第一篇:等差、等比数列问题
等差等比数列问题
一、等差数列、等比数列基本数列问题
1.等差数列an,s636,sn6144,sn324,求n的值
1)an2an11;2)an2an1n1;3)an2an1n2n1; 4)an2an12n;5)an2an13n
1)sn2an1;2)sn22n1n1;3)sn2an1n2n1; 4)sn2an12n;5)sn2an13n 2.已知数列,aan满足:a=m(m为正整数)
anA7n5
2.已知两个等差数列an和bn的前n项和分别为An,Bn,且n,则使得为整数
bnn3Bn的的正整数n个数为:
3.已知等差数列an,a1a3a5a9936,公差d2,求s100的值。
4、已知等差数列an的第2项为8,前10项和为185。1)求an的通项公式;2)若数列依次取出a2,a4,a8,,a2n
n1
an中
an当a为偶数时
n,若a6=1,则m所有2
当an为奇数时3an1
得到新数列bn,求数列bn的通项公式。
可能的取值为
四、数列与其它
1.已知数列an的通项公式annnN,则数列an的前30项中,最大项和最小项分别
n是
2.已知数列an是递增数列,且ann2n,则实数3.(Ⅰ)设
4.设等比数列an的公比为q(q>0),它的前n项和为40,前2n项和为3280,且前前n项中数值最大的项为27,求数列的第前2n项。
5.已知数列an的首项为23,公差为整数,且前6项为正,从第7项起为负数,求Sn的最大值。
范围是
an为正整数,6.数列{an}为等差数列,其前n项和为Sn,数列{bn}为等比数列,且a1
数列{ban}是公比为64的等比数列,b2S264.(1)求an,bn;(2)求证1113.S1S2Sn
4二、数列思想问题
1.数列an的前n项和Sn,又bn2.求和sn
3,b11,a1,a2,,an是各项均不为零的等差数列(n4),且公差d0,若将此数列删
a1的数值;②求n的所有可d
去某一项得到的数列(按原来的顺序)是等比数列:①当n =4时,求
能值;
(Ⅱ)求证:对于一个给定的正整数n(n≥4),存在一个各项及公差都不为零的等差数列
an
b1,b2,,bn,其中任意三项(按原来顺序)都不能组成等比数列.,求bn的前n项和
123n23n aaaa
3.等差数列an和等比bn,求数列anbn的前n项和 4.111
1*2
2*3
3*4
n1n 1213243
n*n11*22*33*4n*n15.已知数列an满足a12a23a3nannn1,求数列an的通项公式
三、复合数列问题
1、已知数列an满足下列条件,且a11,求数列an的通项公式
第二篇:(经典整理)等差、等比数列的性质
等差、等比数列的性质
一:考试要求
1、理解数列的概念、2、了解数列通项公式的意义
3、了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前几项 二:知识归纳
(一)主要知识:
有关等差、等比数列的结论 1.等差数列{an}的任意连续m项的和构成的数列Sm,S2mSm,S3mS2m,仍为等差数列.
2.等差数列{an}中,若mnpq,则amanapaq 3.等比数列{an}中,若mnpq,则amanapaq
4.等比数列{an}的任意连续m项的和构成的数列Sm,S2mSm,S3mS2m,仍为等比数列.
5.两个等差数列{an}与{bn}的和差的数列{anbn}仍为等差数列.
an1
6.两个等比数列{an}与{bn}的积、商、倒数的数列{anbn}、、仍为等比数
bnbn
列.
(二)主要方法:
1.解决等差数列和等比数列的问题时,通常考虑两类方法:①基本量法:即运用条件转化为关于a1和d(q)的方程;②巧妙运用等差数列和等比数列的性质,一般地运用性质可以化繁为简,减少运算量.
2.深刻领会两类数列的性质,弄清通项和前n项和公式的内在联系是解题的关键.
三:例题诠释,举一反三
例题1(2011佛山)在等差数列{an}中,a1+2a8+a15=96,则2a9-a10=()A.24B.22C.20D.-8
变式1:(2011广雅)已知数列{an}为等差数列且a1+a7+a13=4π,则tan(a2+a12)的值为()A
3变式2:(2011重庆理11)在等差数列{an}中,a3a737,则a2a4a6a8
________
B3
A3
3A3
例题2 等差数列{an}的前m项和为30,前2m项和为100,则它的前3m项和为()
A.130B.170C.210D.260
变式1:(2011高考创新)等差数列{an}的通项公式是an=1-2n,其前n项和为Sn,则数列{的前11项和为()
A.-45B.-50C.-55D.-66 变式2:(2011高考创新)等差数列{an}中有两项am和ak满足am=
Snn
}
1k,ak=
1m,则该数列前mk
项之和是.例题3(1)已知等比数列{an},a1+a2+a3=7,a1a2a3=8,则an=________.(2)已知数列{an}是等比数列,且Sm=10,S2m=30,则S3m=________(m∈N*).(3)在等比数列{an}中,公比q=2,前99项的和S99=56,则a3+a6+a9+…+a99=_______.变式1:(2011佛山)在等比数列{an}中,若a3·a5·a7·a9·a11=32,则
a9
a1
1的值为()
A.4B.2C.-2D.-
4变式2(2011湛江)等比数列{an}中,a1+an=66,a2an-1=128,前n项的和Sn=126,求n和公比q.变式3(2011广州调研)等比数列{an}的前n项和为Sn,若S2=6,S4=30,则S6.1
例题4 已知数列{an},an∈N*,Sn=(an+2)2.8(1)求证:{an}是等差数列;
(2)若bn=n-30,求数列{bn}的前n项和的最小值.
变式1已知数列{an}中,a1
3
5,an
2
1an1
(n2,nN
),数列{bn}满足bn
1an1
(nN
)
(1)求证:数列{bn}是等差数列;
(2)求数列{an}中的最大值和最小值,并说明理由
变式2设等差数列an的前n项和为sn,已知a324,s110,求: ①数列an的通项公式②当n为何值时,sn最大,最大值为多少?
变式3(2011·汕头模拟)已知数列{an}中,a1=,数列an=2-,(n≥2,n∈N*),数列an-1{bn}满足bn=
(n∈N*).an-1
(1)求证数列{bn}是等差数列;
(2)求数列{an}中的最大项与最小项,并说明理由.
32a例题5(2008·陕西)(文)已知数列{an}的首项a1=,an+1=n∈N*an+11
(1)求证数列-1}是等比数列;
ann
(2)求数列{前n项的和
an
变式1 在数列{an}中,a1=2,an+1=4an-3n+1,n∈N*.(1)证明数列{an-n}是等比数列;(2)求数列{an}的前n项和Sn;(3)求证对任意n∈N*都有Sn+1≤4Sn
变式2设{an},{bn}是公比不相等的两个等比数列,且cn=an+bn,证明数列{cn}不是等比数列.
变式3.在数列an中,a11,an12an2(1)设bn
n
an
2n1,证明bn是等差数列;(2)
求数列an的前n项和Sn。
当堂讲练: 1.(1)若一个等差数列前3项的和为34,最后三项的和为146,且所有项的和为390,则这个数列有项;
(2)已知数列{an}是等比数列,且an>0,nN,a3a52a4a6a5a781,则
a4a6
*
(3)等差数列前m项和是30,前2m项和是100,则它的前3m项和是.
2.若数列{an}成等差数列,且Smn,Snm(mn),求Snm.
3.等差数列{an}中共有奇数项,且此数列中的奇数项之和为77,偶数项之和为66,a11,求其项数和中间项.4.若数列{an}(nN*)是等差数列,则有数列bn
a1a2an
n
(nN*)也为
等差数列,类比上述性质,相应地:若数列{cn}是等比数列,且cn>0(nN*),则有
d
n
nN*)也是等比数列.
5.设Sn和Tn分别为两个等差数列的前n项和,若对任意nN,都有则第一个数列的第11项与第二个数列的第11项的比是.说明:
anbn
S2n1T2n1
*
SnTn
7n14n27,.
四:课后练习
1基础部分
1已知各项均为正数的等差数列an中,a1a1136,则a6的最小值为()
A、4B、5C、6D、7
2.已知某等差数列共有10项,其奇数项之和为15,偶数项之和为30,则其公差为()
A.3B.4C.5D.23.等差数列{an}中,a13a8a15120,则2a9a10
()
A.24 B.22 C.20 D.-8
4{an}是等差数列,a1>0,a2009+a2010>0,a2009·a2010<0,使前n项和Sn>0成立的最大自然数n是()A.4019B.4018C.4017D.4016
5.在等差数列{an}中,前n项和为Sn,若a75,S721,那么S10等于()
A.55 B.40 C.35 D.70
6.(2009山东卷文)在等差数列{an}中,a37,a5a26,则a6____________.7设Sn是等差数列an的前n项和,已知S636,Sn324,Sn6144,则n=__________.S2007
S2005200
52
aSa20088在等差数列n中,1,其前n项的和为n.若2007
S2008_________,则
2提高部分
1、(2010惠州 第三次调研理 4)等差数列{an}的前n项和为Sn,若a2a8a1130,那
么S13值的是()A.130
B.6
5C.70D.以上都不对
2.(2010揭阳市一模 理4)数列{an}是公差不为0的等差数列,且a1,a3,a7为等比数列{bn}的连续三项,则数列{bn}的公比为
A
B.4C.2D.
3、(2009安徽卷文 2)已知{an}为等差数列,于A.-1
12,则
B.1C.3D.7
等
4.(2009江西卷文)公差不为零的等差数列{an}的前n项和为Sn.若a4是a3与a7的等比中项, S832,则S10等于
A.18B.24C.60D.90
5.(2011佛山一检)在等差数列an中,首项a10,公差d0,若
aka1a2a3a7,则k()
A.22 B.23 C.24D.25
6.(2010全国卷1文)(4)已知各项均为正数的等比数列{an},a1a2a3=5,a7a8a9=10,则
aaa=
(A)
7.(2010湖北文)7.已知等比数列{am}中,各项都是正数,且a1,则
a9a10a7
a8
A.1
a3,2a2成等差数列,B.1
C.3
D3
8(2010福建理)3.设等差数列an的前n项和为Sn,若a111,a4a66,则当Sn取最小值时,n等于
A.6
B.7
C.8
D.9
9.(广东省佛山市顺德区2010年4月普通高中毕业班质量检测试题理科)在等比数列{an}中,若a1a2a32,a2a3a416, 则公比q10.(2010年3月广东省广州市高三一模数学理科试题)在等比数列an中,a11,公比
q2,若an前n项和Sn127,则n的值为.
11.(2010年3月广东省深圳市高三年级第一次调研考试理科)设等差数列{an}的前n项和为Sn,若S981,则a2a5a8.
12.若Sn和Tn分别表示数列{an}和{bn}的前n项和,对任意自然数n,有an
2n32
*,(1)求数列{bn}的通项公式;(2)设集合A{x|x2an,nN},4Tn12Sn13n,B{y|y4bn,nN}.若等差数列{cn}任一项cnAB,c1是AB中的最大数,且
*
265c10125,求{cn}的通项公式.
第三篇:等差、等比数列性质类比
等差、等比数列知识点
一、等差数列:
1.等差数列的证明方法:1.定义法:2.等差中项:对于数列则{an}为等差数列。2.等差数列的通项公式:
an,若2an1anan
2ana1(n1)d------该公式整理后是关于n的一次函数
Sn
n(a1an)n(n1)
2Snna1dSAnBn n223.等差数列的前n项和 1.2.3.abA
2或2Aab 4.等差中项: 如果a,A,b成等差数列,那么A叫做a与b的等差中项。即:
5.等差数列的性质:(1)等差数列任意两项间的关系:如果
an是等差数列的第n项,am是等差
aam(nm)d
数列的第m项,且mn,公差为d,则有n
(2).对于等差数列
an,若m+n=p+q,则am+an=ap+aq。
*SSSSk,S3kS2kakNnn(3)若数列是等差数列,是其前n项的和,那么k,2k
S3k
a1a2a3akak1a2ka2k1a3k
成等差数列。如下图所示:
(4).设数列
SkS2kSkS3kS2k
an是等差数列,S奇是奇数项的和,S偶是偶数项项的和,Sn是前n项的和,S偶S奇
S奇nn1dSSa偶中,S偶n.2,○2当n为奇数时,则奇
则有如下性质: ○1当n为偶数时,二、等比数列:
1.等比数列的判定方法:①定义法若数列。
an
1q(q0)an
2an是等比aaann2n1,则数列②等比中项:若
n1
aaaqqann12.等比数列的通项公式:如果等比数列的首项是1,公比是,则等比数列的通项为。
3.等比数列的前n项和:○1
Sn
a1(1qn)
(q1)
1q
○
2Sn
a1anq
(q1)
1q
○3当
q1时,Snna1 ab。
4.等比中项:如果使a,G,b成等比数列,那么G叫做a与b的等比中项。那么G5.等比数列的性质:
(1).等比数列任意两项间的关系:如果
an是等比数列的第n项,am是等差数列的第m项,且mn,qanamqnm
公比为,则有
(2)对于等比数列an,若nmuv,则anamauav也就是:a1ana2an1a3an2。
(3).若数列an是等比数列,Sn是其前n项的和,kN*,那么Sk,S2kSk,S3kS2k成等比数
S3ka1a2a3akak1a2ka2k1a3k
列。如下图所示:SkS2kSkS3kS2k
基础练习
一、选择题:
1.已知{an}为等差数列,a2+a8=12,则a5等于()
(A)4(B)5(C)6(D)7
2.设{an}是公比为正数的等比数列,若a11,a5=16,则数列{an}前7项的和为()
A.63B.64C.127D.128
3.设等差数列{an}的前n项和为Sn,若S39,S636,则a7a8a9()
A.63B.45C.36D.274、设等比数列{an}的公比q2,前n项和为SS
4n,则a()
A.2B.4 C.15D.17
25.某种细菌在培养过程中,每20分钟分裂一次(一个分裂为两个).经过3个小时,这种细菌由1个可繁殖成-(A.511个B.512个C.1023个D.1024个
6.已知等差数列{an}中,a2=6, a5=15.若bn=a2n,则数列{bn}的前5项和等于()
(A)30(B)45(C)90(D)186
7.已知数列an*
对任意的p,qN满足apqapaq,且a26,那么a10等于()
A.165B.33C.30D.2
18.设{an}是等差数列,若a23,a713,则数列{an}前8项和为()
A.128B.80C.64D.56
9.设{an}是公比为正数的等比数列,若a1=1,a5=16,则数列{an}前7项的和为()
A.63B.64C.127D.128
10.记等差数列an的前n项和为Sn,若S24,S420,则该数列的公差d=()
A.7B.6C.3D.2
11.记等差数列an的前n项和为Sn,若a11
2,S420,则S6()
A.16B.24C.36D.48
a2,aa1
1n1nln
12.在数列an中,1n,则an=()
2)
A.2lnnB.
二、填空题:
1.等差数列{an}中,a5=24,S5=70,则S10=___
2.等比数列{an}的前n项和为Sn=32n1lnnC.2nlnnD.1nlnn +t,则t=________
3.等比数列{an}中,an>0,a2·a4+2a3·a5+a4·a6=25,则a3+a5=_______
4.设{an}中,an=20-4n,则这个数列前__或____项和最大。
5.已知:两个等差数列{an},{bn}的前n项和分别为An和Bn,且An3n1 n
Bn2n
3求:(1)a15b15=_________(2)an=___________ bn
6.等差数列{an}的公差d1,且前100项和S100=100,则a1+a3 +a5+…a99=__
27.在[1000,2000]内能被3整除且被4除余1的整数个数是________________
8.在数列{an}在中,an4n52*2,a1a2ananbn,nN,其中a,b为常数,则ab
52an4n{a}aaaanbn,nN*,其中a,b为常数,则2n2,19.在数列n在中,linanbnanbn的值是_____________
10.已知{an}为等差数列,a3 + a8 = 22,a6 = 7,则a5 = ____
三、解答题:
1.已知数列
n项和
11111S与SSS与S43453a设Snn345342.是等差数列的前n项和,已知的等比中项为,的等差中项为1,{an}是一个等差数列,且a21,a55。(1)求{an}的通项an;(2)求{an}前Sn的最大值。
求数列
an的通项.
3.等差数列{an}的前n
项和为Sn,a11S39求数列{an}的通项an与前n项和Sn;
4.等差数列an中,a410且a3,a6,a10成等比数列,求数列an前20项的和S20.
第四篇:等差等比数列的证明
专题:等差(等比)数列的证明
1.已知数列{a}中,anan15且2an12n1(n2且nN*).an1(Ⅰ)证明:数列2n为等差数列;(Ⅱ)求数列{an}的前n
项和S.n
2.已知数列{a}中,an12且an1an2n30(n2且nN*).证明:数列an2n为等差数列;
3.已知数列{a}中,an14且2an1an2n50(n2且nN*).证明:数列an2n1为等比数列;
4.数列{an}满足a12,a25,an23an12an.(1)求证:数列{an1an}是等比数列;(2)求数列{an}的通项公式;
5.已知各项均为正数的数列an前n项和为
1a且n是和S2Sn,首项为a1,n的等差中项.求数列a的通项公式; n
6.已知数列{an}的前n项和为Sn,且对任意的n∈N*有an+Sn=
n.(1)设bn=an-1,求证:数列{bn}是等比数列; 7.设数列an的各项都是正数,且对任意
nN*,都有
aaaaS
为数列的前n项和.3132333n2n,其中S
n
(I)求证:
a2Snan;
n
(II)求数列an的通项公式;
8.数列{an}的前n项和为Sn,a1=1,Sn+1=4an+2(n∈N*),a(1)设bn=an+1-2an,求证:{bn}是等比数列;(2).证明数列{n-2}
是等差数列
(3)设cn=
9.已知正项数列{an}的前n项和Sn满足 2Sn=an+1.求证:{an}是等差数列.
10.设数列{an}的前n项和为Sn,a1=1,a{cn}是等比数列. 3n-1
Sn*
an=2(n-1)(n∈N).
n
(1)
求证:数列{an}为等差数列,并求{an}的通项公式;
(2)求数列{的前n项和Tn,an·an+1
11.设Sn是数列{an}(nN*)的前n项和,已知a14,an1Sn3n,设bnSn3n.(Ⅰ)证明:数列{bn}是等比数列,并求数列{bn}的通项公式;(Ⅱ)令cn
12.已知数列{an}的前n项和为Sn,且满足a1,an+2SnSn1=0(n2). 问:数列{1是否为等差数列?并证明你的结论;
Sn
2log2bn
n
2,求数列{cn}的前n项和Tn.bn
13.已知等差数列{an}的公差大于0,且a3,a5是方程x214x450的两根,数列{bn}的前n项的和为Sn,且Sn=
an·bn。求数列{an},{bn}的通项公式;
1bn
(n∈N*),Cn=
14.已知数列{an}与{bn}满足
n1
3+-1
bn+1an+bnan+1=(-2)n+1,bn=n∈N*,且a1=2.-
设cn=a2n+1-a2n-1,n∈N*,证明{cn}是等比数列
15.已知在正项数列{an}中,a1=2,点An(an,an+1)在双曲线y-x=1上,数列{bn}中,点(bn,Tn)在直线y=-x+1上,其
中Tn是数列{bn}的前n项和.
(1)求数列{an}的通项公式;(2)求证:数列{bn}是等比数列;
第五篇:等差等比数列综合练习题
等差数列等比数列综合练习题
一.选择题
1.已知an1an30,则数列an是()
A.递增数列 B.递减数列 C.常数列 D.摆动数列 2.等比数列{an}中,首项a18,公比q,那么它的前5项的和S5的值是()A.31333537
B.
C.
D. 2222123.设Sn是等差数列{an}的前n项和,若S7=35,则a4=()A.8 B.7
C.6
D.5 4.等差数列{an}中,a13a8a15120,则2a9a10()A.24 B.22
C.20
D.-8 5.数列an的通项公式为an3n228n,则数列an各项中最小项是()A.b7a7,则b6b8()A.2
B.4
C.8
D.16 10.已知等差数列an中, an0,若m1且am1am1am20,S2m138,则m等于
A.38
B.20
C.10
D.9 11.已知sn是等差数列an(nN*)的前n项和,且s6s7s5,下列结论中不正确的是()A.d<0
B.s110
C.s120
D.s130 12.等差数列{an}中,a1,a2,a4恰好成等比数列,则
a4的值是()a1 A.1
B.2
C.3
D.4
二.填空题
13.已知{an}为等差数列,a15=8,a60=20,则a75=________ 14.在等比数列{an}中,a2a816,则a5=__________ 15.在等差数列{an}中,若a7=m,a14=n,则a21=__________ 16.若数列xn满足lgxn11lgxnnN,且x1x2x100100,则lgx101x102x200________ 17.等差数列{an}的前n项和为Sn,若a3+a17=10,则S19的值_________ 18.已知等比数列{an}中,a1+a2+a3=40,a4+a5+a6=20,则前9项之和等于_________
三.解答题
19.设三个数a,b,c成等差数列,其和为6,又a,b,c1成等比数列,求此三个数.20.已知数列an中,a11,an2an13,求此数列的通项公式.2ans5n3n,求它的前3项,并求它21.设等差数列的前n项和公式是n的通项公式.22.已知等比数列an的前n项和记为Sn,,S10=10,
S30=70,求S40