广东历届高考文科题分章(统计、推理与证明)

时间:2019-05-13 16:27:52下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《广东历届高考文科题分章(统计、推理与证明)》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《广东历届高考文科题分章(统计、推理与证明)》。

第一篇:广东历届高考文科题分章(统计、推理与证明)

三、统计、推理与证明

(2012文)由正整数组成的一组数据x1,x2,x3,x4,其平均数和中位数都是2,且标准差等于1,则这组数据为__________。(从小到大排列)

(2011文)为了解篮球爱好者小李的投篮命中率与打篮球时间之间的关系,下表记录了小李某

月1号到5号每天打篮球时间x(单位:小时)与当天投篮命中率y之间的关系:

小李这5天的平均投篮命中率为;用线性回归分析的方法,预测小李该月6号打6小时篮球的投篮命中率为.

(2011理)某数学老师身高176cm,他爷爷、父亲和儿子的身高分别是173cm、170cm和182cm.假设儿子的身高与父亲的身高有关,则该老师用线性回归分析的方法预测他孙子的身高为cm.

(2010文)某市居民2005~2009年家庭年平均收入x(单位:万元)与年平均支出Y(单位:万

元)的统计资料如下表所示:

根据统计资料,居民家庭年平均收入的中位数是,家庭年平均收入与年平均支出 有线性相关关系.(2009文)某单位200名职工的年龄分布情况

如图2,现要从中抽取40名职工作样本.用系统抽样法,将全体职工随机按1200编号,并按编号顺序

平均分为40

组(15号,610号,,196200号).若第5组抽出的号码为22,则第8组抽出的号码应是.若用分层抽样方法,则40岁以下年龄段应抽取人.(2008文)为了调查某厂工人生产某种产品的能力,随机抽查了20位工人某天生产该产品的数量.产品数量的分组区间为45,55,55,65,65,75,75,85,85,95由此得到频率分布直方图如图3,则这20名工人中一

天生产该产品数量在55,75的人数是.(2008理)某校共有学生2000名,各年级男、女生人数

如表1.已知在全校学生中随机抽取1名,抽到二年级女

生的概率是0.19.现用分层抽样的方法在全校抽取64名学生,则应在三年级抽取的学生人数为()

A.2

4B.18

C.16

D.1

2(2007文)下表提供了某厂节能降耗技术改进后生产甲产品过程中记录的产量x(吨)与相应的生产能耗y(吨标准煤)的几组对照数据.(1)请画出上表数据的散点图;

ˆxaˆ(2)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程y=b

(3)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤,试根据(2)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤?(参考数值:3×2.5+4×3+5×4+6×4.5=66.5)

(2006)在德国不莱梅举行的第48届世乒赛期间,某商场

橱窗里用同样的乒乓球堆成若干准“正三棱锥”形的展品,其中第一堆只有一层,就一个乒乓球;第2、3、4、„堆最底层(第一层)分别按图4所示方式固定摆放.从第一层开始,每层的小球自然垒放在下一层之上,第n堆第n层就放一个乒乓球,以f(n)表示第n堆的乒乓球总数,则f(3);

f(n)n表示).(2005)设平面内有n条直线(n3),其中有且仅有两条直线互相平行,任意三条直线不过

同一点.若用f(n)表示这n条直线交点的个数,则f(4)=_____________;当n>4时,f(n)=_____________.(用n表示)

VSPAPB

(2004)由图(1)PAB,则由图(2)PABC=.SPABPAPBVPABC

B

B’

B

C

P

1A’

A

P

C’A’ 图

2A

(2003)在平面几何里,有勾股定理:“设△ABC的两边AB、AC互相垂直,则AB2+AC2=BC2,拓展到空间,类比平面几何的勾股定理,研究三棱锥的侧面积与底面面积间的关系,可

以得出的正确结论是:“设三棱锥A—BCD的三个侧面ABC、ACD、ADB两两相互垂 直,则

x211

1f(1)f(2)f()f(3)f()f(4)f()(2002)已知f(x),那么

2341x

2=.1、1、3、3 0.5、0.53 185

13、y=x-3。

i1

xiyi=32.5+43+54+64.5=66.5,x=

3456

=4.5,2.5344.5

=3.5,y=

n

n

xi

i1

3242526286,b=

66.544.53.5

0.7,8644.52

a=3.5-0.74.5=0.35.

故线性回归方程为y=0.7x+0.35.

(3)根据回归方程的预测,现在生产100吨产品消耗的标准煤的数量为 0.7100+0.35=70.35,故耗能减少了90-70.35=19.65(吨)

5,(n2)(n1)2

PA'PB'PC'

PAPBPC

S△ABC2+S△ACD2+S△ADB2=S△BCD22

第二篇:文科推理与证明

文科推理与证明(一)合情推理与演绎推理

1.了解合情 推理的含义,能利用归纳和类比等进行简单的推理,了解合情推理在数学发现中的作用。

2.了解演绎推理的重要性,掌握演绎推理的基本模式,并能运用它们进行一些简单推理。3.了解合情推理和演绎推理之间的联系和差异。(二)直接证明与间接证明

1.了解直接证明的两种基本方法:分析法和综合法;了解分析法和综合法的思考过程、特点。2.了解间接证明的一种基本方法──反证法;了解反证 法的思考过程、特点。(三)数学归纳法

了解数学归纳法的原理,能用数学归纳法证明一些简单的数学命题.1.推理与证明的内容是高考的新增内容,主要以选择填空的形式出现。2.推理与证明与数列、几何、等有关内容综合在一起的综合试题多。第1课时 合情推理与演绎推理

1.推理一般包括合情推理和演绎推理;2.合情推理包括 和;归纳推理:从个别事实中推演出 ,这样的推理通常称为归纳推理;归纳推理的思维过程是:、、.类比 推理:根据两个(或两类)对象之间在某些方面的相似或相同,推演出它们在其它方面也 或 ,这样的推理称为类比推理,类比推理的思维过程是:、、.3.演绎推理:演绎推理是 ,按照严格的逻辑法则得到的 推理过程;三段论常用格式为:①M是P,② ,③S是P;其中①是 ,它提供了一个个一般性原理;②是 ,它指出了一个个特殊对象;③是 ,它根据一般原理,对特殊情况作出的判断.4.合情推理是根据已有的事实和正确的结论(包括定义、公理、定理等)、实验和实践的结果,以及个人的经验和直觉等推测某些结果的推理过程,归纳和类比是合情推理常用的思维方法;在解决问题的过程中,合情推理具有猜测和发现结论、探索和提供思路的作用,有得于创新意识的培养。演绎推理是根据已有的事实和正确的结论,按照严格的逻辑法则得到的新结论的推理过程.《新课标》高三数学第一轮复习单元讲座 —逻辑、推理与证明、复数、框图 一.课标要求: 1.常用逻辑用语(1)命题及其关系

① 了解命题的逆命题、否命题与逆否命题;② 理解必要条件、充分条件与充要条件的意义,会分析四种命题的相互关系;(2)简单的逻辑联结词

通过数学实例,了解“或”、“且”、“非”逻辑联结词的含义。(3)全称量词与存在量词

① 通过生活和数学中的丰富实例,理解全称量词与存在量词的意义;② 能正确地对含有一个量词的命题进行否定。2.推理与证明

(1)合情推理与演绎推理

①结合已学过的数学实例和生活中的实例,了解合情推理的含义,能利用归纳和类比等进行简单的推理,体会并认识合情推理在数学发现中的作用;②结合已学过的数学实例和生活中的实例,体会演绎推理的重要性,掌握演绎推理的基本模式,并能运用它们进行一些简单推理;③通过具体实例,了解合情推理和演绎推理之间的联系和差异。(2)直接证明与间接证明 ①结合已经学过的数学实例,了解直接证明的两种基本方法:分析法和综合法;了解分析法和综合法的思考过程、特点;②结合已经学过的数学实例,了解间接证明的一种基本方法--反证法;了解反证法的思考过程、特点;(3)数学归纳法

了解数学归纳法的原理,能用数学归纳法证明一些简单的数学命题;(4)数学文化

①通过对实例的介绍(如欧几里德《几何原本》、马克思《资本论》、杰弗逊《独立宣言》、牛顿三定律),体会公理化思想;②介绍计算机在自动推理领域和数学证明中的作用;3.数系的扩充与复数的引入

(1)在问题情境中了解数系的扩充过程,体会实际需求与数学内部的矛盾(数的运算规则、方程理论)在数系扩充过程中的作用,感受人类理性思维的作用以及数与现实世界的联系;(2)理解复数的基本概念以及复数相等的充要条件;(3)了解复数的代数表示法及其几何意义;(4)能进行复数代数形式的四则运算,了解复数代数形式的加减运算的几何意义。4.框图(1)流程图

①通过具体实例,进一步认识程序框图;②通过具体实例,了解工序流程图(即统筹图);③能绘制简单实际问题的流程图,体会流程图在解决实际问题中的作用;(2)结构图

①通过实例,了解结构图;运用结构图梳理已学过的知识、整理收集到的资料信息;②结合作出的结构图与他人进行交流,体会结构图在揭示事物联系中的作用。二.命题走向 常用逻辑用语

本部分内容主要是常用的逻辑用语,包括命题与量词,基本逻辑联结词以及充分条件、必要条件与命题的四种形式。

预测08年高考对本部分内容的考查形式如下:考查的形式以填空题为主,考察的重点是条件和复合命题真值的判断。

第三篇:文科推理与证明

文科推理与证明

(一)合情推理与演绎推理

1.了解合情推理的含义,能利用归纳和类比等进行简单的推理,了解合情推理在数学发现中的作用。

2.了解演绎推理的重要性,掌握演绎推理的基本模式,并能运用它们进行一些简单推理。

3.了解合情推理和演绎推理之间的联系和差异。

(二)直接证明与间接证明

1.了解直接证明的两种基本方法:分析法和综合法;了解分析法和综合法的思考过程、特点。

2.了解间接证明的一种基本方法──反证法;了解反证法的思考过程、特点。

(三)数学归纳法

了解数学归纳法的原理,能用数学归纳法证明一些简单的数学命题.1.推理与证明的内容是高考的新增内容,主要以选择填空的形式出现。

2.推理与证明与数列、几何、等有关内容综合在一起的综合试题多。

第1课时合情推理与演绎推理

1.推理一般包括合情推理和演绎推理;

2.合情推理包括和;

归纳推理:从个别事实中推演出,这样的推理通常称为归纳推理;归纳推理的思维过程是:、、.类比推理:根据两个(或两类)对象之间在某些方面的相似或相同,推演出它们在其它方面也或,这样的推理称为类比推理,类比推理的思维过程是:、、.3.演绎推理:演绎推理是,按照严格的逻辑法则得到的推理过程;三段论常用格式为:①M是p,②,③S是p;其中①是,它提供了一个个一般性原理;②是,它指出了一个个特殊对象;③是,它根据一般原理,对特殊情况作出的判断.4.合情推理是根据已有的事实和正确的结论(包括定义、公理、定理等)、实验和实践的结果,以及个人的经验和直觉等推测某些结果的推理过程,归纳和类比是合情推理常用的思维方法;在解决问题的过程中,合情推理具有猜测和发现结论、探索和提供思路的作用,有得于创新意识的培养。演绎推理是根据已有的事实和正确的结论,按照严格的逻辑法则得到的新结论的推理过程.《新课标》高三数学第一轮复习单元讲座

—逻辑、推理与证明、复数、框图

一.课标要求:

1.常用逻辑用语

(1)命题及其关系

①了解命题的逆命题、否命题与逆否命题;②理解必要条件、充分条件与充要条件的意义,会分析四种命题的相互关系;

(2)简单的逻辑联结词

通过数学实例,了解“或”、“且”、“非”逻辑联结词的含义。

(3)全称量词与存在量词

①通过生活和数学中的丰富实例,理解全称量词与存在量词的意义;

②能正确地对含有一个量词的命题进行否定。

2.推理与证明

(1)合情推理与演绎推理

①结合已学过的数学实例和生活中的实例,了解合情推理的含义,能利用归纳和类比等进行简单的推理,体会并认识合情推理在数学发现中的作用;

②结合已学过的数学实例和生活中的实例,体会演绎推理的重要性,掌握演绎推理的基本模式,并能运用它们进行一些简单推理;

③通过具体实例,了解合情推理和演绎推理之间的联系和差异。

(2)直接证明与间接证明

①结合已经学过的数学实例,了解直接证明的两种基本方法:分析法和综合法;了解分析法和综合法的思考过程、特点;

②结合已经学过的数学实例,了解间接证明的一种基本方法--反证法;了解反证法的思考过程、特点;

(3)数学归纳法

了解数学归纳法的原理,能用数学归纳法证明一些简单的数学命题;

(4)数学文化

①通过对实例的介绍(如欧几里德《几何原本》、马克思《资本论》、杰弗逊《独立宣言》、牛顿三定律),体会公理化思想;

②介绍计算机在自动推理领域和数学证明中的作用;

3.数系的扩充与复数的引入

(1)在问题情境中了解数系的扩充过程,体会实际需求与数学内部的矛盾(数的运算规则、方程理论)在数系扩充过程中的作用,感受人类理性思维的作用以及数与现实世界的联系;

(2)理解复数的基本概念以及复数相等的充要条件;

(3)了解复数的代数表示法及其几何意义;

(4)能进行复数代数形式的四则运算,了解复数代数形式的加减运算的几何意义。

4.框图

(1)流程图

①通过具体实例,进一步认识程序框图;

②通过具体实例,了解工序流程图(即统筹图);

③能绘制简单实际问题的流程图,体会流程图在解决实际问题中的作用;

(2)结构图

①通过实例,了解结构图;运用结构图梳理已学过的知识、整理收集到的资料信息;

②结合作出的结构图与他人进行交流,体会结构图在揭示事物联系中的作用。

二.命题走向

常用逻辑用语

本部分内容主要是常用的逻辑用语,包括命题与量词,基本逻辑联结词以及充分条件、必要条件与命题的四种形式。

预测08年高考对本部分内容的考查形式如下:考查的形式以填空题为主,考察的重点是条件和复合命题真值的判断。

推理证明

本部分内容主要包括:合情推理和演绎推理、直接证明与间接证明、数学归纳法(理科)等内容,其中推理中的合情推理、演绎推理几乎涉及数学的方方面面的知识,代表研究性命题的发展趋势

第四篇:高考文科数学试题分类—推理与证明

高中数学

高考文科试题解析分类汇编:推理和证明

1.【高考全国文12】正方形ABCD的边长为1,点E在边AB上,点F在边BC上,1AEBF。动点P从E出发沿直线向F运动,每当碰到正方形的边时反弹,反弹时反3

射角等于入射角,当点P第一次碰到E时,P与正方形的边碰撞的次数为

(A)8(B)6(C)4(D)3

115123,233

11151222 2343……

照此规律,第五个不等式为....

高中数学

【答案】1

1111111.22324252626

1,【解析】观察不等式的左边发现,第n个不等式的左边=111

2232n1

右边=

11111112n11,所以第五个不等式为122222.

234566n1

5.【高考湖南文16】对于nN,将n表示为nak2kak12k1a121a020,当ik时ai1,当0ik1时ai为0或1,定义bn如下:在n0,a1,a2,…,ak中等于1的个数为奇数时,bn=1;否则bn=0.(1)b2+b4+b6+b8=__;

(2)记cm为数列{bn}中第m个为0的项与第m+1个为0cm是___.【答案】(1)3;(2)2.【解析】(1)观察知1a020,a01,b11;212100,1b21; 一次类推3121120,b30;4120,5122021120,b50;221060,b71,b81,b2+b4+b6+b8=3;(2)由(1)知cm..6.【高考湖北文17】,…记为数列{an},将可被5整除的三角形数按从小到大的顺序组成{an}中的第______项;(Ⅱ)b2k-1。(用k表示)【答案】(Ⅰ)5030;(Ⅱ)

5k5k1

n(n1),写出其若2

【解析】由以上规律可知三角形数1,3,6,10,…,的一个通项公式为an

干项有:1,3,6,10,15,21,28,36,45,55,66,78,91,105,110,发现其中能被5整除的为10,15,45,55,105,110,故b1a4,b2a5,b3a9,b4a10,b5a14,b6a15.从而由上述规律可猜想:b2ka5k

5k(5k1)

(k为正整数),2

(5k1)(5k11)5k(5k1)

b2k1a5k1,22

故b2012a21006a51006a5030,即b2012是数列{an}中的第5030项.【点评】本题考查归纳推理,猜想的能力.归纳推理题型重在猜想,不一定要证明,但猜想

需要有一定的经验与能力,不能凭空猜想.来年需注意类比推理以及创新性问题的考查.质,并且,因此,不妨设112,由的定义,(A从)c而k(1A)r(1A),k(A)k3k1(A)r1(A2)c(A )c(A)a(b(abcdef)(abf)abf3

因此k(A)1,由(2)知,存在满足性质P的数表A,使k(A)1,故k(A)的最大值为知,1。

8.【高考福建文20】20.(本小题满分13分)

某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数。(1)sin213°+cos217°-sin13°cos17°(2)sin215°+cos215°-sin15°cos15°(3)sin218°+cos212°-sin18°cos12°

第五篇:2007-2013年广东省高考真题《推理与证明》文科

倾心教学2007年文科2007-2013年广东省高考真题《推理与证明》文科

第10题.图3是某汽车维修公司的维修点环形分布图公司在年初分配给A、B、C、D四个维修点某种配件各50件.在使用前发现需将A、B、C、D四个维修点的这批配件分别调整为40、45、54、61件,但调整只能在相邻维修点之间进行.那么要完成上述调整,最少的调动件次(n件配件从一个维修点调整到相邻维修点的调动件次为n)为()

A.18B.17

C.16D.15

【答案】C

2008年文科

2009年文科

第10题.广州2010年亚运会火炬传递在A,B,C,D,E五个城市之间进行,各城市之间的路线距离(单位:百公里)见右表.若以A为起点,E为终点,每个城市经过且只经过一次,那么火炬传递的最短路线距离是()

A.20.6B.21C.22D.23

【答案】B,由题意知,所有可能路线有6种:

①ABCDE,②ABDCE,③ACBDE,④ACDBE,⑤ADBCE,⑥ADCBE,其中,路线③ACBDE的距离最短,最短路线距离等于496221.

第10题.在集合{a,b,c,d}上定义两种运算和如下:

那么d(ac)()

A.aB.bC.cD.d

【答案】A

2011年文科

第10题.设f(x),g(x),h(x)是R上的任意实值函数.如下定义两个函数fgx和fgx;对任意xR,fgxfg(x);fgxfxg(x).则下列等式恒成立的是()

A.fghxfhgh(x)B.fghxfhgh(x)C.fghxfhgh(x)D.fghxfhgh(x)

【答案】B,由题知fgx表示两个函数复合,fgx表示两个函数相乘,故

对A:左=fghx=f(g(x))h(x),右=fhgh(x)=(f(x)h(x))(g(x)h(x))=(f(g(x)h(x))h(g(x)h(x))),显然不等,对B:左=((fg)h)(x)=f(h(x))g(h(x)),右=((fh)(gh))(x)=(fh)(x)(gh)(x)=f(h(x))g(h(x)),显然正确,对C:左=((fg)h)(x)=f(g(h(x))),右=((fh)(gh))(x)=f(h(g(h(x)))),显然不等,对D:左=((fg)h)(x)=f(x)g(x)h(x),右=((fh)(gh))(x)=f(x)g(x)h(x),显然不等.

第10题.对任意两个非零的平面向量和,定义;若两个非零的平面向量a,b满足,a

n与b的夹角(,),且ab,ba都在集合nZ}中,则ab()422

(A)1(B)1(C)(D)2

【答案】A

2013年文科

下载广东历届高考文科题分章(统计、推理与证明)word格式文档
下载广东历届高考文科题分章(统计、推理与证明).doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    数学《推理与证明(文科)

    !文科数学《推理与证明》练习题2013-5-101.归纳推理和类比推理的相似之处为A、都是从一般到一般B、都是从一般到特殊C、都是从特殊到特殊D、都不一定正确2.命题“有些有理数......

    2012年高考真题文科数学15:推理与证明(精选5篇)

    2012高考试题分类汇编:推理和证明1.【2012高考全国文12】正方形ABCD的边长为1,点E在边AB上,点F在边BC上,1AEBF。动点P从E出发沿直线向F运动,每当碰到正方形的边时反弹,反弹时反射3......

    高二文科推理与证明练习题

    推理与证明文科练习增城市华侨中学陈敏星一、选择题(每小题3分,共30分)1.有个小偷 在警察面前作了如下辩解:是我的录象机,我就一定能把它打开。看,我把它大开了。所以它是我的录象......

    2012年高考真题——文科数学(解析版)15:推理与证明

    2012高考试题分类汇编:15:推理和证明1.【2012高考全国文12】正方形ABCD的边长为1,点E在边AB上,点F在边BC上,1AEBF。动点P从E出发沿直线向F运动,每当碰到正方形的边时反弹,反弹时反......

    统计案例和推理与证明练习题

    统计案例和推理与证明练习题一. 选择题:1、下列表述正确的是.①归纳推理是由部分到整体的推理;②归纳推理是由一般到一般的推理;③演绎推理是由一 般到特殊的推理;④类比推理是由......

    高考必看:推理与证明

    推理与证明一.本章知识网络: 推理与证推理 证明合情推理 演绎推理 直接证明 间接证明 数学归纳归纳 类比 综合分析反证二、推理●1. 归纳推理1)归纳推理的定义:从个别事实....中推演......

    高考数学推理与证明

    高考数学推理与证明1.(08江苏10)将全体正整数排成一个三角形数阵:2 34 5 67 8 9 10。 。 。 。 。按照以上排列的规律,第n行(n3)从左向右的第3个数为▲. n2n6【答案】 2【解析】本......

    2012年高考真题文科数学解析分类15:推理与证明1

    2012高考文科试题解析分类汇编:推理和证明1.【2012高考全国文12】正方形ABCD的边长为1,点E在边AB上,点F在边BC上,AEBF13。动点P从E出发沿直线向F运动,每当碰到正方形的边时反弹,反......