第一篇:第十四章整式的乘法与因式分解目标检测试卷含答案点拨
整式的乘除与因式分解
(满分100分,考试时间90分钟)
一、选择题(本大题共8小题,每小题3分,共24分.在每小题所给的4个选项中,只有一项是符合题目要求的,请将正确答案的代号填在题后括号内)
1.下列计算中正确的是().
A.a2+b3=2a5B.a4÷a=a
4C.a2·a4=a8D.(-a2)3=-a6
2.(x-a)(x2+ax+a2)的计算结果是().
A.x3+2ax2-a3B.x3-a
3C.x3+2a2x-a3D.x3+2ax2+2a2-a3
3.下面是某同学在一次测验中的计算摘录,其中正确的个数有().
①3x3·(-2x2)=-6x5;②4a3b÷(-2a2b)=-2a;③(a3)2=a5;④(-a)3÷(-a)=-a2.A.1个B.2个
C.3个D.4个
324.已知被除式是x+2x-1,商式是x,余式是-1,则除式是().
A.x2+3x-1B.x2+2x
C.x2-1D.x2-3x+
15.下列各式是完全平方式的是().
A.x2-x+14B.1+x
2C.x+xy+1D.x2+2x-1
6.把多项式ax2-ax-2a分解因式,下列结果正确的是().
A.a(x-2)(x+1)B.a(x+2)(x-1)
2C.a(x-1)D.(ax-2)(ax+1)
7.如(x+m)与(x+3)的乘积中不含x的一次项,则m的值为().
A.-3B.3
C.0D.1
xyx-y8.若3=15,3=5,则3等于().
A.5B.3
C.15D.10
二、填空题(本大题共8小题,每小题3分,共24分.把答案填在题中横线上)
9.计算(-3x2y)·(xy)=__________.1
3222mn)(mn)=__________.33
23211.计算:(xy)=__________.3210.计算:(
12.计算:(-a2)3+(-a3)2-a2·a4+2a9÷a3=__________.13.当x__________时,(x-4)0=1.14.若多项式x2+ax+b分解因式的结果为(x+1)(x-2),则a+b的值为__________.
15.若|a-2|+b2-2b+1=0,则a=__________,b=__________.16.已知a+
三、解答题(本大题共5小题,共52分)
17.(本题满分12分)计算:11=3,则a2+2的值是__________. aa
(1)(ab2)2·(-a3b)3÷(-5ab);
(2)x2-(x+2)(x-2)-(x+;
(3)[(x+y)2-(x-y)2]÷(2xy).
18.(本题满分16分)把下列各式因式分解:
(1)3x-12x3;
(2)-2a3+12a2-18a;
(3)9a2(x-y)+4b2(y-x);
(4)(x+y)2+2(x+y)+1.19.(本题满分6分)先化简,再求值.
2(x-3)(x+2)-(3+a)(3-a),其中,a=-2,x=1.20.(本题满分8分)已知:a,b,c为△ABC的三边长,且2a2+2b2+2c2=2ab+2ac+2bc,试判断△ABC的形状,并证明你的结论.
21.(本题满分10分)在日常生活中,如取款、上网等都需要密码.有一种用“因式分解”法产生的密码,方便记忆.原理是:如对于多项式x4-y4,因式分解的结果是(x-y)(x+y)·(x2+y2),若取x=9,y=9时,则各个因式的值是:(x-y)=0,(x+y)=18,x2+y2=162,于是就可以把“018162”作为一个六位数的密码.对于多项式4x3-xy2,取x=10,y=10时,请你写出用上述方法产生的密码. 12)x
参考答案
1.D
3.B
4.B
7.A
-3.8.B
9.-x3y3 2.B 点拨:①②正确,故选B.5.A 6.A 点拨:(x+m)(x+3)=x2+(m+3)x+3m,若不含x的一次项,则m+3=0,所以m=
42mn2 9
429211.x2xyy 9410.
12.a6
13.≠4
14.-3
15.2 1 点拨:由|a-2|+b2-2b+1=0,得
|a-2|+(b-1)2=0,所以a=2,b=1.111=3两边平方得,a2+2·a+()2=9,aaa
11所以a2+2+2=9,得a2+2=7.aa16.7 点拨:a+
17.解:(1)原式=a2b4·(-a9b3)÷(-5ab)
117=-ab÷(-5ab)=1106ab; 5
(2)原式=x2-(x2-4)-(x2+2+
=x2-x2+4-x2-2-
=2-x2-1)x21 x21; x2
(3)原式=[(x2+2xy+y2)-(x2-2xy+y2)]÷(2xy)
2222=(x+2xy+y-x+2xy-y)÷(2xy)
=4xy÷(2xy)=2.18.解:(1)3x-12x3=3x(1-4x2)=3x(1+2x)(1-2x);
(2)-2a3+12a2-18a=-2a(a2-6a+9)
=-2a(a-3)2;
(3)9a2(x-y)+4b2(y-x)=9a2(x-y)-4b2(x-y)=(x-y)(9a2-4b2)=(x-y)(3a+2b)·(3a-2b);
22(4)(x+y)+2(x+y)+1=(x+y+1).19.解:2(x-3)(x+2)-(3+a)(3-a)
=2(x2-x-6)-(9-a2)
=2x2-2x-12-9+a2
=2x2-2x-21+a2,当a=-2,x=1时,原式=2-2-21+(-2)2=-17.20.解:△ABC是等边三角形.证明如下:
因为2a2+2b2+2c2=2ab+2ac+2bc,所以2a2+2b2+2c2-2ab-2ac-2bc=0,a2-2ab+b2+a2-2ac+c2+b2-2bc+c2=0,(a-b)2+(a-c)2+(b-c)2=0,所以(a-b)2=0,(a-c)2=0,(b-c)2=0,得a=b且a=c且b=c,即a=b=c,所以△ABC是等边三角形.
21.解:4x3-xy2=x(4x2-y2)
=x(2x-y)(2x+y),再分别计算:x=10,y=10时,x,(2x-y)和(2x+y)的值,从而产生密码.故密码为:101030,或103010,或301010.参考答案:
一.1.B2.D3.A4.C5.C6.C7.C8.A9.B10.C
二.1.9 , 3758xy322327y54xy24xy8x8a4b72.3.-74.55.三,四
22m4n,m2n m16.7.28.69.13,8,713.5.14.615.6a2b116.-13 10.1989999800111.012.2(2n1)(2n1)1(2n)三.(1)
(2)
(2n1)(2n1)1
(2n)211
(2n)2
2.解:由已知可得,32 BAx211xB(x2x)2x2x3x22,所以,2所以,BA2xx2x
2323(q3p8)x,(3p)xxx3.解:原式的展开式的项项分别是
q3p80p3,pq43p0q1依题意得,
424224x4y4x4xyy4.解:原式=
224xy5y=
22x2,y342(3)5(3)93当时,原式=
22222(ab)a2abb(ab)2ab182165.解:(1)
所以,ab
(2)
所以,ab
4 992(ab)2a22abb2(a2b2)2ab1823
第二篇:因式分解与整式乘法的关系
因式分解与整式乘法的关系
【知识点】
整式乘法与因式分解一个是积化和差,另一个是和差化积,是两种互逆的变形.
即:
多项式整式乘积
【练习题】
1.下列因式分解正确的是
①
②
③
④
⑤
2.下列因式分解正确的是
①
②
③
④
⑤
3.下列因式分解正确的是
①
②
③
④
⑤
4.下列因式分解正确的是
①
②
③
④
⑤
5.下列因式分解正确的是
①
②
③
④
⑤
6.下列因式分解正确的是
①
②
③
④
⑤
答案
1.1;2
2.1;3;5
3.4;5
4.3;4
5.2;4
6.1;3;5
7.
第三篇:整式的乘法与因式分解复习教案
《整式的乘法与因式分解》复习
(一)教案
教学目标:
知识与技能:记住整式乘除的计算法则;平方差公式和完全平方公式;掌握因式分解的方法和则
过程与方法:会运用法则进行整式的乘除运算,会对一个多项式分解因式 情感态度与价值观:培养学生的独立思考能力和合作交流意识 教学重点:记住公式及法则
教学难点:会运用法则进行整式乘除运算,会对一个多项式进行因式分解 教学方法与手段:讲练结合 教学过程:
一.本章知识梳理:
幂的运算:
(1)同底数幂的乘法(2)同底数幂的除法
(3)幂的乘方(4)积的乘方
整式的乘除:(1)单项式乘单项式(2)单项式乘多项式
(3)多项式乘多项式
(4)单项式除以单项式(5)多项式除以单项式 乘法公式:
(1)平方差公式(2)完全平方公式 因式分解:
(1)提公因式法(2)公式法 二.合作探究:
(1)化简:a3·a2b=.(2)计算:4x2+4x2=(3)计算:4x2·(-2xy)=.(4)分解因式:a2-25=
三、当堂检测
1.am=2,an=3则a2m+n =___________,am-2n =____________ 2.若A÷5ab2=-7ab2c3,则A=_________, 若4x2yz3÷B=-8x,则B=_________.2(axb)(x2)x4,则ab=_________________.3.若4.若a-2+b2-2b+1=0,则a=a,b=
5.已知
11a223aa的值是.,则6.已知被除式是x3+2x2-1,商式是x,余式是-1,则除式是()
A、x2+3x-1 B、x2+2x C、x2-1 D、x2-3x+1 7.如(x+m)与(x+3)的乘积中不含x的一次项,则m的值为()
A.–3 B.3
C.0
D.1 8.一个正方形的边长增加了2cm,面积相应增加了32cm,则这个正方形的边长为()
A、6cm B、5cm C、8cm D、7cm 9.下列各式是完全平方式的是()
2A、x2x14 B、1x2 C、xxy1
2D、x2x1
10.下列多项式中,含有因式(y1)的多项式是(y 2 2 y 1)
A.22222(y1)(y1)(y1)(y1)(y1)2(y1)1 B.C.D.三.课堂小结:
今天这节课,你学到了哪些知识?有哪些收获与感受?说出来大家分享。四.课后作业:
21.简便方法计算(1)98×102-992(2)991981
2.矩形的周长是28cm,两边长为x、y,若x3+x2y-xy2-y3=0,求矩形的面积. 3.已知a,b,c为△ABC的三条边的长.
(1)若b2+2ab=c2+2ac,试判断△ABC的形状
222a2bc2b(ac)0,试判断三角形的形状(2)若板书设计:
第14章整式的乘法与因式分解复习
幂的运算:
(1)同底数幂的乘法(2)同底数幂的除法
(3)幂的乘方(4)积的乘方
整式的乘除:(1)单项式乘单项式(2)单项式乘多项式
(3)多项式乘多项式
(4)单项式除以单项式(5)多项式除以单项式 乘法公式:
(1)平方差公式(2)完全平方公式 因式分解:
(1)提公因式法(2)公式法 课后记载:
第四篇:初二整式的乘法与因式分解知识点总结
初二整式的乘法与因式分解知识点总结
(含答案解析)
知识点:
1.基本运算:
⑴同底数幂的乘法:
⑵幂的乘方:
⑶积的乘方:
2.整式的乘法:
⑴单项式单项式:系数系数,同字母同字母,不同字母为积的因式.⑵单项式多项式:用单项式乘以多项式的每个项后相加.⑶多项式多项式:用一个多项式每个项乘以另一个多项式每个项后相加.3.计算公式:
⑴平方差公式:
⑵完全平方公式:;
4.整式的除法:
⑴同底数幂的除法:
⑵单项式单项式:系数系数,同字母同字母,不同字母作为商的因式.⑶多项式单项式:用多项式每个项除以单项式后相加.⑷多项式多项式:用竖式.5.因式分解:把一个多项式化成几个整式的积的形式,这种变形叫做把这个
式
子因式分解.6.因式分解方法:
⑴提公因式法:找出最大公因式.⑵公式法:
①平方差公式:
②完全平方公式:
③立方和:
④立方差:
⑶十字相乘法:
⑷拆项法
⑸添项法
常考题:
一.选择题(共12小题)
1.下列运算中,结果正确的是()
A.x3•x3=x6
B.3x2+2x2=5x4
C.(x2)3=x5
D.(x+y)2=x2+y2
2.计算(ab2)3的结果是()
A.ab5
B.ab6
C.a3b5
D.a3b6
3.计算2x2•(﹣3x3)的结果是()
A.﹣6x5
B.6x5
C.﹣2x6
D.2x6
4.下列各式由左边到右边的变形中,是分解因式的为()
A.a(x+y)=ax+ay
B.x2﹣4x+4=x(x﹣4)+4
C.10x2﹣5x=5x(2x﹣1)
D.x2﹣16+3x=(x﹣4)(x+4)+3x
5.下列多项式中能用平方差公式分解因式的是()
A.a2+(﹣b)2
B.5m2﹣20mn
C.﹣x2﹣y2
D.﹣x2+9
6.下列各式中能用完全平方公式进行因式分解的是()
A.x2+x+1
B.x2+2x﹣1
C.x2﹣1
D.x2﹣6x+9
7.下列因式分解错误的是()
A.x2﹣y2=(x+y)(x﹣y)
B.x2+6x+9=(x+3)2
C.x2+xy=x(x+y)
D.x2+y2=(x+y)2
8.把代数式ax2﹣4ax+4a分解因式,下列结果中正确的是()
A.a(x﹣2)2
B.a(x+2)2
C.a(x﹣4)2
D.a(x+2)(x﹣2)
9.如(x+m)与(x+3)的乘积中不含x的一次项,则m的值为()
A.﹣3
B.3
C.0
D.1
10.在边长为a的正方形中挖去一个边长为b的小正方形(a>b)(如图甲),把余下的部分拼成一个矩形(如图乙),根据两个图形中阴影部分的面积相等,可以验证()
A.(a+b)2=a2+2ab+b2
B.(a﹣b)2=a2﹣2ab+b2
C.a2﹣b2=(a+b)(a﹣b)
D.(a+2b)(a﹣b)=a2+ab﹣2b2
11.图(1)是一个长为2a,宽为2b(a>b)的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2)
那样拼成一个正方形,则中间空的部分的面积是()
A.ab
B.(a+b)2
C.(a﹣b)2
D.a2﹣b2
12.如图,从边长为(a+4)cm的正方形纸片中剪去一个边长为(a+1)cm的正方形(a>0),剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则矩形的面积为()
A.(2a2+5a)cm2
B.(6a+15)cm2
C.(6a+9)cm2
D.(3a+15)cm2
二.填空题(共13小题)
13.分解因式:3x2﹣27=
.
14.分解因式:a2﹣1=
.
15.因式分解:x2﹣9y2=
.
16.分解因式:x3﹣4x=
.
17.因式分解:a3﹣ab2=
.
18.分解因式:x2+6x+9=
.
19.分解因式:2a2﹣4a+2=
.
20.分解因式:x3﹣6x2+9x=
.
21.分解因式:ab2﹣2ab+a=
.
22.分解因式:2a3﹣8a2+8a=
.
23.分解因式:3a2﹣12ab+12b2=
.
24.若m2﹣n2=6,且m﹣n=2,则m+n=
.
25.如图,边长为a、b的矩形,它的周长为14,面积为10,则a2b+ab2的值为
.
三.解答题(共15小题)
26.计算:(x﹣y)2﹣(y+2x)(y﹣2x)
27.若2x+5y﹣3=0,求4x•32y的值.
28.已知:a+b=3,ab=2,求下列各式的值:
(1)a2b+ab2
(2)a2+b2.
29.若x+y=3,且(x+2)(y+2)=12.
(1)求xy的值;
(2)求x2+3xy+y2的值.
30.先化简,再求值3a(2a2﹣4a+3)﹣2a2(3a+4),其中a=﹣2.
31.若a2﹣2a+1=0.求代数式的值.
32.分解因式:
(1)2x2﹣x;
(2)16x2﹣1;
(3)6xy2﹣9x2y﹣y3;
(4)4+12(x﹣y)+9(x﹣y)2.
33.(2a+b+1)(2a+b﹣1)
34.分解因式:x3﹣2x2y+xy2.
35.分解因式:
(1)a4﹣16;
(2)x2﹣2xy+y2﹣9.
36.分解因式x2(x﹣y)+(y﹣x).
37.分解因式
(1)a2(x﹣y)+16(y﹣x);
(2)(x2+y2)2﹣4x2y2.
38.因式分解
(1)﹣8ax2+16axy﹣8ay2;
(2)(a2+1)2﹣4a2.
39.因式分解:
(1)3x﹣12x3
(2)6xy2+9x2y+y3.
40.若x2+2xy+y2﹣a(x+y)+25是完全平方式,求a的值.
初二整式的乘法与因式分解知识点总结
(含答案解析)
参考答案与试题解析
一.选择题(共12小题)
1.(2015•甘南州)下列运算中,结果正确的是()
A.x3•x3=x6
B.3x2+2x2=5x4
C.(x2)3=x5
D.(x+y)2=x2+y2
【分析】A、利用同底数幂的乘法法则计算得到结果,即可做出判断;
B、合并同类项得到结果,即可做出判断;
C、利用幂的乘方运算法则计算得到结果,即可做出判断;
D、利用完全平方公式展开得到结果,即可做出判断.
【解答】解:A、x3•x3=x6,本选项正确;
B、3x2+2x2=5x2,本选项错误;
C、(x2)3=x6,本选项错误;
D、(x+y)2=x2+2xy+y2,本选项错误,故选A
【点评】此题考查了完全平方公式,合并同类项,同底数幂的乘法,以及幂的乘方,熟练掌握公式及法则是解本题的关键.
2.(2008•南京)计算(ab2)3的结果是()
A.ab5
B.ab6
C.a3b5
D.a3b6
【分析】根据积的乘方的性质进行计算,然后直接选取答案即可.
【解答】解:(ab2)3=a3•(b2)3=a3b6.
故选D.
【点评】本题考查积的乘方,把积中的每一个因式分别乘方,再把所得的幂相乘.
3.(2011•呼和浩特)计算2x2•(﹣3x3)的结果是()
A.﹣6x5
B.6x5
C.﹣2x6
D.2x6
【分析】根据单项式乘单项式的法则和同底数幂相乘,底数不变,指数相加计算后选取答案.
【解答】解:2x2•(﹣3x3),=2×(﹣3)•(x2•x3),=﹣6x5.
故选:A.
【点评】本题主要考查单项式相乘的法则和同底数幂的乘法的性质.
4.(2005•茂名)下列各式由左边到右边的变形中,是分解因式的为()
A.a(x+y)=ax+ay
B.x2﹣4x+4=x(x﹣4)+4
C.10x2﹣5x=5x(2x﹣1)
D.x2﹣16+3x=(x﹣4)(x+4)+3x
【分析】根据分解因式就是把一个多项式化为几个整式的积的形式,利用排除法求解.
【解答】解:A、是多项式乘法,故A选项错误;
B、右边不是积的形式,x2﹣4x+4=(x﹣2)2,故B选项错误;
C、提公因式法,故C选项正确;
D、右边不是积的形式,故D选项错误;
故选:C.
【点评】这类问题的关键在于能否正确应用分解因式的定义来判断.
5.(2017春•薛城区期末)下列多项式中能用平方差公式分解因式的是()
A.a2+(﹣b)2
B.5m2﹣20mn
C.﹣x2﹣y2
D.﹣x2+9
【分析】能用平方差公式分解因式的式子特点是:两项平方项,符号相反.
【解答】解:A、a2+(﹣b)2符号相同,不能用平方差公式分解因式,故A选项错误;
B、5m2﹣20mn两项不都是平方项,不能用平方差公式分解因式,故B选项错误;
C、﹣x2﹣y2符号相同,不能用平方差公式分解因式,故C选项错误;
D、﹣x2+9=﹣x2+32,两项符号相反,能用平方差公式分解因式,故D选项正确.
故选:D.
【点评】本题考查用平方差公式分解因式的式子特点,两平方项的符号相反.
6.(2013•张家界)下列各式中能用完全平方公式进行因式分解的是()
A.x2+x+1
B.x2+2x﹣1
C.x2﹣1
D.x2﹣6x+9
【分析】根据完全平方公式的特点:两项平方项的符号相同,另一项是两底数积的2倍,对各选项分析判断后利用排除法求解.
【解答】解:A、x2+x+1不符合完全平方公式法分解因式的式子特点,故A错误;
B、x2+2x﹣1不符合完全平方公式法分解因式的式子特点,故B错误;
C、x2﹣1不符合完全平方公式法分解因式的式子特点,故C错误;
D、x2﹣6x+9=(x﹣3)2,故D正确.
故选:D.
【点评】本题考查了用公式法进行因式分解,能用公式法进行因式分解的式子的特点需熟记.
7.(2009•眉山)下列因式分解错误的是()
A.x2﹣y2=(x+y)(x﹣y)
B.x2+6x+9=(x+3)2
C.x2+xy=x(x+y)
D.x2+y2=(x+y)2
【分析】根据公式特点判断,然后利用排除法求解.
【解答】解:A、是平方差公式,故A选项正确;
B、是完全平方公式,故B选项正确;
C、是提公因式法,故C选项正确;
D、(x+y)2=x2+2xy+y2,故D选项错误;
故选:D.
【点评】本题主要考查了对于学习过的两种分解因式的方法的记忆与理解,需熟练掌握.
8.(2015•菏泽)把代数式ax2﹣4ax+4a分解因式,下列结果中正确的是()
A.a(x﹣2)2
B.a(x+2)2
C.a(x﹣4)2
D.a(x+2)(x﹣2)
【分析】先提取公因式a,再利用完全平方公式分解即可.
【解答】解:ax2﹣4ax+4a,=a(x2﹣4x+4),=a(x﹣2)2.
故选:A.
【点评】本题先提取公因式,再利用完全平方公式分解,分解因式时一定要分解彻底.
9.(2016秋•南漳县期末)如(x+m)与(x+3)的乘积中不含x的一次项,则m的值为()
A.﹣3
B.3
C.0
D.1
【分析】先用多项式乘以多项式的运算法则展开求它们的积,并且把m看作常数合并关于x的同类项,令x的系数为0,得出关于m的方程,求出m的值.
【解答】解:∵(x+m)(x+3)=x2+3x+mx+3m=x2+(3+m)x+3m,又∵乘积中不含x的一次项,∴3+m=0,解得m=﹣3.
故选:A.
【点评】本题主要考查了多项式乘多项式的运算,根据乘积中不含哪一项,则哪一项的系数等于0列式是解题的关键.
10.(2009•内江)在边长为a的正方形中挖去一个边长为b的小正方形(a>b)(如图甲),把余下的部分拼成一个矩形(如图乙),根据两个图形中阴影部分的面积相等,可以验证()
A.(a+b)2=a2+2ab+b2
B.(a﹣b)2=a2﹣2ab+b2
C.a2﹣b2=(a+b)(a﹣b)
D.(a+2b)(a﹣b)=a2+ab﹣2b2
【分析】第一个图形中阴影部分的面积计算方法是边长是a的正方形的面积减去边长是b的小正方形的面积,等于a2﹣b2;第二个图形阴影部分是一个长是(a+b),宽是(a﹣b)的长方形,面积是(a+b)(a﹣b);这两个图形的阴影部分的面积相等.
【解答】解:∵图甲中阴影部分的面积=a2﹣b2,图乙中阴影部分的面积=(a+b)(a﹣b),而两个图形中阴影部分的面积相等,∴阴影部分的面积=a2﹣b2=(a+b)(a﹣b).
故选:C.
【点评】此题主要考查了乘法的平方差公式.即两个数的和与这两个数的差的积等于这两个数的平方差,这个公式就叫做平方差公式.
11.(2013•枣庄)图(1)是一个长为2a,宽为2b(a>b)的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2)那样拼成一个正方形,则中间空的部分的面积是()
A.ab
B.(a+b)2
C.(a﹣b)2
D.a2﹣b2
【分析】中间部分的四边形是正方形,表示出边长,则面积可以求得.
【解答】解:中间部分的四边形是正方形,边长是a+b﹣2b=a﹣b,则面积是(a﹣b)2.
故选:C.
【点评】本题考查了列代数式,正确表示出小正方形的边长是关键.
12.(2012•枣庄)如图,从边长为(a+4)cm的正方形纸片中剪去一个边长为(a+1)cm的正方形(a>0),剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则矩形的面积为()
A.(2a2+5a)cm2
B.(6a+15)cm2
C.(6a+9)cm2
D.(3a+15)cm2
【分析】大正方形与小正方形的面积的差就是矩形的面积,据此即可求解.
【解答】解:矩形的面积是:(a+4)2﹣(a+1)2
=(a+4+a+1)(a+4﹣a﹣1)
=3(2a+5)
=6a+15(cm2).
故选B.
【点评】本题考查了平方差公式的几何背景,理解大正方形与小正方形的面积的差就是矩形的面积是关键.
二.填空题(共13小题)
13.(2015•黄石)分解因式:3x2﹣27= 3(x+3)(x﹣3).
【分析】观察原式3x2﹣27,找到公因式3,提出公因式后发现x2﹣9符合平方差公式,利用平方差公式继续分解.
【解答】解:3x2﹣27,=3(x2﹣9),=3(x+3)(x﹣3).
故答案为:3(x+3)(x﹣3).
【点评】本题主要考查提公因式法分解因式和利用平方差公式分解因式,熟记公式是解题的关键,难点在于要进行二次分解因式.
14.(2013•上海)分解因式:a2﹣1=(a+1)(a﹣1).
【分析】符合平方差公式的特征,直接运用平方差公式分解因式.平方差公式:a2﹣b2=(a+b)(a﹣b).
【解答】解:a2﹣1=(a+1)(a﹣1).
故答案为:(a+1)(a﹣1).
【点评】本题主要考查平方差公式分解因式,熟记公式是解题的关键.
15.(2013•邵阳)因式分解:x2﹣9y2=(x+3y)(x﹣3y).
【分析】直接利用平方差公式分解即可.
【解答】解:x2﹣9y2=(x+3y)(x﹣3y).
【点评】本题主要考查利用平方差公式分解因式,熟记公式结构是解题的关键.
16.(2017•大庆)分解因式:x3﹣4x= x(x+2)(x﹣2).
【分析】应先提取公因式x,再对余下的多项式利用平方差公式继续分解.
【解答】解:x3﹣4x,=x(x2﹣4),=x(x+2)(x﹣2).
故答案为:x(x+2)(x﹣2).
【点评】本题考查了提公因式法,公式法分解因式,提取公因式后利用平方差公式进行二次因式分解,分解因式一定要彻底,直到不能再分解为止.
17.(2016•乐山)因式分解:a3﹣ab2= a(a+b)(a﹣b).
【分析】观察原式a3﹣ab2,找到公因式a,提出公因式后发现a2﹣b2是平方差公式,利用平方差公式继续分解可得.
【解答】解:a3﹣ab2=a(a2﹣b2)=a(a+b)(a﹣b).
【点评】本题是一道典型的中考题型的因式分解:先提取公因式,然后再应用一次公式.
本题考点:因式分解(提取公因式法、应用公式法).
18.(2013•三明)分解因式:x2+6x+9=(x+3)2 .
【分析】直接用完全平方公式分解即可.
【解答】解:x2+6x+9=(x+3)2.
【点评】本题考查了公式法分解因式,熟记完全平方公式法的结构特点是解题的关键.
19.(2017•咸宁)分解因式:2a2﹣4a+2= 2(a﹣1)2 .
【分析】原式提取2,再利用完全平方公式分解即可.
【解答】解:原式=2(a2﹣2a+1)
=2(a﹣1)2.
故答案为:2(a﹣1)2.
【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.
20.(2015•西藏)分解因式:x3﹣6x2+9x= x(x﹣3)2 .
【分析】先提取公因式x,再对余下的多项式利用完全平方公式继续分解.
【解答】解:x3﹣6x2+9x,=x(x2﹣6x+9),=x(x﹣3)2.
故答案为:x(x﹣3)2.
【点评】本题考查提公因式法分解因式和利用完全平方公式分解因式,关键在于需要进行二次分解因式.
21.(2008•大庆)分解因式:ab2﹣2ab+a= a(b﹣1)2 .
【分析】先提取公因式a,再对余下的多项式利用完全平方公式继续分解.
【解答】解:ab2﹣2ab+a,=a(b2﹣2b+1),=a(b﹣1)2.
【点评】考查提公因式法分解因式和利用完全平方公式分解因式,难点在于提取公因式后利用完全平方公式进行二次因式分解.
22.(2013•安顺)分解因式:2a3﹣8a2+8a= 2a(a﹣2)2 .
【分析】先提取公因式2a,再对余下的多项式利用完全平方公式继续分解.
【解答】解:2a3﹣8a2+8a,=2a(a2﹣4a+4),=2a(a﹣2)2.
故答案为:2a(a﹣2)2.
【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.
23.(2013•菏泽)分解因式:3a2﹣12ab+12b2= 3(a﹣2b)2 .
【分析】先提取公因式3,再对余下的多项式利用完全平方公式继续分解即可求得答案.
【解答】解:3a2﹣12ab+12b2=3(a2﹣4ab+4b2)=3(a﹣2b)2.
故答案为:3(a﹣2b)2.
【点评】本题考查了用提公因式法和公式法进行因式分解的知识.一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,注意因式分解要彻底.
24.(2013•内江)若m2﹣n2=6,且m﹣n=2,则m+n= 3 .
【分析】将m2﹣n2按平方差公式展开,再将m﹣n的值整体代入,即可求出m+n的值.
【解答】解:m2﹣n2=(m+n)(m﹣n)=(m+n)×2=6,故m+n=3.
故答案为:3.
【点评】本题考查了平方差公式,比较简单,关键是要熟悉平方差公式(a+b)(a﹣b)=a2﹣b2.
25.(2014•西宁)如图,边长为a、b的矩形,它的周长为14,面积为10,则a2b+ab2的值为 70 .
【分析】应把所给式子进行因式分解,整理为与所给周长和面积相关的式子,代入求值即可.
【解答】解:∵a+b=7,ab=10,∴a2b+ab2=ab(a+b)=70.
故答案为:70.
【点评】本题既考查了对因式分解方法的掌握,又考查了代数式求值的方法,同时还隐含了整体的数学思想和正确运算的能力.
三.解答题(共15小题)
26.(2006•江西)计算:(x﹣y)2﹣(y+2x)(y﹣2x)
【分析】利用完全平方公式,平方差公式展开,再合并同类项.
【解答】解:(x﹣y)2﹣(y+2x)(y﹣2x),=x2﹣2xy+y2﹣(y2﹣4x2),=x2﹣2xy+y2﹣y2+4x2,=5x2﹣2xy.
【点评】本题考查完全平方公式,平方差公式,属于基础题,熟记公式是解题的关键,去括号时要注意符号的变化.
27.(2013春•苏州期末)若2x+5y﹣3=0,求4x•32y的值.
【分析】由方程可得2x+5y=3,再把所求的代数式化为同为2的底数的代数式,运用同底数幂的乘法的性质计算,最后运用整体代入法求解即可.
【解答】解:4x•32y=22x•25y=22x+5y
∵2x+5y﹣3=0,即2x+5y=3,∴原式=23=8.
【点评】本题考查了同底数幂的乘法,幂的乘方,积的乘方,理清指数的变化是解题的关键.
28.(2009•十堰)已知:a+b=3,ab=2,求下列各式的值:
(1)a2b+ab2
(2)a2+b2.
【分析】(1)把代数式提取公因式ab后把a+b=3,ab=2整体代入求解;
(2)利用完全平方公式把代数式化为已知的形式求解.
【解答】解:(1)a2b+ab2=ab(a+b)=2×3=6;
(2)∵(a+b)2=a2+2ab+b2
∴a2+b2=(a+b)2﹣2ab,=32﹣2×2,=5.
【点评】本题考查了提公因式法分解因式,完全平方公式,关键是将原式整理成已知条件的形式,即转化为两数和与两数积的形式,将a+b=3,ab=2整体代入解答.
29.(2015•张家港市模拟)若x+y=3,且(x+2)(y+2)=12.
(1)求xy的值;
(2)求x2+3xy+y2的值.
【分析】(1)先去括号,再整体代入即可求出答案;
(2)先变形,再整体代入,即可求出答案.
【解答】解:(1)∵x+y=3,(x+2)(y+2)=12,∴xy+2x+2y+4=12,∴xy+2(x+y)=8,∴xy+2×3=8,∴xy=2;
(2)∵x+y=3,xy=2,∴x2+3xy+y2
=(x+y)2+xy
=32+2
=11.
【点评】本题考查了整式的混合运算和完全平方公式的应用,题目是一道比较典型的题目,难度适中.
30.(2014秋•德惠市期末)先化简,再求值3a(2a2﹣4a+3)﹣2a2(3a+4),其中a=﹣2.
【分析】首先根据单项式与多项式相乘的法则去掉括号,然后合并同类项,最后代入已知的数值计算即可.
【解答】解:3a(2a2﹣4a+3)﹣2a2(3a+4)
=6a3﹣12a2+9a﹣6a3﹣8a2
=﹣20a2+9a,当a=﹣2时,原式=﹣20×4﹣9×2=﹣98.
【点评】本题考查了整式的化简.整式的加减运算实际上就是去括号、合并同类项,这是各地中考的常考点.
31.(2007•天水)若a2﹣2a+1=0.求代数式的值.
【分析】根据完全平方公式先求出a的值,再代入求出代数式的值.
【解答】解:由a2﹣2a+1=0得(a﹣1)2=0,∴a=1;
把a=1代入=1+1=2.
故答案为:2.
【点评】本题考查了完全平方公式,灵活运用完全平方公式先求出a的值,是解决本题的关键.
32.(2012春•郯城县期末)分解因式:
(1)2x2﹣x;
(2)16x2﹣1;
(3)6xy2﹣9x2y﹣y3;
(4)4+12(x﹣y)+9(x﹣y)2.
【分析】(1)直接提取公因式x即可;
(2)利用平方差公式进行因式分解;
(3)先提取公因式﹣y,再对余下的多项式利用完全平方公式继续分解;
(4)把(x﹣y)看作整体,利用完全平方公式分解因式即可.
【解答】解:(1)2x2﹣x=x(2x﹣1);
(2)16x2﹣1=(4x+1)(4x﹣1);
(3)6xy2﹣9x2y﹣y3,=﹣y(9x2﹣6xy+y2),=﹣y(3x﹣y)2;
(4)4+12(x﹣y)+9(x﹣y)2,=[2+3(x﹣y)]2,=(3x﹣3y+2)2.
【点评】本题考查了提公因式法与公式法分解因式,是因式分解的常用方法,难点在(3),提取公因式﹣y后,需要继续利用完全平方公式进行二次因式分解.
33.(2011春•乐平市期中)(2a+b+1)(2a+b﹣1)
【分析】把(2a+b)看成整体,利用平方差公式和完全平方公式计算后整理
即可.
【解答】解:(2a+b+1)(2a+b﹣1),=(2a+b)2﹣1,=4a2+4ab+b2﹣1.
【点评】本题考查了平方差公式和完全平方公式的运用,构造成公式结构是利用公式的关键,需要熟练掌握并灵活运用.
34.(2009•贺州)分解因式:x3﹣2x2y+xy2.
【分析】先提取公因式x,再利用完全平方公式分解因式.完全平方公式:a2±2ab+b2=(a±b)2;
【解答】解:x3﹣2x2y+xy2,=x(x2﹣2xy+y2),=x(x﹣y)2.
【点评】主要考查提公因式法分解因式和利用完全平方公式分解因式,本题难点在于要进行二次分解.
35.(2011•雷州市校级一模)分解因式:
(1)a4﹣16;
(2)x2﹣2xy+y2﹣9.
【分析】(1)两次运用平方差公式分解因式;
(2)前三项一组,先用完全平方公式分解因式,再与第四项利用平方差公式进行分解.
【解答】解:(1)a4﹣16=(a2)2﹣42,=(a2﹣4)(a2+4),=(a2+4)(a+2)(a﹣2);
(2)x2﹣2xy+y2﹣9,=(x2﹣2xy+y2)﹣9,=(x﹣y)2﹣32,=(x﹣y﹣3)(x﹣y+3).
【点评】(1)关键在于需要两次运用平方差公式分解因式;
(2)主要考查分组分解法分解因式,分组的关键是两组之间可以继续分解因式.
36.(2008春•利川市期末)分解因式x2(x﹣y)+(y﹣x).
【分析】显然只需将y﹣x=﹣(x﹣y)变形后,即可提取公因式(x﹣y),然后再运用平方差公式继续分解因式.
【解答】解:x2(x﹣y)+(y﹣x),=x2(x﹣y)﹣(x﹣y),=(x﹣y)(x2﹣1),=(x﹣y)(x﹣1)(x+1).
【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.
37.(2009秋•三台县校级期末)分解因式
(1)a2(x﹣y)+16(y﹣x);
(2)(x2+y2)2﹣4x2y2.
【分析】(1)先提取公因式(x﹣y),再利用平方差公式继续分解;
(2)先利用平方差公式,再利用完全平方公式继续分解.
【解答】解:(1)a2(x﹣y)+16(y﹣x),=(x﹣y)(a2﹣16),=(x﹣y)(a+4)(a﹣4);
(2)(x2+y2)2﹣4x2y2,=(x2+2xy+y2)(x2﹣2xy+y2),=(x+y)2(x﹣y)2.
【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.
38.(2009春•扶沟县期中)因式分解
(1)﹣8ax2+16axy﹣8ay2;
(2)(a2+1)2﹣4a2.
【分析】(1)先提取公因式﹣8a,再用完全平方公式继续分解.
(2)先用平方差公式分解,再利用完全平方公式继续分解.
【解答】解:(1)﹣8ax2+16axy﹣8ay2,=﹣8a(x2﹣2xy+y2),=﹣8a(x﹣y)2;
(2)(a2+1)2﹣4a2,=(a2+1﹣2a)(a2+1+2a),=(a+1)2(a﹣1)2.
【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.
39.(2011秋•桐梓县期末)因式分解:
(1)3x﹣12x3
(2)6xy2+9x2y+y3.
【分析】(1)先提取公因式3x,再对余下的多项式利用平方差公式继续分解;
(2)先提取公因式y,再根据完全平方公式进行二次分解.完全平方公式:a2±2ab+b2=(a±b)2..
【解答】解:(1)3x﹣12x3
=3x(1﹣4x2)
=3x(1+2x)(1﹣2x);
(2)6xy2+9x2y+y3
=y(6xy+9x2+y2)
=y(3x+y)2.
【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.
40.(2003•黄石)若x2+2xy+y2﹣a(x+y)+25是完全平方式,求a的值.
【分析】先把前三项根据完全平方公式的逆用整理,再根据两平方项确定出这两个数,利用乘积二倍项列式求解即可.
【解答】解:原式=(x+y)2﹣a(x+y)+52,∵原式为完全平方式,∴﹣a(x+y)=±2×5•(x+y),解得a=±10.
【点评】本题考查了完全平方式,需要二次运用完全平方式,熟记公式结构是求解的关键,把(x+y)看成一个整体参与运算也比较重要.
第五篇:第十四章整式乘法与因式分解单元教学
第十四章整式的乘法与因式分解单元教学计划
14.3因式分解。
小结复习。
一、教学内容:14.1整式的乘法。14.2乘法公式。
二、教学目标:
知识与技能:
1、使学生掌握正整数幂的乘、除运算性质,能用代数式和文字语言正确地表述这些性质,并能运用它们熟练地进行运算。使学生掌握单项式乘(或除以)单项式、多项式乘(或除以)单项式以及多项式乘多项式的法则,并运用它们进行运算。
2、使学生会推导乘法公式(平方差公式和完全平方公式),了解公式的几何意义,能利用公式进行乘法运算。
3、使学生掌握整式的加、减、乘、除、乘方的较简单的混合运算,并能灵活地运算运算律与乘法公式简化运算
4、使学生理解因式分解的意义,并感受分解因式与整式乘法是相反方向的变形,掌握提公因式法和运用公式法这两种分解因式的基本方法,了解因式分解的一般步骤;能够熟练地运用这些方法进行多项式的因式分解。过程与方法:
1、通过探索、猜测,进一步体会学会推理的必要性,发展学生 过程与方法〕 初步推理归纳能力;
2、通过揭示一些概念和法则之间的联系,对学生进行创新精神 和实践能力的及主观能动培养.情感态度与价值观:
1、通过观察、实验、归纳、类比、推断,体验
数学活动的趣 味性,以感受推理过程的严谨性以及结论的确定性;
2、开展探究性活动,充分体现学生的自主、合作精神,激发学生乐于探索的热情。
三、教学重点:掌握整式的乘法公式。
四、教学难点:掌握因式分解的方法。
五、课时分配:教学时间约需 14 课时,具体分配如下:
14.1整式的乘法6课时。14.2乘法公式3课时。14.3因式分解3课时。
小结复习2课时。