解一元二次方程、二元二次方程组、分式方程,到了高中我们还将学习指数方程、对数方程、线性方程、参数方程、极坐标方程等。解这些方程的思维几乎一致,都是通过一定的方法将它们转化一元一次方程或是一元二次方程的形式,然后用大家熟悉的解一元一次方程的五个步骤或者解一元二次方程的求根公式加以解决。物理中的能量守恒,化学中的化学平衡式,现实中的大量实际运用,都需要建立方程,通过解方程来求出结果。因此同学们一定要将解一元一次方程和解一元二次方程学好,进而学好其它形式的方程。所谓的“议程”思维就是对于数学问题,特别是现实当中碰到的未知量和已知量的错综复杂的关系,善于用“方程”的观点去构建有关的方程,进而用解方
程的方法去解决它。
三、培养学生数学“转化”思维能力
解数学题最根本的途径是“化难为易,化繁为简,化未知为已知”,也就是把复杂繁难的数学问题通过一定的数学思维、方法和手段,逐渐将它转变为一个大家熟知的简单的数学形式,然后通过大家所熟悉的数学运算把它解决。比如,我们学校要扩大校园面积,需要向镇上征地。镇上给了一块形状不规则的地,如何丈量的它的面积呢?首先使用小平板仪(有条件的话,可使用水准仪或经纬仪)依据一定的比例,将实际地形绘制成纸上图形,然后将纸上图形分割成若干块梯形、长方形、三角形,利用学过的面积计算方法,计算出这些图形的面积之和,也就得到了这块不规则地形的总面积。在这里,我们把无法计算的不规则图形转化成了可以计算的规则图形,从而解决了土地丈量问题。另外,我们前面提到的各种多元方程、高次方程,利用“消元”、“降次”等方法,最终都可以把它们转化为一元一次方程或一元二次方程,然后用已知的步骤或公式把它们解决。“转化”的思想,是解题最重要的思维习惯。面对难题,面对没有见过的题,首先就要想到转化,也总是能够转化的。平时,要多留心老师是怎样解题的,是怎样“化难为易,化繁为简,化未知为已知”的。同学之间也应多交流交流成功转化的体会,深入理解转化的真正含义,切实掌握转化的思维和技巧。
四、培养“对应”的思维能力
“对应”的思想由来已久,比如我们将一支铅笔、一本书、一栋房子对应一个抽象的数“1”,将两只眼睛、一对耳环、双胞胎对应一个抽象的数“2”。随着学习的深入,我们将对应扩展到对应一种关系、对应一种形式等等。比如我们在计算或化简中,将对应公式的左边X,对应A;Y对应B;再利用公式的右边直接得出原式的结果。这就是运用“对应”的思想和方法来解题。初二初三我们将看到数轴上的点与实数之间的一一对应,直角坐标平面上的点与一对有序实数之间的一一对应,函数与其图象之间的对应。“对应”思想在今后的学习中
将会发生越来越大的作用。
五、增强自信是解题的关键
自信才能自强,在考试中,总是看到有些同学的试卷出现许多空白,有好多题根本没有动手去做。俗话说,艺高胆大,(转上页)(接下页)艺不高就胆不大。但是做不出是一回事,没有去做又是另一回事。稍微难一点的数学题都不是一眼就能看出它的解法和结果的。要去分析、探索、比比画画、写写算算,经过迂回曲折的推理或演算,才能显现出条件和结论之间的某种联系,整个思路才会明朗清晰起来。没有动手去做,又怎么知道自己不会做呢?即使是老师,拿到一道难题,也不能立即答复你。也
同样要去分析研究,找到正确的思路后才能讲授。不敢去做(论文网 www.xiexiebang.com)稍微复杂一点的题(不一定是难题,有些题只不过是叙述多一点),是缺乏自信心的表现。在数学解题中,自信心是相当重要的。要相信自己,只要不超出自己的知识范畴,不管哪道题,总是能用自己所学过的知识把它解出来。要敢于去做题,要善于去做题。这就叫做在“在战略上藐视敌人,在战术上重视敌人”。具体解题时,一定要认真审题,紧紧抓住题目的所有条件不放,不要忽略了任何一个条件。一道题和一类题之间有一定的共性,可以想想这一类题的一般思路和一般解法,但更重要的是抓住这一道题的特殊性。抓住这一道题与这一类题不同的地方,数学题几乎没有相同的,总有一个或几个条件不相同,因此思路和解题过程也不尽相同。有些同学老师讲过的题会做,其他题就不会做,只会依样画瓢,题目有些小的变化就无从下手。当然做题先从哪儿下手是一件棘手的事,不一定找得准。但是,做题一定要抓住其特殊性则绝对没错。选择一个或几个条件作为解题的突破口,看由这个条件能得出什么,得出的越多越好,然后从中选择其它条件有关的,进行推算或演算。一般难题都有多种解法,条条大道通罗马。要相信利用这道题的条件,加上自己学过的那些知识,一定能推出正确的结论。数学题目是无限的,但数学的思想和方法却是有限的。我们只要学好了有关的基础知识,掌握了必要的数学思想和方法,就能顺利地对付那无限的题目。题目并不是做得越多越好,题海无边,总也做不完。关键在于你有没有培养起良好的数学思维习惯,有没有掌握正确的数学解题方法。当然,题目做得多也有若干好处:一是熟能生巧,加快速度,节省时间,这一点在考试中时间有限制时显得尤为重要;二是利用做题来巩固、记忆所学的定义、定理、法则、公式,形成良性循环。解题需要丰富的知识,更需要自信心。没有自信心就会畏难,就会放弃。只有自信才能勇往直前,才不会轻言放弃,才会加倍努力地学习,才有希望攻克难关,迎来属于自己的春天。
在初中数学教学中培养学生的数学思维
初中数学教学中,一方面要传授数学知识,使学生具备数学基础知识的素养;另一方面,要通过数学知识的传授,发展智力,培养学生数学能力。钱学森教授曾指出:“教育工作的最终机智在于人脑的思维过程。”思维活动的研究,是教学研究的基础,数学教学与思维的关系十分密切,数学思维的发展规律,对数学教学的实践活动具有根本性的指导意义,因此,在数学教学中如何发展学生的数学思维,培养学生的数学思维能力是一个广泛而值得探讨的课题。
一、精心设计课题引入,吸引学生的注意力,活跃学生的思维。
苏霍姆林斯基说过:“所有智力方面的工作都要依赖于兴趣。”爱因斯坦也曾说过 :“兴趣是最好的老师”。俗话说 :“万事开头难”,良好的开头是成功的一半,精彩的引入能在课堂教学的开始便深深地吸引住学生的注意力。因此几分钟的引入切不可轻视,它关系到四十五分种课堂教学的直接效果。那么引入要怎样做才能做到引人入胜呢? 这是没有定论的,它 要根据教材内容、学生因素等具体情况而定。
比如,在学习§2.11有理数的平方时,故事引入:从前,有一个国王为了奖励发明国际象棋游戏的人,承诺要满足这个人的一个要求。这个人提出,只要在这个国际象棋棋盘里的64个格子中,依次放上2颗、4颗、8颗、16颗,„,后一个格子里的数量是前一格子的数量的2倍的粮食就可以了。国王高兴的答应了。但随后令国王惊讶的是,国王并没有办法满足这个人的要求。你知道这是为什么吗?(一下子就把学生的注意了力吸引过来了。)让我们一起来探索其中的奥妙吧!(如何用式子把每一格的数量表达出来呢?)
第一格:2 第四格:2×2×2×2=16
第一格:2×2=4 第五格:2×2×2×2×2=
32第三格:2×2×2=8 „„
我们发现第2格也能象上面一样列出数学式子进行计算,但显然用这样的式子在表达上很不方便的,那我们能否找到简便的表达方式呢?这就是我们今天要学习的有理数的乘方。
小学时,我们学过:a×a记作 a,读作a的平方(或a的2次方);a×a×a记作 a,读作a的立方(或a的3次方);那么a×a×a×a可以记作什么?a×a×a×a×a呢?a×a×a×a„×a有n个a呢?象这样n个a相乘,记作a,既简单又明确。这样就很自然地把求几个相同因数的乘积的运算介绍给了学生。学生都能在不知不觉中参与教学活动中,学到了新的知识,活跃了思维。
二、.在赏识教学中充分调动学生学习积极性,活跃学生的数学思维。
在教学活动中,最被动的莫过于后进生了。素质教育要求面向全体学生,放弃后进生就不能做到,使人人都能学数学用数学。根据后进生基础差、学习习惯不良容易情绪低落,甚至 自暴自弃的特点,本人认为,应从赏识入手,多给后进生一些鼓励和指导帮助。承认学生之间的差异性,降低对后进生在学习上难度的要求,积极发现后进生在课堂中的闪光点,及时调动他们的积极性。
例如§4.1生活中的立体图形的教学中,安排这样一道题:你能用6根火柴组成4个一样大的三角形吗?若能,请说明你的图形。其中,有一个后进生说:“能”,虽然声音不大,却能被老师听到,及时给他一个机会。这个同学说:“图形是棱锥,是三棱锥。”因为之前老师有分析过三棱锥有6条棱,在这一题目中,6根火柴就是6条棱,所以要回答本题并不难。由于该生的特殊性,老师鼓励他说:“你看,你有很好的空间想象能力,在今后的学习中,只要你能像现在一样,你一定会有很大的进步的。”这个同学的积极性马上就有了,其他同学也是深受鼓舞。
当然,不仅仅后进生需要老师、同学的赏识,在学习生活中,每一个同学都渴望能得到理解和肯定,都希望能得到老师和同学的赞赏。我们知道,不是聪明的学生被夸奖,而是被夸奖的学生会变得更聪明。课堂中,赏识的目光象阳光,照到哪里哪里亮,有赏识就有成功,有赏识,学生都愿意动起来。
三、一题多解,合作讨论,发展学生思维的广阔性。
大课堂教学有利于以教师为中心的讲解,但不利于以学生为中心的自主学习。要想让学生在课堂上真正的动起来,就必须积极探索班级、小组、学生个人相结合的组织形式,加强小组研讨的学习方式,为学生提供充分的自主活动的空间和广泛交流思想的机会,引导学生独立探索、用心思考、真诚交流,全身心地投入到学习中。
例如:平行线的识别与特征的复习中,有这样一道题:已知:直线AB∥ CD,直线L分别截 直线AB、CD于点E、点F两点。并且 ∠1=130°,求:∠2的度数。
问题分析:(1)所求角∠2与已知角∠1之间有什么联系?
(2)已知直线AB∥CD,能帮我们带来哪些结论?
(3)怎样把求∠2 的过程用几何语言表达出来?
学生分组讨论、合作学习,尽可能地从多种角度求出。以提高学生几何题的分析和推理表达能力。
解法1:通过∠2 的内错角与∠1联系起来;解法2:通过∠2 的同位角与∠1联系起来;解法3:通过∠2的同旁内角与∠1联系起来。这样,通过一道题的多种解法,既复习了平行线的特征的应用,又使得学生在合作学习中,合作讨论中自主地完成对知识的构建;学生不仅对知识点的理解深刻,而且“创造”着解题过程的方法,体验着获取、巩固知识的喜悦。同时在和谐诚恳的交流中,充分展现出学生的个性和才能,使学生在学习中真正地动起来。
四、增加动手操作,增强学生数学思维的直观性。
在传统的教学形态里,教师是权威的代言人,将各种经验、概念、法则与理论强制地灌输给学生,学生完全处于一种被动接受的状态,于是学生的学习兴趣和热情被压抑了,主动性减弱了,很大程度上阻碍了学生个性的发展培养。在初中的数学教学中,要注意挖掘新教材的优势,增加学生动手操作,让学生的学习由被动向主动转变。
例如:§4.3立体图形的展开图中,对正方体展开图的探索。
1、课前准备:每个学生都有6个一样的正方形硬纸板、剪刀、透明胶布。
2、授课方式:分组合作学习。
3、探索步骤:(1)将6片硬纸板围成正方形,(2)将正方体剪开,与同学对比,得到正方体的平面展开图是否唯一?(3)讨论正方体的平面是展开图有哪些可能情况?
(4)讨论由6块一样的正方形拼成的图形一定是正方体的展开图吗?哪些情形不是?
发现:通过让学生动手操作、合作学习,学生学习的积极性高涨。虽然现在初一年的学生并不能自主地归纳出正方体展开图的所有可能,但体会其中的几种情况也让他们得到莫大的满足,尤其是对含田字结构形、含凹字结构形、四连两同侧形、五连形、或六连结构形的不能围成正方体可是深有体会。虽然学生在理论上的理解还不深刻,但能让老师感到他们都在愉快的学习中,数学思维得到了锻炼。新课程教学中,教师是学生学习的合作者、引导者和参与者。教师的职责已由知识的传授转向促进学生发展,要引导学生学会观察、学会思考、学会如何学习、培养终身学习的能力,而在数学课中培养学生的数学思维能力则是教学的根本目的,这需要教师充分利用教材内容,通过数学知识的学习,努力培养和提高学生的数学思维能力。
论文录入:游客 责任编辑:杨建永
上一篇论文: 浅谈数学教学中
下一篇论文: 新学习方式下的有效教学
略论在初中数学教学中如何防止两级分化
【论文 初中;数学教学;两级分化;转化策略
【论文摘要 数学学科的特征更加明显地体现出两级分化的严重性和可怕性,这种状况直接影响着数学教学质量的提高。正确分析这种现象产生的原因,采取有效办法改变和杜绝这种现象,对提高数学教学成绩,促进教育健康发展有着及其重要的意义。初中生数学学习两级分化的原因
1.1 缺乏学习数学的喜好和学习意志薄弱。对于初中学生来说,学习的积极性主要取决于学习喜好和克服学习困难的毅力。学习喜好的淡薄甚至缺乏是造成他们成绩差的重要原因。初中数学相对小学而言,难度加深,教学方式变化较大,教师辅导减少,学生学习的独立性增强。在中小学衔接过程中,学生适应性及学习意志的强弱直接关系到分化的严重性和否。
1.2 没有形成较好的数学认知结构。相比而言,初中数学教材结构的逻辑性、系统性更强。首先表现在教材知识的衔接上,其次还表现在把握数学知识的技能技巧上。因此,假如学生对前面所学的内容达不到规定的要求,不能及时把握知识,形成技能,就造成了连续学习过程中的薄弱环节,跟不上集体学习的进程,导致学习分化。
1.3 思维方式不适应数学学习要求。八年级是数学学习分化最明显的阶段。一个重要原因是初中阶段数学课程对学生抽象逻辑思维能力要求有了明显提高。八年级学生正处于由直观形象思维为主向以抽象逻辑思维为主过渡的又一个关键期,没有形成比较成熟的抽象逻辑思维方式,而且学生个体差异也比较大,因此表现出数学学习接受能力的差异。
1.4 双基不扎实。基本概念、定理模糊不清,不能用数学语言再现概念、公式、定理;不看课本,不能说明概念的体系,概念和概念之间联系不起来。
1.5 学习态度不端正学习方法不科学。学生自学能力差,课堂缺少解题的积极性,教师布置的练习、作业,不复习不练习,抄袭应付了事,缺乏学习的主动性,不重视综合练习,缺乏竞争意识。后进生转化的策略
2.1 培养后进生对数学学习的喜好,激发他们的学习积极性摘要:①数学是一门具有科学性、严密性、抽象性的学科。它的抽象性,是形成后进生的主要原因。教学时,应加强数学的直观性教学以吸引后进生的注重力。②应加强数学教学语言的艺术应用,让教学生动、有趣。课堂教学中教师更要非凡注重观察后进生的学习情绪,恰当运用艺术性的教学语言来活跃课堂气氛,引导每位学生进入积极思维状态,从而达到教学目的。③注重情感教育。
2.2 培养学生自觉学习的良好习惯摘要:①教师在布置作业时,要注重难易程度,要注重加强对后进生的辅导、转化,督促他们认真完成布置的作业。②大部分后进生学习被动,依靠性强。教师在解答新问题时,要注重启发,逐步培养他们独立完成作业的习惯。③应该用辩证的观点教育,对后进生要“爱”字当头,“严”字贯其中,督促他们认真学习。
2.3 认真把好考试关,注重培养后进生的自信心和自尊心。要有意识地出一些较易的题目,让他们心得成功和被赞赏的快乐,从而培养他们的自信心和自尊心。
2.4 教会学生学习。教师要有意识地培养学生正确的数学学习观念,并在教学过程中加强学法指导和学习心理辅导。
2.5 在数学教学过程中加强抽象逻辑思维的练习和培养。针对后进生抽象逻辑思维能力不适应数学学习的新问题,从七年级数学教学开始就加强抽象逻辑能力练习,始终把教学过程设计成学生在教师指导下主动探求知识的过程。
2.6 建立和谐的师生关系。心理学认为,人的情感和熟悉过程是相联系的,任何熟悉过程都伴随着情感。初中生对某一学科的学习喜好和学习情感密不可分。和谐的师生关系是保证和促进学习的重要因素
2.7 尊重和理解后进生。要相信后进生是可以向好的方向转化的。他们通过努力而取得的成绩,希望得到同学的承认、老师的理解。教师要针对学生不同的特征进行不同方式教育。对后进生工作要有耐心和信心。平时教学始终贯彻“抓两头带中间”的原则
3.1 注重对尖子的培养。在解题过程中,要求他们尽量走捷径、有创意,注重严密的逻辑推理,力求解题过程的完整和完美。另外,开展课外提高小组,培养解题技巧,提高解题能力,切实发挥他们的尖子生优势,让他们在平时学习以及中考中占有决对的尖子优势,这和中考成绩优分率提高,关系重大。
3.2 注重中等学生成绩的大幅度提高。这部分学生占据了学生中的大多数,他们考试成绩的好坏直接关系到考试均分的高低,抓好对他们的教和辅,也是数学教学中成绩提高的重要一环。他们对知识把握不太牢固,解题时常丢三拉四,因此,解题时的严密和细心成为他们考取高分的关键。一定要练习他们在能得分处多得分,不能得分处想法得一分。优化课堂教学,提高课堂教学质量
4.1 教学方法和手段要灵活。尽量采用启发法、点拨法、讨论法、图表法,比较法等多种教学方法和手段。
4.2 要注重学生思维能力的培养,练习学生的创新思维。在平时教学中多给学生教授解题的数学思想和方法,重视他们能力的培养,加强“联想、想象、转化”思维练习。促使学生一开始就进入创新思维状态中,以探索者的身份去发现新问题、总结规律。数学思想、方法作为数学学科的“一般原理”,在数学学习中是至关重要的。对于中学生“不管他们将来从事什么业务工作,唯有深深地铭刻于头脑中的数学的精神、数学的思维方法、探究方法,却随时随地发生功能,使他们受益终生”。
4.3 要做到“精”。要做到精选、精讲、精析、精练,不搞题海战术。但不练习、不强化也不行,这就要认真备教材、教法、学法,使之有的放矢,事半功倍,这就要从“精”字作文章。
4.4 重视学生的合作学习,提供足够的小组学习时间。小组讨论给每一位学生提供了一个表现自己的机会,同学们在讨论交流中主动参和,集思广益,促进了学生间学习风格的相互影响和相互补充,培养了学生的合作精神,对于后进生来说,也会积极参和的。
4.5 重视对学生的学法指导。新型的探究学习和合作学习形式有利于培养学生学会学习、自主学习的能力。但个别学生表现出来的是不适应这种学习形式,例如在解一元二次方程教学中,就有学生表示,老师只要告诉我们怎么做就好了,问这么多新问题,难为学生干什么。如何让学生从“学会”向“会学”转变,是教师在课堂上要注重探究的重点。要在教学中促动学生学会动脑,学习独立思索,并且及时反馈,帮助学生调整、修正学习方法,促进学生不断体验成功的喜悦,实现“学会学习”。