第一篇:人教版七年级数学上册第一章有理数的加法教案与作业设计
丰城一中
1.3.1有理数的加法
(一)学习目标
1. 理解有理数的加法法则.2. 能够应用有理数的加法法则,将有理数的加法转化为非负数的加减运算.3. 掌握异号两数的加法运算的规律.[知识讲解]
正有理数及0的加法运算,小学已经学过,然而实际问题中做加法运算的数有可能超出正数范围。例如,足球循环赛中,可以把进球数记为正数,失球数记为负数,它们的和叫做净胜球数。如果,红队进4个球,失2个球;蓝队进1个球,失1个球.于是红队的净胜球数为
4+(-2),蓝队的净胜球数为
1+(-1)。
这里用到正数和负数的加法。
下面借助数轴来讨论有理数的加法。
一、负数+负数
如果规定向东为正,向西为负,那么一个人向西走2米,再向西走3米,两次共向西走多少米?很明显,两次共向西走了6米.这个问题用算式表示就是:(-2)+(-4)=-6.这个问题用数轴表示就是如图1所示:
二、负数+正数
如果向西走2米,再向东走4米,那么两次运动后 这个人从起点向东走2米,写成算式就是
(—2)+4=2。
这个问题用数轴表示就是如图2所示:
探究
利用数轴,求以下情况时这个人两次运动的结果:
(一)先向东走3米,再向西走5米,物体从起点向()运动了()米;
(二)先向东走5米,再向西走5米,物体从起点向()运动了()米;
(三)先向西走5米,再向东走5米,物体从起点向()运动了()米。这三种情况运动结果的算式如下:
3+(—5)= —2;
5+(—5)= 0;
(—5)+5= 0。
如果这个人第一秒向东(或向西)走5米,第二秒原地不动,两秒后这个人
从起点向东(或向西)运动了5米。写成算式就是
5+0=5或(—5)+0= —5。
你能从以上7个算式中发现有理数加法的运算法则吗?
三、有理数加法法则
1. 同号的两数相加,取相同的符号,并把绝对值相加.2.绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.互为相反数的两个数相加得零.3一个数同0相加,仍得这个数。
四、例题
例1 计算(-3)+(-9);(2)(-4·7)+3·
分析:解此题要利用有理数的加法法则.解:(1)(-3)+(-9)= -(3+9)= -12:
(2)(-4·7)+3·9=-(4·7-3·9)= -0·8.例2足球循环赛中,红队胜黄队4: 1,黄队胜蓝队1 :0,蓝队胜红队1: 0,计算各队的净胜球数。解:每个队的进球总数记为正数,失球总数记为负数,这两数的和为这队的净胜球数。三场比赛中,红队共进4球,失2球,净胜球数为
(+4)+(—2)=+(4—2)=2;
黄队共进2球,失4球,净胜球数为
(+2)+(—4)= —(4—2)=();蓝队共进()球,失()球,净胜球数为
()=()。
五、课堂练习1.填空:
(1)(-3)+(-5)=;(2)3+(-5)=;
(3)5+(-3)=;(4)7+(-7)=;
(5)8+(-1)=;(6)(-8)+1 =;
(7)(-6)+0 =;(8)0+(-2)=;
2.计算:
(1)(-13)+(-18);(2)20+(-14);
(3)1.7 + 2.8 ;(4)2.3 +(-3.1);
121)+(-);(6)1+(-1.5); 3
3212(7)(-3.04)+ 6 ;(8)+(-).23(5)(-
3.想一想,两个数的和一定大于每个加数吗?请你举例说明.4.第23页练习1、2。
课堂练习答案
1.(1)-8;(2)-2;(3)2;(4)0;(5)7;(6)-7;
(7)-6;(8)-2.2.(1)-31;(2)7;(3)4.5;(4)-0.7;(5)-1 ;
(6)0 ;(7)2.96;(8)-1.6
3.不一定,例如两个负数的和小于这两个加数.课外作业:第31页1题.课外选做题
1.判断题:
(1)两个负数的和一定是负数;
(2)绝对值相等的两个数的和等于零;
(3)若两个有理数相加时的和为负数,这两个有理数一定都是负数;
(4)若两个有理数相加时的和为正数,这两个有理数一定都是正数.2.当a = -1.6,b = 2.4时,求a+b和a+(-b)的值.3.已知│a│= 8,│b│= 2.(1)当a、b同号时,求a+b的值;
(2)当a、b异号时,求a+b的值.课外选做题答案
1.(1)对;(2)错;(3)错;(4)错.2.a+b和a+(-b)的值分别为0.8、-4.3.(1)当a、b同号时,a+b的值为10或-10;
有理数的加法(1)
【目标预览】
知识技能:
1、通过实例,了解有理数加法的意义,掌握有理数加法法则,并能运用法则进行计算;
2、在有理数加法法则的教学过程中,培养观察、比较、归纳及运算能力。数学思考:
1、正确地进行有理数的加法运算;
2、用数形结合的思想方法得出有理数加法法则。
解决问题:能运用有理数加法解决实际问题。
情感态度:通过师生活动、学生自我探究,让学生充分参与到数学学习的过程中来。
【教学重点和难点】
重点:了解有理数加法的意义,会根据有理数加法法则进行有理数加法计算; 难点:异号两数如何相加的法则。
【情景设计】
我们来看一个大家熟悉的实际问题:
足球比赛中进球个数与失球个数是相反意义的量.若我们规定进球为“正”,失球为“负”。比如,进3个球记为正数:+3,失2个球记为负数:-2。它们的和为净胜球数:(+3)+(-2)学校足球队在一场比赛中的胜负情况如下:
(1)红队进了3个球,失了2个球,那么净胜球数是:(+3)+(-2)
(2)蓝队进了1个球,失了1个球,那么净胜球数是:(+1)+(-1)
这里,就需要用到正数与负数的加法。
下面,我们利用数轴一起来讨论有理数的加法规律。
【探求新知】
一个物体作左右运动,我们规定向左为负,向右为正。向右运动5m,可以记作多少?向左运动5m呢?
(1)如果物体先向右运动5m,再向右运动3m,那么两次运动后总的结果是多少呢? 利用数轴演示(如图1),把原点假设为运动起点。
两次运动后物体从起点向右运动了8m。写成算式是:5+3=8①
利用数轴依次讨论如下问题,引导学生自己寻找算式的答案:
(2)如果物体先向左运动5m,再向左运动3m,那么两次运动后总的结果是多少呢?
(3)如果物体先向右运动5m,再向左运动3m,那么两次运动后总的结果是多少呢?
(4)如果物体先向左运动5m,再向右运动3m,那么两次运动后总的结果是多少呢?
(5)如果物体先向左运动5m,再向右运动5m,那么两次运动后总的结果是多少呢?
(6)如果物体先向右运动5m,再向左运动5m,那么两次运动后总的结果是多少呢?
(7)如果物体第一分钟向右(或向左)运动5m,第二分钟原地不动,那么两次运动后总的结果是多少呢?
总结:依次可得
(2)(-5)+(-3)=-8②
(3)5+(-3)=2③
(4)3+(-5)=-2④
(5)5+(-5)=0⑤
(6)(-5)+5=0⑥
(7)5+0=5或(-5)+0=-5⑦
观察上述7个算式,自己归纳出有理数加法法则:
1.同号两数相加,取相同的符号,并把绝对值相加;
2.绝对值不相等的异号两数相加,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0;
3.一个数同0相加,仍得这个数。
【范例精析】
例1计算下列算式的结果,并说明理由:
(1)(+4)+(+7);(2)(-4)+(-7);
(3)(+4)+(-7);(4)(+9)+(-4);
(5)(+4)+(-4);(6)(+9)+(-2);
(7)(-9)+(+2);(8)(-9)+0;
(9)0+(+2);(10)0+0.
学生逐题口答后,教师小结:
进行有理数加法,先要判断两个加数是同号还是异号,有一个加数是否为零;再根据两个加数符号的具体情况,选用某一条加法法则.进行计算时,通常应该先确定“和”的符号,再计算“和”的绝对值.
解:(1)(-3)+(-9)(两个加数同号,用加法法则的第2条计算)
=-(3+9)(和取负号,把绝对值相加)
=-12.
例3 足球循环比赛中,红队胜黄队4﹕1,黄队胜蓝队1﹕0,蓝队胜红队1﹕0,计算各队的净胜球数。
解:我们规定进球为“正”,失球为“负”。它们的和为净胜球数。
三场比赛中,红队共进4球,失2球,净胜球数为(+4)+(-2)=2;
黄队共进2球,失4球,净胜球数为(+2)+(-4)=-2;
蓝队共进1球,失1球,净胜球数为(+1)+(-1)=0;
【一试身手】
下面请同学们计算下列各题:
(1)(-0.9)+(+1.5);(2)(+2.7)+(-3);(3)(-1.1)+(-2.9);
全班学生书面练习,四位学生板演,教师对学生板演进行讲评.
【总结陈词】
1、这节课我们从实例出发,经过比较、归纳,得出了有理数加法的法则.今后我们经常要用类似的思想方法研究其他问题。
2、应用有理数加法法则进行计算时,要同时注意确定“和”的符号,计算“和”的绝对值两件事。
【实战操练】
1.计算:
(1)(-10)+(+6);(2)(+12)+(-4);(3)(-5)+(-7);
(4)(+6)+(+9);(5)67+(-73);(6)(-84)+(-59);
(7)33+48;(8)(-56)+37.
2.计算:
(1)(-0.9)+(-2.7);(2)3.8+(-8.4);
(3)(-0.5)+3;(4)3.29+1.78;
(5)7+(-3.04);(6)(-2.9)+(-0.31);
(7)(-9.18)+6.18;(8)4.23+(-6.77);(9)(-0.78)+0.
3.计算:
4*.用“>”或“<”号填空:
(1)如果a>0,b>0,那么a+b ______0;
(2)如果a<0,b<0,那么a+b ______0;
(3)如果a>0,b<0,|a|>|b|,那么a+b ______0;
(4)如果a<0,b>0,|a|>|b|,那么a+b ______0.
5*.分别根据下列条件,利用|a|与|b|表示a与b的和:
(1)a>0,b>0;(2)a<0,b<0;
(3)a>0,b<0,|a|>|b|;(4)a>0,b<0,|a|<|b|.更多资料请访问http://www.maths.name
第二篇:人教七年级数学上册教案人教版-1.3.1有理数的加法
1.3 有理数的加减法授课时间:____________
1.3.1有理数的加法(1)
【教学目标】
1.理解有理数加法的实际意义;
2.会作简单的加法计算;
3.感受到原来用减法算的问题现在也可以用加法算.【对话探索设计】
〖探索1〗
(1)某仓库第一天运进300吨化肥,第二天又运进200吨化肥,两天一共运进多少吨?
(2)某仓库第一天运进300吨化肥,第二天运出200吨化肥,两天总的结果一共运进多少吨?
(3)某仓库第一天运进300吨化肥,第二天又运进-200吨化肥, 两天一共运进多少吨?
(4)把第(3)题的算式列为300+(-200),有道理吗?
(5)某仓库第一天运进a吨化肥,第二天又运进b吨化肥,两天一共运进多少吨? 〖探索2〗
如果物体先向右运动,再向右运动,那么两次运动后总的结果是什么?
假设原点为运动起点,用下面的数轴检验你的答案.在足球比赛中,通常把进球数记为正数,失球数记为负数,它们的和叫做净胜球数.若某场比赛..........红队胜黄队5:2(即红队进5个球,失2个球),红队净胜几个球?
〖小游戏〗
(请一位同学到黑板前)前进5步,又前进-3步, 那么两次运动后总的结果是什么?若是后退-1步,又后退3步呢?
〖练习〗
1.登山队员第一天向上攀登,第二天又向上攀登(天气恶劣!),两天一共向上攀登多少米?
2.第一天营业赢利90元,第二天亏本80元,两天一共赢利多少元?
〖补充作业〗
1.分别用加法和减法的算式表示下面每小题的结果(能求出得数最好):
(1)温度由下降;(2)仓库原有化肥200t,又运进-120t;
(3)标准重量是,超过标准重量;(4)第一天盈利-300元, 第二天盈利100元.2.借助数轴用加法计算:
(1)前进,又前进, 那么两次运动后总的结果是什么?
(2)上午8时的气温是,下午5时的气温比上午8时下降, 下午5时的气温是多少?
3.某潜水员先潜入水下,他的位置记为.然后又上升,这时他处在什么位置?
第三篇:人教七年级数学上册教案人教版-1.3.1有理数的加法
1.3.1有理数的加法(2)授课时间:____________
【教学目标】
1.进一步理解有理数加法的实际意义;
2.经历探索有理数加法法则的过程,理解有理数加法法则;
3.感受数学模型的思想;
4.养成认真计算的习惯.【对话探索设计】
〖探索1〗
1.第一天赢利,第二天还赢利,两天合起来算,是赢利还是亏本?
2.第一天亏本,第二天还是亏本,两天合起来算,是赢利还是亏本?
3.一个物体作左右方向的运动,规定向右为正.如果物体先向左运动,再向左运动, 那么两次运动后总的结果是什么?
假设原点为运动起点,用数轴检验你的答案.〖法则理解〗
有理数加法法则第1条是:同号两数相加,取___________,并把绝对值_________.这条法则包括两种情况:
(1)两个正数相加,显然取正号,并把绝对值相加,例(+3)+(+5)=+8;
(2)两个负数相加,取_____号,并把______相加.例如(-3)+(-5)=-(3+5)=-8.答案“-8”之所以取“-”号,是因为______________,“8”是由_____的绝对值和______的绝对值相______而得.〖练习〗
1.上午6时的气温是,下午5时的气温比上午6时下降, 下午5时的气温是多少?
2.第一场比赛红队胜黄队5:2,第二场比赛蓝队胜黄队3:1, 两场比赛黄队净胜几个球?
3.第一天向北走,第二天又向北走,两天一共向北走多少km?
4.仿照(-3)+(-5)=-(3+5)=-8的格式解答:
(1)-10+(-30)=
(2)(-100)+(-200)=
(3)(-188)+(-309)=
〖探索2〗
1.第一天营业赢利90元,第二天亏本80元,两天一共赢利多少元?如果第二天亏本120元呢?
2.第一天赢利,第二天亏本,两天合起来算,是赢利还是亏本?
3.正数和负数相加,结果是正数还是负数?
〖法则理解〗
有理数加法法则第2条的前半部分是:绝对值不相等的异号两数相加,取_________________的符号,并用_______________减去_________________.例如(+6)+(-2)= +(6-2)= +4.答案“+4”之所以取“+”号,是因为两个加数(+6与-2)中________的绝对值较大;答案“+4”的绝对值4是由加数中较大的绝对值______减去较小的绝对值____得到.又例,计算(-8)+(+3)时,先取______号,这是因为两个加数中,______的绝对值较大.然后再用较大的绝对值____减去较小的绝对值____,得_____,于是最后得到答案是______.计算的过程可以写成(-8)+(+3)=-(8-3)=-5.〖议一议〗
有人说,正数和负数相加时,实质就是把加法运算转化为”小学”的减法运算.他说的对不对?
〖练习〗
1.第一场比赛红队胜黄队5:2,第二场比赛黄队胜蓝队3:1, 两场比赛黄队净胜几个球?
2.如果物体先向右运动,再向右运动,那么两次运动后总的结果是什么?
3.检查3包洗衣粉的重量(单位:克), 把其中超过标准重量的数量记为正数,不足的数量记作负数,结果如下:
-3.5,+1.2,-2.7.这3包洗衣粉的重量一共超过标准重量多少?
4.仿照(-8)+(+3)=-(8-3)=-5的格式解题:
(1)(-3)+(+8)=
(2)-5+(+4)=
(3)(-100)+(+30)=
(4)(-100)+(+109)=
〖法则理解〗
有理数加法法则第2条的后半部分是:互为相反数的两个数相加得_____.例如(+3)+(-3)= ______,(-108)+(+108)= ______.〖例题学习〗
P21.例1,例2
P22.练习2(按例1格式算.)
〖作业〗
P29.习题 1, P32.习题 8,9,10
【备选素材】
用一个□表示+1,用一个■表示-1.显然□+■=0,(1)■■+□□□=(■+□)+(■+□)+ □=_____.这表明-2+3=+(3-2)=1.想一想:答案为什么是正的?为什么转化为减法运算?
(2)计算■■■■■+□□□□□=_____.(3)计算■■■■■+□□=(■■+□□)+ ■■■=______.这说明-5+(+2)=-(___-___)=_______.(4)计算■■■+□□□□□=?
第四篇:数学七年级上册有理数的加法教案
《有理数的加法》第一课时
教学目标
1.知识与技能目标
(1)经历探索有理数加法法则的过程,理解有理数加法的意义并掌握其法则。(2)运用有理数加法法则熟练进行有理数加法运算。2.过程与方法目标
(1)在教师创设的熟悉的情境中,通过观察、比较,培养学生的分类、归纳、概括等能力,把生活数学转化为应用数学。
(2)通过设置有趣的情境,组织学生进行活动,让学生亲身体验知识产生的过程,感受分类讨论的数学思想。
(3)让学生能熟练进行有理数加法运算。
(4)渗透由特殊到一般,由一般到特殊的唯物辩证法思想,能运用有理数加法法则解决实际问题,把学校数学回归本质。
3、情感态度与价值观目标
(1)通过师生合作、交流,学生主动参与探索,激发学生学习数学的欲望。
(2)培养学生合作的意识,应用数学的意识,让学生体验成功,树立学习自信心,养成良好的数学思维品质。教学重点、难点
重点:有理数加法的分类和有理数加法法则的理解 难点:有理数加法法则的归纳 教学过程
一、复习旧知
比较下列两个数的绝对值的大小:(1)20与30(2)—20与—30(3)—20与30(4)20与—30
二、情境引入
(一)师:实际生活中有很多正数与负数的例子,如:收入与支出、温度的上升与下降,足球比赛中的输和赢。
出示足球比赛图片,引出净胜球:赢球数(+)+输球输(—)=净胜球数 引出课题:有理数的加法
(二)师:请同学们用算式表示下列比赛中的净胜球数
(1)在一场比赛中,红队上半场赢3个球,下半场输2个球.红队全场的净胜球数为.(2)蓝队上半场赢1个球,下半场输1个球.蓝队全场的净胜球数为.(三)合作探究,情境中引出所有有理数的加法情况 引导学生对这些有理数的加法进行分类。
引出有理数的加法分为:同号两数相加、异号两数相加、一个数同0相加。师:小学阶段我们学过这些有理数加法中的哪一些? 引导学生发现“正数+正数”、“0+正数”、“正数+0”、“0+0”在小学阶段已经学过。今天我们将重点学习余下的5种类型
三、探究法则
(一)由易入手,探究“0与负数相加”的计算方法 出示(—5)+0=
教师演示,帮助理解算理。对比练习(—2)+0 0+(—100)0+(—200)
引导得出:一个数同0相加,仍得这个数。
(二)探究“负数+负数” 出示(—2)+(—3)= 课件演示,帮助理解算理。对比练习:
(—20)+(—30)=(+2)+(+3)=(+20)+(+100)= 学生讨论:
1.这些式子的加数有怎样的特点? 2.结果的符号是怎样确定的?
3.结果的绝对值与两个加数的绝对值有什么关系?
引导得出计算法则:同号两数相加,取相同的符号,并把绝对值相加。
(三)探究“异号两数相加的计算法则” 出示(-2)+(+2)教师演示,帮助理解算理。对比练习:
(+3)+(—3)=(—10)+(﹢10)=
引导学生发现:互为相反数的两个数相加得0.师强调:互为相反数的两数相加是异号两数相加的特殊情况。学生小组合作探究(—3)+(+2)=(—2)+(+3)=
学生上台演示,讲解探究过程。教师引导得出法则:
绝对值不相等的异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值。生齐读法则。
四、练习巩固
1.判断题(用手势判断正确或者错误)(-3)+(+7)=-10(-8)+(-5)=-3 0+(-1)=0(-3)+3=0 2.先判断下列两个有理数相加所属类型和结果的符号,再说出结果(1)(+4)+(+3);(2)(-4)+(-3);(3)(+4)+(-3);(4)(+3)+(-4);(5)100 + 50;(6)(-100)+(-50)指名回答,并引导学生得出 运算步骤: 1.判断类型; 2.确定和的符号;
3.进行绝对值的加减运算。
五、例题
(—3)+(—9)(—3.9)+4.7 教师板演,强调法则以及书写格式
六、练习计算:
(-10)+(+6)()+()=
学生独立完成、集体讲评
七、全课小结: 我的表现„„ 我的收获„„ 我的困惑„„
第五篇:人教七年级数学上册教案人教版-1.3.1有理数的加法
1.3.1有理数的加法(3)授课时间:____________
【教学目标】
1.理解有理数加法的运算律;
2.能用运算律简化有理数加法的运算.【对话探索设计】
〖复习导入〗
1.小学时已学过的加法运算律有哪几条?
2.猜一猜:在有理数的加法中,这两条运算律仍然适用吗?
3.(1)计算30+(-20)=__________=______,-20+30=___________=_____;
(2)[8+(-5)]+(-4)=_______=______, 8+[(-5)+(-4)]=_______=______.你猜对了吗?
〖试一试〗
你会用文字表述加法的两条运算律吗?
你会用字母表示加法的这两条运算律吗?
〖例题学习〗
P22.例
3〖例题探索〗
P23.例4.你认为例4的两种解法哪一种比较好?
〖练习〗
P23.练习
1〖作业〗
P23.练习2,P30.习题
2【备用素材】
1.(1)两个数都是负数,它们的和一定是负数吗?为什么?
(2)两个数的和是负数,这两个数一定都是负数吗?为什么?
2.(1)在一场足球比赛中,红队以4:1胜黄队,这说明红队进_____球,失______球,净胜_______球;而黄队则进_____球,失______球,净胜_______球.(2)某赛季,申花足球队第一场比赛赢了2个球(5比3);第二场比赛输了3个球(1比4),两场比赛该队净胜几个球?
3.某地,去年9月1日的平均气温是28℃,第二天平均气温比第一天上升了2℃,第三天平均气温比第二天上升了-5℃(下暴雨!),问第三天平均气温是多少,请画出(温度计)示意图.4.各举两个反例说明以下的说法是错误的:
(1)两个有理数相加,和一定大于每一个加数.(2)两个数的和是0,这两个数都是0.*(3)若a>0,b<0,且|a|<|b|,则a+b=-(|a|-|b|).5.(1)小学所遇到的加法运算,两个加数的和会小于任何一个加数吗?
(2)a+b会小于a吗?为什么?
6.若用Δ表示+10,用▲表示-10,用◇表示+1,用◆表示-1.则ΔΔ◇◇◇表示_________;▲▲▲▲▲◆◆◆◆表示_______.ΔΔ◇◇◇+▲▲▲▲▲◆◆◆◆=(ΔΔ+▲▲)+(◇◇◇+◆◆◆)+_____________=_________________.结果表示的数是_______.7.有一批食品罐头,标准质量为每听454克.现抽取10听样品进行检测,结果如下表(单位:克):
若把超过标准质量的克数y用正数表示,不足的用负数表示,依照上表的数据列出这10听罐头与标准质量的差值表(单位:克):
分别用上面两个表格的数据求出10听罐头的总质量,比较这两种方法.8.小钱上周五以收盘价买进股票1000股,每股20元.下表为本周每日股票的涨跌情况(按
(2)本周内,股票最高价出现在星期几?是多少元?
(3)已知小钱买进股票时付了4‰的手续费,卖出时又付成交额4‰的手续费和3‰的交易税,如果小钱在本周末以收盘价卖出全部股票,他的收益如何?
9.小京同学在计算16+(-24)+22+(-17)+(-56)+56时, 利用加法交换律、结合律先把正负数分别相加,得16+22+56+[(-24)+(-17)+(-56)].你认为这样算能使运算简便吗?你认为还有其它方法吗?
10.用简便方法计算:
(1)1033.78+(-26)+(-39)+(-38);(2)12.7+(-24.6)+(-29.1)+6.8;
(3)1.3+0.5+(-0.5)+0.3+(-0.7)+3.2+(-0.3)+0.7;(4)(-109)+(-267)+(+108)+268;