临床试验数据管理工作指南

时间:2019-05-13 09:12:56下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《临床试验数据管理工作指南》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《临床试验数据管理工作指南》。

第一篇:临床试验数据管理工作指南

临床试验数据管理工作指南

1.研究者认真填写病例报告表(CRF表),保证准确无误。

2.监察员应定期的去各试验中心,确认所有的数据记录、报告正确完整,与原始记录一致,对于完成的CRF表,监察员应及时送至数据管理员处。

3.数据管理员在第一份CRF表送达之前准备好数据库(需要保密性强,可靠)。

4.数据管理员对CRF表作进一步检查,发生疑问时,填写疑问表(query form)返回监察员,通知研究者作出回答。

5.数据录入:由两个数据录入员分别将数据双份输入计算机数据库中。

6.利用软件将两份独立的数据文件进行对比,并对照CRF表进行修改核对。

7.质控核对:从全部病例中随机抽取一部分(为5%,但不能少于5份病例)进行人工核对(数据库中数据与CRF表的数据),如果数据错误大于0.15%(10000个数据有15个错误),应对数据库中的全部数据进行人工核对。

8.制定统计分析计划:由生物统计人员配合主要研究者在制定试验方案时写成初稿,在试验的进行中,不断完善分析计划,但必须在数据锁定前定稿。

9.盲态审核:数据录入完成后,直到第一次揭盲之前,由主要研究者、生物统计人员、数据管理员和申办者对数据库内数据进行核对和评价。审核内容包括:对统计计划书的修改和确认;对研究方案中主要内容的确认;对全部入组病例和全部数据的确认(包括脱落病例,主要疗效,安全性数据等),盲态审核完后,锁定数据。

10.第一次揭盲:打开第一次揭盲信封,将A、B两组数据进行统计分析。

11.第二次揭盲:在临床试验总结报告会上进行第二次揭盲,参加开盲人员:申

办者或申办者委托人、主要研究者、统计分析人员或组长单位临床研究基地负责人等。如试验组与对照组比例不是1:1,则临床试验仅开盲一次。

12.统计单位出具临床试验设盲试验揭盲记录。

第二篇:临床试验访视工作指南

临床试验访视工作指南

2.试验进行中--监查访视

2.1 常规访视:

制定试验的总体访视计划(访视时间表、CRF收集计划)→ 回顾试验的进展情况、前次未解决的问题 → 与研究者联系,确定访视日期,并了解试验用品是否充足 → 制定本次访视工作的计划、日程表,准备访视所需的文件资料和物品→ 与研究者会面说明本次访视的主要任务,了解试验进展情况(受试者入选情况、CRF填写情况),以前访视所发现问题的解决情况 → 核对并更新研究者管理文件册,检查并补充试验用品 → 检查知情同意书(注意版本、签名及日期)→ 核查原始文件及CRF表(注意对试验方案的依从性、完整性、一致性、严重不良事件的发现与报告)→ 收集CRF表 → 试验药品的核查(存放情况、发放回收情况记录、清点药品并与相应记录核对、检查盲码信封、使用是否违反方案要求)→ 记录所发现的问题 → 整理和更新各种记录表格 → 与研究者一起讨论和解决此次访视发现的问题,交流其他研究单位的进展和经验。

2.2 后续工作: 将取回的药品、物品、已签署的知情同意书、CRF等按规定存放 → 完成访视报告 → 更新中心文档和各项跟踪记录表格 → 监查工作项目组会议 → 对发现问题的追踪及解决→ 安排后续访视计划。

2.3 试验进行中需向伦理委员会提交的文件: 试验方案修正件、知情同意书修正件、严重不良事件报告、招募受试者广告(如采用)。

3.试验结束后或提前终止--关闭中心

3.1 试验结束访视:

访视前的准备 → 回顾常规访视中遗留的问题 → 确认访视时间,制定此次访视工作的计划和日程表 → 向研究者递交试验结束函 → 确认研究者管理文件册完整并已更新 → 确认所有CRF表均已收集 → 确认研究单位无数据丢失 → 确认严重不良事件的报告和追踪情况 → 确认遗留问题的解决情况 → 清点并回收剩余药品,核对药品运送、发放和回收记录 → 收回盲码信封及其他试验相关物品 → 讨论和总结,确认遗留问题及后续工作,说明试验相关文件资料的保存要求 → 致谢。

3.2 后续工作: 完成试验结束访视报告 → 通知伦理委员会试验结束 → 处理收回的剩余药品及其他用品 → 继续追踪和解决遗留问题 → 所有文件存档。

3.3 试验结束后向EC提交的文件:试验结束函、试验结束后的严重不良事件报告。

第三篇:临床试验AE及SAE处理工作指南

临床试验AE及SAE处理工作指南

不良事件:不良事件是病人或临床试验的受试者接受一种药品后出现的不良医学事件,但不一定与治疗有因果关系。

严重不良事件:是试验过程中发生需住院治疗、延长住院时间、伤残、影响工作能力、危及生命或死亡、导致先天畸形等事件。

处理及报告程序:

1.方案中对不良事件应作出明确的定义,并说明不良事件严重程度的判断标准,分类标准(如肯定有关、可能有关、可能无关、无关和无法判定)。

2.临床研究医生根据病情实施处理,必要时,启动防范和处理医疗中受试者及突发事件的预案。

3.遇有严重不良事件,临床医师必须在第一时间(2小时内)向项目负责人和药物临床试验机构办公室报告,药物临床试验机构办公室应在24小时内向省食品药品监督管理部门、伦理委员会、申办单位报告。在原始资料中应记录何时、以何种方式(如电话、传真或书面)、向谁报告了严重不良事件。

4.发生严重不良事件时,需立即查明所服药品的种类,由研究单位的负责研究者拆阅,即称为紧急揭盲,一旦揭盲,该患者将被中止试验,并作为脱落病例处理,同时将处理结果通知临床监查员。研究人员还应在CRF中详细记录揭盲的理由、日期并签字。

5.临床研究医生在报告的同时作好不良事件的记录,记录至少包括:不良事件的描述,发生时间,终止时间,程度及发作频度,是否需要治疗,如需要,记录给予的治疗。

6.药物临床试验机构办公室协助研究小组追踪不良事件,直到患者得到妥善解决或病情稳定。

第四篇:数据管理教案教案

Excel 2000的数据管理、打印

教学内容:Excel 2000的数据管理、打印

教学目标:掌握Excel 2000的数据管理的概念及操作,熟悉工作表的打印操作 教学重点:Excel 2000的数据管理 教学难点:Excel 2000的数据透视表 教学时间:2个课时

一、使用数据清单 1.数据清单

Excel 2003把工作表中的数据当作一个类似于数据库的数据清单来处理。数据清单中的列标就相当于数据库中的字段,而数据清单中的行就相当于数据库中的记录。2.数据清单的特点

① 每张工作表中最好只有一个数据清单,若同一张工作表中还有其它数据,则至少要有一个空行或空列使它们与数据清单分隔开。

② 数据清单的第一行是列标题,而且其字体格式与其它数据不同。

③ 数据清单中没有空行或空列。

④ 同一列中所有单元格的格式相同。

⑤ 单元格内数据的开头和结尾不能有空格。3.建立数据清单

数据清单的建立有两种方法:一种是直接在工作表上输入数据记录作为数据清单;另一种是使用记录单来创建数据清单。4.使用记录单管理数据清单(1)添加记录

① 单击数据清单中任意一个单元格。

②执行“数据” →“记录单”命令,打开如图5.29所示的对话框,其中列出的是第一条记录。

③ 单击“新建”按钮,各字段内容均为空白。

输入新增记录各字段的内容,每输入完一个字段可按Tab键跳到下一个字段文本框中。一条记录输完之后,单击“新建”按钮输入下一条记录或者单击“关闭”按钮结束操作。

(2)查询记录

使用记录单对话框可以查询记录,具体操作如下:

①单击图5.29中的“条件”按钮,对话框中各字段的内容变成空白,然后输入查找条件。例如,要查找总成绩在90分以上的记录,则在“总成绩”文本框中输入:>=90,如图5.30所示。

②单击“下一条”按钮,向下查找匹配的记录,或单击“上一条”按钮,向上查找匹配的记录,如图5.31所示查找到一条满足条件的记录。

③查找完毕,单击“关闭”按钮。(3)删除记录

先找到要删除的记录,再单击记录单对话框中的“删除”按钮,在弹出的提示框中单击“确定”按钮即可删除选定的记录。

在记录单中输入查找条件

使用记录单查找到满足条件的记录

二、数据排序

1.使用工具栏按钮进行简单排序

如果要对一列数据进行排序,可以使用排序工具按钮来对数据进行排序。在常用工具栏中提供了“升序”按钮和“降序”按钮。操作时只需单击数据清单中要排序的字段的字段名所在的单元格,然后单击“升序”或“降序”按钮,则此列数据就会重新排列。2.使用菜单命令进行复杂排序

使用常用工具栏中的排序按钮,只能对一个字段进行排序,如果需要同时对多个字段进行排序,或要对数据清单的部分数据区域进行排序,就只能使用菜单命令,即“数据”菜单中的“排序”命令来完成。“排序”对话框如图5.32所示。

数据筛选

筛选是指从大量的数据中筛选出符合某种条件的数据。在Excel中,可以使用“自动筛选”或“高级筛选”将符合条件的记录显示在工作表中,而将其他不满足条件的记录隐藏起来。

1.自动筛选

单击数据清单中的任意一个单元格,执行“数据”→“筛选”→“自动筛选”命令,这时,数据清单中每个字段名的右侧会出现一个下三角按钮,单击这个三角按钮,打开下拉列表框,从中选择用于设置筛选条件的选项,如图5.33所示。

(1)自定义自动筛选

用户可以使用下拉列表框中的“自定义”选项对数据清单进行更加复杂的筛选。例如,要查找总成绩在75~90分之间的记录,可以按图5.34所示定义各项。(2)关闭自动筛选

如果要取消数据清单中某一字段的筛选,单击该字段名右侧的下三角按钮,再选择“全部”选项即可。

如果要取消数据清单中所有字段的筛选,执行“数据”→“筛选”→“全部显示”命令。

如果要退出自动筛选状态,执行“数据”→“筛选”→“自动筛选”命令。此时,字段名右侧的下三角按钮也一起消失。

图5.34 “自定义自动筛选方式”对话框

2.高级筛选

在实际工作中,往往涉及到更为复杂的筛选条件,利用自动筛选无法完成,这时就要利用高级筛选。高级筛选可以设定比较复杂的筛选条件,并且能够将满足条件的记录复制到另一个工作表或当前工作表的空白区域。

在使用高级筛选之前,必须先设定一个条件区域,该区域应在工作表中与数据清单相分隔的空白单元格区域上。条件区域至少为两行,第一行为字段命令行,以下各行为相应的条件值。

选定数据清单,执行“数据”→“筛选”→“高级筛选”命令,打开如图5.35所示的“高级筛选”对话框。

使用高级筛选,用户可以定义一个条件,也可以定义多个条件。当定义复合条件时,在条件区域的同一行输入条件,系统将按“与”条件处理;在不同行输入条件,则按“或”条件处理。例如,图5.36所示是查找总成绩大于等于70分并且姓“王”的记录,其中在条件区域的同一行输入两个条件。图5.37所示是查找总成绩大于等于70分或者姓“王”的记录,两个条件是在不同行中输入的。

图5.35 “高级筛选”对话框

图5.36 设置“与”条件的结果

四、分类汇总

分类汇总是指将经过排序后的数据按排序关键字段进行分类后,再对数据进行汇总计算。

1.创建分类汇总

在进行分类汇总之前,首先要对数据清单按汇总类型进行排序,使同类型的记录集中在一起。对“性别”字段进行分类汇总实例如图5.38和图5.39所示。2.删除分类汇总

如果要取消分类汇总的显示结果,恢复到数据清单的初始状态,可以单击数据清单中的任意单元格,然后执行“数据”→“分类汇总”命令,在弹出的“分类汇总”对话框中,单击“全部删除”按钮即可。3.分级显示

从图5.39中可以看出,对数据清单进行分类汇总后,在行号的左侧出现了分级显示符号,见表5.2。

图5.38 “分类汇总”对话框

图5.39 分类汇总实例

五、数据透视表

数据透视表是一种特殊形式的表,它可以把源数据的行和列进行互换后汇总并显示汇总结果。特别是用于分析,组织复杂的数据。建立数据透视表(图)的目的 数据透视表能帮助用户分析、组织数据。利用它可以很快地从不同角度对数据进行分类汇兑。

首先应该明确的是:不是所有工作表都有建立数据透视表(图)的必要。

记录数量众多、以流水帐形式记录、结构复杂的工作表,为了,将其中的一些内在规律显现出来,可将工作表重新组合并添加算法。即,建立数据透视表(图)。

例如,有一张工作表,是一个大公司员工(姓名、性别、出生年月、所在部门、工作时间、政治面貌、学历、技术职称、任职时间、毕业院校、毕业时间等)信息一览表,不但,字段(列)多,且记录(行)数众多。为此,需要建立数据透视表,以便将一些内在规律显现出来。

2.创建数据透视表

创建数据透视表,可以按下述操作步骤进行:

① 在数据清单中单击任意一个单元格,然后执行“数据”→“数据透视表和数据透视图”命令,打开如图5.40所示的对话框。

图5.40 “数据透视表和数据透视图向导-3步骤之1”对话框

② 在此对话框中指定待分析数据的数据源和所创建的报表类型。例如,选择“Microsoft Office Excel数据列表或数据库”单选项,然后单击“下一步”按钮,打开如图5.41所示的对话框。

图5.41 “数据透视表和数据透视图向导-3步骤之2”对话框

③ 在此对话框的“选定区域”文本框中指定数据源的区域,再单击“下一步”按钮,打开如图5.42所示的对话框。

④ 在此对话框中选择数据透视表的显示位置,然后单击“完成”按钮。这时,出现数据透视表的设置版式,并在屏幕上显示一个包含字段名的“数据透视表字段列表”任务窗格和“数据透视表”工具栏,如图5.43所示。数据透视表由4个区域构成,分别是页字段区域、行字段区域、列字段区域和数据项区域。“数据透视表字段列表”任务窗格中提供了源数据清单所包含的字段名按钮,可以根据需要单击字段名按钮,并将其拖放到相应的区域中,这样就可以创建数据透视表。图5.42 “数据透视表和数据透视图向导-3步骤之3”对话框

图5.43 数据透视表的设置版式

2.删除数据透视表

如果要删除数据透视表,单击透视表中的任意一个单元格,在“数据透视表”工具栏上单击“数据透视表”按钮,则弹出“数据透视表”下拉菜单,在菜单中选择“选定”命令下的“整张表格”命令,最后执行“编辑”→“清除”→“全部”命令,即可删除数据透视表。

六、打印工作表

工作表和图表设计好之后,可以将其打印出来。Excel提供了页面设置、打印预览等功能,利用这些功能,可以使打印出的工作表更准确、美观。

(一)打印设置 1.设置打印区域

如果要打印工作表中的部分数据区域而不是整个工作表,则可以先设定该区域为打印区域,这样,单击常用工具栏上的“打印”按钮,就可以只打印出该数据区域的内容。2.页面设置

页面设置一般包括设置页边距、页眉和页脚、打印方向及纸张的大小和方向等。

单击“文件”菜单中的“页面设置”命令,出现“页面设置”对话框,如图5.50所示。

图5.50 “页面设置”对话框中的“页面”选项卡

(二)打印预览

Excel提供的“打印预览”功能,能够查看实际的打印效果。在预览的过程中,如果发现页面设置不合适,可以进行调整,直到满意后再进行打印。

执行“文件”→“打印预览”命令或者单击常用工具栏中的“打印预览”按钮,出现“打印预览”窗口。在此窗口的上方有一排按钮:下一页、上一页、缩放、打印、设置、页边距、分页预览和关闭,有了这些按钮用户操作起来就非常的方便。

(三)、打印

在对工作表进行页面设置并且预览了设置效果之后,如果没有问题就可以开始打印了。

执行“文件”→“打印”命令,出现“打印内容”对话框,如图5.51所示。在设置完毕之后,打开打印机的电源,单击“确定”按钮,即可开始打印。

图5.51 “打印内容”对话框

教学后记:

第五篇:建行数据管理

定义八万余项数据规范,金融巨头如何实现“数同轨”| 对话建行数据管理部刘静芳

摘要:

“要像管理战略资产一样管理数据。”在首届中国数据标准化及治理大会上,中国建设银行数据管理部总经理刘静芳以这句感慨总结了她的分享,也总结了建行数据团队建设心得。

3亿4千万的个人客户,390多万对公企业客户,14900多个内部机构,20多家海外分行,十多家子公司,作为排名全球一级核心资本第二位的巨型金融企业的中国建设银行(下称建行),如同其它大型企业一样也曾面临复杂的数据问题。

建行近三十年的信息化历程中,前二十年建成的竖井式、分散化业务处理系统。一方面实现了业务的信息化、提高了业务处理效率,但也不可避免地造成了不完整、不准确、不及时、不一致、不安全、冗余等数据问题。这些问题在信息化后期成为建行管理水平提升的瓶颈。

“分析这些数据问题的成因,我们发现,不管是制度、流程、机构、数据、技术各个环节的缺陷,还是在这些环节中人员的操作不到位,都会导致数据质量的问题。对此,建行进行了十几年的研究、探索和实践。”刘静芳说,从根本上、系统性解决数据问题,是建行从2011年开始新一代核心系统建设重要目标之一。

定义八万多项数据规范:数据标准化是一切的开始

对于一个分散化的、数据问题广泛存在的局面来说,如同秦朝统一六国实行“书同文、车同轨”,制定统一的企业级数据标准是最快捷的一种方法,也是最容易达成众多部门共识,实现“数同轨”的方法。早在2003年,建行总行就成立了负责整个建行信息资源的一级管理部门——信息中心,内部设置了两个专业处室:一个是数据标准处,另外一个是信息系统管理处。这两个处室的核心职责就是来推动数据管控的相关工作并且牵头企业级数据仓库的建设。

在新一代核心系统建设中,建行采用的方法是业务模型驱动的方法,先把银行业务进行模型化,再来推动IT的开发。通过业务建模,实现了业务需求的统一规范化定义,消除了业务人员之间对于业务理解的差异,也方便了技术人员准确理解业务,大大减少了开发的阻力。业务建模的结果是业务模型,包括流程模型、数据模型、产品模型和用户体验模型四个部分,重点是流程模型和数据模型。流程模型主要规定了业务活动、任务的执行序列,系统控制的时间序列,以及各个业务的功能;数据模型所表达的是更细化的业务需求,它理清了企业级层面对于业务信息细节的要求,把数据实体、数据项及数据之间的关联关系等都进行了清晰的定义。

当业务模型建立完成后,技术人员就可以遵循这个模型去进行开发。在这个过程中,建行制订了企业级的业务术语库、数据标准、企业级数据模型和衍生(指标)数据视图等八万多项数据规范,形成了企业级的通用语言,可以把数据和业务的需求非常好地管控起来。

数据的“双分离”,系统达到最优

提到数据标准化在具体实施过程中的过程和效果,建行数据管理部数据标准处处长车春雷谈到,建行的新一代数据架构一方面通过业务建模和组件化,实现了每个业务数据“单点采集、全行共享”的目标,另一方面通过业务运行系统和数据使用系统分离、数据仓库的计算区和访问区分离的“双分离”模式,实现了系统性能的优化。在采集、集成到分析使用过程的每一个环节,数据区都是独立的,不会产生冲突,不会相互影响。数据挖掘分析,则通过在企业级数据仓库环境中开辟专门的数据实验室完成。建行为每个实验室分配存储空间和计算资源。小到一个数据业务模型,大到整个企业战略的数据支持,都可以在各个实验室中独立运作,进行数据探索、模型设计和优化。这样做,既不会影响整个系统的运行效率,也不会互相干扰。而其结果,又可以反馈到数据仓库中进行共享,实现完整的闭环。另外,“双分离”模式还能够根据不同数据区对于硬件设备可靠性、容量等的差异化要求选择不同的设备,从而节省成本,获得高回报率。

“目前建行还正在基于企业级数据仓库中打造一个大数据平台,目前已经集成语音分析、图像分析、机器学习、文本分析等部分大数据工具,引入了部分外部数据,探索性地进行了非结构化数据的分析应用。”刘静芳说,“但是目前来说,传统数据仓库的结构化数据仍然是建行的优质矿石,优先提炼挖掘价值,而非结构化等大数据则是砂石,需要进一步的提取与纯化后,根据需要与前者结合在一起,实现更大的价值创造”。数据安全管理:安全?便利?还是降低成本?

数据安全的本质是依靠技术实现安全的控制,信息安全的技术经过几十年的发展,已经相当成熟了。但是对于一个企业来说,安全的控制、应用的便利性和成本是矛盾的,从整个系统的角度去考虑,如何在这三者中间取得一个平衡点,是建行考虑的重点。建设银行采取的措施是给数据分级,根据安全的级别不同,进行不同级别的管控。对于对象、目标、手段、阶段都要进行细分,针对不同的级别采取不同的控制措施,再用技术加以实现,由此来保障数据的安全。根据数据的敏感度,建行将数据分成了四个层级——监管级、高度敏感级、内部使用级、普遍级。这样,就可以在保证数据使用便利性的条件下,实现数据分等级的控制。

而对于数据应用人员来说,所有的数据都是企业级的,存储在企业的云平台中,敏感数据在使用时也会进行脱敏处理,杜绝了泄露客户信息的隐患。

每个人都是数据团队的一员:各司其职的数据管理文化 在建行的新一代核心系统中,数据质量是被高度关注的问题。为了建立良性的数据供给和应用循环,需要对数据质量进行实时的监测和控制。但是,数据质量并不仅仅是一个业务部门、技术部门或者是数据部门就能独立完成的工作,它需要全员参与,全员维护,要让整个企业的每一个成员意识到自己对于数据管控的责任。

在这样的背景下,就需要建立全员参与的数据管理文化。这个文化是通过在强大的技术支撑下,构建由六个角色和五个管理领域组成的数据管理职责任责矩阵来完成的。从最基础的数据需求、数据标准的制订,到数据质量、数据安全和元数据的管理,都由各个部门一起参与,不但业务、数据和技术部门彼此分工合作、各司其职,执行部门和管理部门也要构成一个从制订、使用到监督、改进的完整闭环。

在这样的团队里,数据的质量定义、流程控制、日常监测、问题分析、问题整改、评估改进等工作环节构成了完整的工作链条。链条中的每个环节都在各个层面得到了相关部门的充分关注,数据的质量才能得到有效保证。

数据新人:数据分析是打开盒子看数据,培养职业道德

和很多企业的数据团队建设者一样,建行也面临着数据人才招募难的问题。国有银行在人事管理上未完全实现市场化。建行目前基本上是与外部专家合作方式,通过项目一方面定向实现“借智、引智”,同时培养建行自己的人才。建行数据团队的成员主要是对校招的员工在工作、项目中进行培养,这需要一个相对较长的周期。

在谈到人才培养的问题时,车春雷说:“从2016年开始,我们开始实施“绿树”计划,重点培养数据分析和应用人才,从总行和各分行选拔优秀人才到总行数据分析中心学习。我们要求学员们带着业务实际的数据应用、分析需求过来,在学习的过程中把这个需求落地,边做边学”。车春雷还补充道:“目前,建行总行各部门和各分行对于开展数据分析应用和参加“绿树”计划的热情很高。这是因为在我国经济进入新常态下,金融间竞争更加激烈,传统营销的盈利增长空间缩小,而强大的数据分析能力恰恰是支持精细化经营管理的有力工具,能够显著提高银行竞争力和盈利性。”

提到给想要进入数据行业人才的建议,车春雷给出了这样的建议:培养合作精神,学会问题导向的思维,培养职业道德。

数据行业是现在最热门的行业之一,在未来一定会有源源不断的新人加入这个行业。但在企业的具体数据应用中,需要由多个专业的人员组成团队,一起解决以前没遇到过的问题,所以对于有意加入这个行业的新人来说,培养自己的合作能力是很重要的。

在数据行业里,中国的数据行业和西方面临的问题是不一样的。我们的起步时间比他们差的太多,国内大部分企业现在才解决完业务信息化,正准备做决策(管理)系统。所以在数据治理的过程中,我们还要不断面对新的问题,这需要从业者具有面向问题的思维方式,去设身处地的站在企业管理的角度,借鉴外部经验,思考问题,创造性地解决问题。另外,数据分析是打开盒子看数据,在工作中会接触到许多方方面面的企业数据,因此需要从业者的具备良好的伦理文化和职业道德。这对其整个职业生涯会有相当长远的影响。” 客户信息共享,有效分析客户利润贡献度,提升个人客户服务质量与效率。

(一)客户主题标准助力客户信息整合及全面识别,提升客户体验,实现差异化的服务与营销中国光大银行在建设统一客户信息管理系统(ECIF)中,以《客户主题数据标准》为需求蓝本,确定了全行统一的零售客户唯一识别规则,构建了满足各项业务需要的统一客户信息模型,加快了ECIF系统建设进程。依据《客户主题数据标准——约束性规则》制定了客户信息质量度量标准、客户信息覆盖规则和清洗规则,整合了多点存储的3000多万个零售客户信息、清理了700万无效的客户信息,完成了25万对的客户合并,有效地解决客户信息多头创建与维护造成的不一致问题。

在统一、标准化客户信息的支持下,优化整合了原有多个系统的客服流程,实现了客户服务团队的统一调度及在多个接触渠道得到一致的服务响应。如客户到网点刷卡排队可以立刻识别客户等级,大堂经理及时掌握前来客户情况并进行针对性地服务;建设企业级客户信息分析系统(ECIS),实现了客户分层统计以及客户产品及渠道关联性分析等,支持精细化管理决策及差异化营销,形成了特有的“(ECIF)+(ECIS)+智能排队机+IPAD+WiFi服务+电子渠道体验区”物理网点智能化模式,使得传统物理网点变得“智慧”,逐步实现了面向网点人员的移动综合服务平台,使“微笑服务”进一步上升 到“以客户为中心的全面服务”,从“坐等上门”变为“移动营销”。

(二)渠道类型标准应用,统一全行渠道标识,奠定渠道贡献度及成本收益分析的基石

随着与渠道相关的业务内容和交易规模的迅速发展,渠道差异化销售、分项考核,统计分析及成本收益核算需求日益增长,对交易渠道的有效识别成了一个重要障碍。鉴于此,光大银行于2009年制定了渠道主题数据标准,并于2011年年初启动了渠道标准应用实施工作,对包括柜台、网银、手机、客服、短信、电子支付、自助设备等渠道发起的,包括支付、基金及理财、第三方存管、外汇买卖(汇市通)、黄金(贵金属)等各类交易的渠道类型进行了标准化改造,2011年9月成功上线。渠道主题标准的应用实施保证了原始渠道信息的准确性、完整性、一致性,实现了对电子渠道的统一化与规范化管理,对不同渠道的准确快速识别,为渠道协同中不同渠道的交易优惠及收入划分、为渠道偏好及渠道与产品关联分析、为分析渠道对业务的贡献度、为各渠道收益及成本细化分析,从而精细化渠道相关考核,更有效地体现电子渠道的价值奠定了坚实的数据基础。

四、持续推动标准体系应用

依托数据管理工作,未来持续推动数据标准体系的应用。数据标准与数据质量、元数据都是数据管理的重要组成部分,三者密不可分,必须共同对外提供一致的数据管理服务,才能不断地提升数据的完整性、准确性、一致性与及时性,为业务经营决策提供及时的、高质量的数据支持。

2012年,中国光大银行将沿着 “结合发展战略和业务需求,充分体现业务价值,由专业团队统筹,以项目为载体持续推进数据标准化工作”的数据标准体系工作思路,建立以数据质量问题改进为主要业务驱动力、数据标准为数据质量评价基础、元数据管理为支 撑的三位一体数据管理机制,侧重以外部监管数据质量要求为业务驱动力,以企业元数据管理为基础推动数据标准体系在各应用系统中的执行,逐步形成常态化的、闭环的数据标准体系应用良性机制,从整体上提升中国光大银行的数据质量及数据管理水平。

下载临床试验数据管理工作指南word格式文档
下载临床试验数据管理工作指南.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    云数据管理

    1)《高级数据库技术》主要考察考生对数据库高级技术的掌握(可以参考教材内基本内容,不涉及深入的理论推导等),更重要的是考察对新技术、新概念的跟踪和了解(例如当前的云数据管理......

    临床试验术语

    临床试验 代表含义: 指任何在人体(病人或健康志愿者)进行药物的系统性研究,以证实或揭示试验药物的作用、不良反应及/或试验药物的吸收、分布、代谢和排泄,目的是确定试验药物的......

    临床试验计划书

    篇一:临床科研试验计划书 临床科研试验计划书临床科研试验计划书 题目:吸烟对胃溃疡患者的血液流变学影响的研究 (一)立题依据: 胃溃疡是人类消化系统的常见病、多发病,是机体炎......

    临床试验合同

    xxxxx临床试验合同 合同编号: 甲方(申办者): 乙方(研究者): xx属于II类医疗器械,经国家食品药品监督管理局xx省医疗器械质量监督检验中心检测为合格产品。根据《医疗器械注册管......

    临床试验稽查员

    临床试验稽查员《药物临床试验管理规范》中对稽查的释义为:稽查(Audit),指由不直接涉及试验的人员所进行的一种系统性检查,以评价试验的实施、数据的记录和分析是否与试验方案、......

    国土资源数据管理暂行办法

    国土资源数据管理暂行办法 国土资发[2010]142号各省、自治区、直辖市国土资源厅(国土环境资源厅、国土资源局、国土资源和房屋管理局、规划和国土资源管理局),副省级城市国土资......

    数据管理报告总结

    可控硅佳凯子!睛都掰掉做个!雪恭喜发,的现实乡,个各位高把。去愁:乌鸦:行下效的思。感在父母的姓字?恶阿:掌控婚恋,的另一篇。 声音还我的。台上一;过学习自己。痛断:给带来喜悦。我太......

    年终工作总结(数据管理) (精选5篇)

    一、坚持以“三个代表”重要思想为行动指南,政治思想取得新突破积极参加各种形式的政治理论教育,善于提练和总结,年终工作总结(数据管理)。**年5月至7月借调解放思想大讨论办公......