第一篇:高中数学主要是代数
高中数学主要是代数,三角,几何三个部分.内容相互独立但是解题时常互相提供方法,等高三你就知道了.必修的:
代数部分有:集合与简易逻辑.其实就是集合,命题,充要条件三点,很浅显高考也不会单出这类的题2 函数.先是对于函数的描述,有映射定义域对应法则植域;然后是性质,三个,单调性奇偶性周期性;最后是指数函数还有对数函数,是两个基本的函数,要研究他们的性质和图象3 三角.三角其实就是个工具,比较烦人,公式背下来再多练练用的滚瓜烂熟就行了几何.也就是平面解析几何,用坐标法定量的研究平面几何问题.学几个定义,然后是直线的方程,圆的方程,圆锥曲线方程.高考的重点一般在 常用函数 常用双曲线+直线 数列 三角
二项式定理立体几何排列组合加概率等其他一些知识是比较小的部分
重要的是基础 高一的话上课的基本解题方法一定要熟练掌握 并且不能忘记 到了高三再练习就很麻烦了 还有不要忽视概念 往往很多题目是考概念的难度方面要视文理科而定 但是70%题目肯定用基本知识就能做的 20%需要结合各种知识并且动脑 真正有难度的题目只有10%
高中数学学习方法谈
进入高中以后,往往有不少同学不能适应数学学习,进而影响到学习的积极性,甚至成绩一落千丈。出现这样的情况,原因很多。但主要是由于学生不了解高中数学教学内容特点与自身学习方法有问题等因素所造成的。在此结合高中数学教学内容的特点,谈一下高中数学学习方法,供同学参考。
一、高中数学与初中数学特点的变化
1、数学语言在抽象程度上突变
初、高中的数学语言有着显著的区别。初中的数学主要是以形象、通俗的语言方式进行表达。而高一数学一下子就触及非常抽象的集合语言、逻辑运算语言、函数语言、图象语言等。
2、思维方法向理性层次跃迁
高一学生产生数学学习障碍的另一个原因是高中数学思维方法与初中阶段大不相同。初中阶段,很多老师为学生将各种题建立了统一的思维模式,如解分式方程分几步,因式分解先看什么,再看什么等。因此,初中学习中习惯于这种机械的,便于操作的定势方式,而高中数学在思维形式上产生了很大的变化,数学语言的抽象化对思维能力提出了高要求。这种能力要求的突变使很多高一新生感到不适应,故而导致成绩下降。
3、知识内容的整体数量剧增
高中数学与初中数学又一个明显的不同是知识内容的“量”上急剧增加了,单位时间内接受知识信息的量与初中相比增加了许多,辅助练习、消化的课时相应地减少了。
4、知识的独立性大
初中知识的系统性是较严谨的,给我们学习带来了很大的方便。因为它便于记忆,又适合于知识的提取和使用。但高中的数学却不同了,它是由几块相对独立的知识拼合而成(如高一有集合,命题、不等式、函数的性质、指数和对数函数、指数和对数方程、三角比、三角函数、数列等),经常是一个知识点刚学得有点入门,马上又有新的知识出现。因此,注意它们内部的小系统和各系统之间的联系成了学习时必须花力气的着力点。
二、如何学好高中数学
1、养成良好的学习数学习惯。
建立良好的学习数学习惯,会使自己学习感到有序而轻松。高中数学的良好习惯应是:多质疑、勤思考、好动手、重归纳、注意应用。学生在学习数学的过程中,要把教师所传授的知
识翻译成为自己的特殊语言,并永久记忆在自己的脑海中。良好的学习数学习惯包括课前自学、专心上课、及时复习、独立作业、解决疑难、系统小结和课外学习几个方面。
2、及时了解、掌握常用的数学思想和方法
学好高中数学,需要我们从数学思想与方法高度来掌握它。中学数学学习要重点掌握的的数学思想有以上几个:集合与对应思想,分类讨论思想,数形结合思想,运动思想,转化思想,变换思想。有了数学思想以后,还要掌握具体的方法,比如:换元、待定系数、数学归纳法、分析法、综合法、反证法等等。在具体的方法中,常用的有:观察与实验,联想与类比,比较与分类,分析与综合,归纳与演绎,一般与特殊,有限与无限,抽象与概括等。
解数学题时,也要注意解题思维策略问题,经常要思考:选择什么角度来进入,应遵循什么原则性的东西。高中数学中经常用到的数学思维策略有:以简驭繁、数形结合、进退互用、化生为熟、正难则反、倒顺相还、动静转换、分合相辅等。
3、逐步形成 “以我为主”的学习模式
数学不是靠老师教会的,而是在老师的引导下,靠自己主动的思维活动去获取的。学习数学就要积极主动地参与学习过程,养成实事求是的科学态度,独立思考、勇于探索的创新精神;正确对待学习中的困难和挫折,败不馁,胜不骄,养成积极进取,不屈不挠,耐挫折的优良心理品质;在学习过程中,要遵循认识规律,善于开动脑筋,积极主动去发现问题,注重新旧知识间的内在联系,不满足于现成的思路和结论,经常进行一题多解,一题多变,从多侧面、多角度思考问题,挖掘问题的实质。学习数学一定要讲究“活”,只看书不做题不行,只埋头做题不总结积累也不行。对课本知识既要能钻进去,又要能跳出来,结合自身特点,寻找最佳学习方法。
4、针对自己的学习情况,采取一些具体的措施
A、记数学笔记,特别是对概念理解的不同侧面和数学规律,教师在课堂中拓展的课外知识。记录下来本章你觉得最有价值的思想方法或例题,以及你还存在的未解决的问题,以便今后将其补上。
B、建立数学纠错本。把平时容易出现错误的知识或推理记载下来,以防再犯。争取做到:找错、析错、改错、防错。达到:能从反面入手深入理解正确东西;能由果朔因把错误原因弄个水落石出、以便对症下药;解答问题完整、推理严密。
C、熟记一些数学规律和数学小结论,使自己平时的运算技能达到了自动化或半自动化的熟练程度。
D、经常对知识结构进行梳理,形成板块结构,实行“整体集装”,如表格化,使知识结构一目了然;经常对习题进行类化,由一例到一类,由一类到多类,由多类到统一;使几类问题归纳于同一知识方法。
E、阅读数学课外书籍与报刊,参加数学学科课外活动与讲座,多做数学课外题,加大自学力度,拓展自己的知识面。
F、及时复习,强化对基本概念知识体系的理解与记忆,进行适当的反复巩固,消灭前学后忘。
G、学会从多角度、多层次地进行总结归类。如:①从数学思想分类②从解题方法归类③从知识应用上分类等,使所学的知识系统化、条理化、专题化、网络化。
H、经常在做题后进行一定的“反思”,思考一下本题所用的基础知识,数学思想方法是什么,为什么要这样想,是否还有别的想法和解法,本题的分析方法与解法,在解其它问题时,是否也用到过。
I、无论是作业还是测验,都应把准确性放在第一位,通法放在第一位,而不是一味地去追求速度或技巧,这是学好数学的重要问题。
第二篇:函数是高中数学的主线
函数是高中数学的主线,是高考考查的重点内容,主要考查:函数的定义域与值域、函数的性质、函数与方程、基本初等函数、函数的应用等,在高考试卷中,一般以选择题和填空题的形式考查函数的性质、函数与方程、基本初等函数等,以解答题的形式与导数交汇在一起考查函数的定义域、单调性以及函数与不等式、函数与方程等知识.其中函数与方程思想、数形结合思想等都是考查的热点.高考对导数的考查主要有以下几个方面:一是考查导数的运算与导数的几何意义,二是考查导数的简单应用,例如求函数的单调区间、极值与最值等,三是考查导数的综合应用.导数的几何意义以及简单应用通常以客观题的形式出现,属于容易题和中档题;而对于导数的综合应用,则主要是和函数、不等式、方程等联系在一起以解答题的形式进行考查,例如一些不等式恒成立问题、参数的取值范围问题、方程根的个数问题、不等式的证明等问题.动向解读:
一是考查二次函数、不等式以及函数的最值问题.对于二次函数,高考有着较高的考查要求,应熟练掌握二次函数及其有关问题的解法.在研究函数的单调性以及最值问题时,要善于运用基本不等式以及函数的单调性进行求解.二是考查函数的图像问题,这是高考考查的热点题型,其特点是给出函数图象,求函数解析式或确定其中的参数取值范围.解决这类问题时,要善于根据函数图象分析研究函数的性质,从定义域、值域、对称性、单调性、经过的特殊点等方面获取函数的性质,从而确定函数的解析式或其中的参数取值范围.三是考查导数的几何意义,这是高考对导数考查的一个重要内容和热点内容,涉及曲线的切线问题都可考虑利用导数的几何意义解决,求解这类问题时,要始终以“切点”为核心,并注意对问题进行转化.四是考查分段函数、函数的单调性以及分类讨论思想,这些都是高考的重要考点.五是考查函数、导数、不等式的综合问题是近几年高考的一个热点题型,这类问题以“参数处理”为主要特征,以“导数运用”为主要手段,以“函数的单调性、极值、最值”为结合点,往往涉及到函数、导数、不等式、方程等多方面的知识,需要综合运用等价转换、分类讨论、数形结合等重要数学思想方法.三角函数在高考中的要求较低,解答题作为第一个题,是绝大多数考生应该得分的一个题。但也有一些考生没有得分或者得分不全,主要有以下几个原因:
一、公式不熟或者不能灵活运用。三角函数的考查主要是公式的考查,不能熟记公式或不能灵活运用公式都将是我们失分的主要原因。
二、方法不能完全到位。在任何一个章节和单元,都有其独特的方法,若不能很好地运用,也将使学生失去主动得分的机会,因此平常训练时要留意。
三、与其他知识的综合。三角函数考题往往和向量组成一定程度的综合题,但一般是以向量作为一种条件或是一种过度,最终化为三角函数问题来解决,难度不大。要注意和其他的问题的综合。
第三篇:浅谈我是如何上高中数学第一节课
浅谈我是如何上高中数学第一节课
我这届接任高一。我们的学生都是由初中升入高中,是人生的一个大的转折。高中数学与初中数学相比,无论是知识的难度还是教师的教学方法及学生的学习方法,都与初中有很大的不同,因此,会有一部分学生一时无法适应,为使学生尽快适应高中数学学习生活,作为数学老师,在学生升入高中的第一节数学课中,不应急于讲新课,而应该上一节怎样学好高一数学的启导课,目的是引发学生对高中数学学科的兴趣及对新老师的接纳,既然是启导课,就不同于一般的数学课,应努力做好三方面的工作:
1、设计美好的开场白
好的开场白,往往能激发学生求职的欲望,树立学生学好高中数学的信心。我在接新班的第一节课,总是在简短的自我介绍后,有这样一段开场白:“同学们,很高兴能成为你们的数学老师及朋友,今天这节课我们不急于讲新课,想和大家一起先聊聊高中数学,首先,你们中谁是数学上的优等生,谁暂时是学困生,我不知道,因为我没有向你们的班主任了解你们的中招成绩,我也不知道你们初中的数学老师是谁,为什么没有向你们的班主任了解你们的中招成绩呢?不是我没有时间,而是因为地球在自传,人类在发展,每个人都会不断的进步。何况从今天开始,你们又升入了高中,中招成绩只代表你们以前的初中学习,而不代表你们的未来,因此,我没有必要了解你们的过去,一切印象我要从现在开始”。学生虽然已经升入高中,但他们是懵懂少年,还是很渴望给新老师留下一个美好的第一印象,尤其是一些“灰生”更把这作为一次重新跃起的机会。事实证明了这一点,很多学生从迈入高中校门的第一天开始有了长足的进步。
2、营造民主和谐的课堂氛围
我在接高一新班的第一节课中,总是努力营造一个民主、和谐的课堂氛围,让同学们在宽松的环境中敞开心扉,畅所欲言。如让同学们谈谈自己心目中的好老师是什么样,及对新老师有什么希望。同学们的发言,总是让我心里热乎乎的,如有的同学说:“希望您上的每一节数学课都很精彩”;有的说:“希望您不但做我们的老师也做我们的朋友”;有的说:“希望您能经常听听我们的心声和苦恼”;有的说:“希望您能伴我们青春路上走一程„„”虽然是第一次接触,但发自学生内心的一句句真诚的话语,一下子把师生之间的距离拉近了,在学生发言的基础上,我再以班级一员的身份发言,谈自己听了同学们发言后的感受,谈对同学们的期望,谈自己所教数学的趣味,谈本学期将和大家探讨的数学问题,此时,师生之间的感情已经能很自然的融合在一起了。
3、帮学生分析高一数学学习存在的问题及应对策略
高一是数学学习的一个关键时期。许多小学、初中数学学科成绩的佼佼者,进入高中阶段,由于这些同学不了解高中数学的特点,学不得法,从而造成数学学习成绩的滑坡,第一个跟斗就栽在数学上。针对学生学习中可能出现的这种现象,在第一节启导课中,我总是把学生学习中可能出现的问题及应对策略,加以探讨,以便学生尽快适应高中数学学习。
问题一:一听就懂,一看就会,一做就错。
原因:高中数学与初中数学相比,难度提高。因此会有少部分新高一生一时无法适应。表现在上课都听懂,作业不会做;或即使做出来,总有多处错误,这种现象被戏称为“一听就懂,一看就会,一做就错”。
高中的数学语言与初中有着显著的区别。初中的数学主要是以形象、通俗的语言方式进行表达。而高一数学一下子就触及抽象的集合符号语言、逻辑运算语言、函数语言、图形语言等。高一年级的学生一开始的思维梯度太大,以至集合、映射、函数等概念难以理解,觉得离生活很远,难以接受。
高中数学思维方法与初中阶段大不相同。初中阶段,由于很多老师为学生将各种题建立了统一的思维模式,如解分式方程分几步,因式分解先看什么,再看什么,确定了常见的思维套路。因此,形成初中生在数学学习中习惯于这种机械的,便于操作的定势方式。而高中数学在思维形式上产生了很大的变化,数学语言的抽象化对思维能力提出了更高的要求。这种能力要求的突变使很多高一新生感到不适应,故而导致成绩下降是高一学生产生数学学习障碍的另一个原因。
高中数学比初中数学的知识内容的“量”上急剧增加了,单位时间内接受知识信息的量与初中相比增加了许多,辅助练习、消化的课时相应地减少了。这也使很多学习被动的、依赖心理重的高一新生感到不适应。
应对方法:要透彻理解书本上和课堂上老师补充的内容,有时要反复思考、再三研究,要能在理解的基础上举一反三,并在勤学的基础上好问。
第四篇:关系代数习题
1.设有如图所示的关系R、W和D,计算下列关系代数:
(1)R1=
(2)R2=
(3)R3=
(4)R4=
(5)R5=
2.设关系R、S和S’如图2.1所示,计算:
(1)R1=R∪S’;
(2)R2=R-S’;
(3)R3=R×S;
(4)R4=R
∞A=C
S=σA=C(R×S);
(5)R5=R∞S=∏A,B,CσR.B=S.B(R×S)。
3.设有如下关系:
学生(学号,姓名,性别,专业,出生日期)
教师(教师编号,姓名,所在部门,职称)
授课(教师编号,学号,课程编号,课程名称,教材,学分,成绩)
1)查找学习“数据库原理”课程且成绩不及格的学生学号和任课教师编号;
2)查找学习“英语”课程的“计算机应用”专业学生的学号、姓名和成绩。(中)
4.设有如下关系:
S(S#,SNAME,AGE,SEX)/*学生(学号,姓名,年龄,性别)*/
C(C#,CNAME,TEACHER)/*课程(课程号,课程名,任课教师)*/
SC(S#,C#,GRADE)/*成绩(学号,课程号,成绩)*/
查询:
(1)
教师“程军”所授课程的课程号和课程名;
(2)
“李强”同学不学课程的课程号;
(3)
至少选修了课程号为k1和k5的学生学号;
(4)
选修课程包含学号为2的学生所修课程的学生学号。(中-难)
5.设有如下关系:
图书关系B(图书编号B#,图书名T,作者A,出版社P);
读者关系R(借书证号C#,读者名N,读者地址D);
借阅关系L(C#,B#,借书日期E,还书标志BZ);
BZ=‘1’表示已还;
BZ=‘0’
表示未还;
查询:
(1)
“工业出版社”出版的图书名;
(2)
查询99年12月31日以前借书未还的读者名与书名。
答案:
1.A
B
a
b
c
b
d
e
b
c
b
d
A
B
a
b
d
e
R
R
A
R
.B
S
.B
C
a
b
b
c
a
b
e
a
a
b
b
d
c
b
b
c
c
b
e
a
c
b
b
d
d
e
b
c
d
e
e
a
d
e
b
d
R
A
R
.B
S
.B
C
a
b
e
a
c
b
b
c
d
e
b
d
R
A
B
C
a
b
c
a
b
d
c
b
c
cC
b
d
R
d
e
a
2.3.(1)
(2)
4.(1)
(2)
(3)
(4)
5.(1)
(2)
第五篇:代数知识复习
代数知识复习
选择题(每题3分,共30分)
1.下列运算正确的是()
22235A.a6a2a3B.5a3a2aC.(a)aaD.5a2b7ab
2的结果是()
A.-2B.±2C.2D.
43、从2010年4月14日青海玉树地震发生后,截止至4月23日15时,中华慈善总会接收社会各界通过银行捐赠的玉树地震救灾款已达5.95亿元。用科学记数法保留两位有效数字表示“5.95亿”应记为()
A、5.95×1010B、5.9×109C、6.0×108D、5.9×1074、不等式组2x40的解集在数轴上表示正确的是()
A
B
CD
5.若抛物线yax22xc的顶点坐标为(2,3),则该抛物线有()
A.最大值3B.最小值3C.最大值2D.最小值
26.已知关于x的方程2x2-9x+n=0的一个根是2,则n的值是()
A.n=2B.n=10C.n=-10D.n=10或n=2
7.若关于x的一元二次方程nx22x10无实数根,则一次函数y(n1)xn的图像不经过()
A.第一象限B.第二象限C.第三象限D.第四象限
8.如图,在某中学生耐力测试比赛中,甲、乙两学生测试的路程s(米)与时间t(秒)之间的函数关系的图象分别为折线
OABC和线段OD,下列说法正确的是()A、乙比甲先到终点;B、乙测试的速度随时间增加而增大;C、比赛进行到29.4秒时,两人出发后第一次相遇;D、比赛全程甲的测试速度始终比乙的测试速度快
9.如图,边长为4的正方形OABC放置在平面直角坐标系中,OA在x轴正半轴上,OC在y轴正半轴上,当直线yxb中的系数b从0开始逐渐 变大时,在正方形上扫过的面积记为S.则S关于b的函数图像是()
瀚识教育
10.在一幅长60cm,宽40cm的矩形风景画的四周镶一条金色纸边,制成一幅矩形挂图,如图所示.如果要使整个挂图的面积是2816cm2,设金色纸边的宽为xcm,那么x满足的方程是()
A.(602x)(402x)2816
B.(60x)(40x)2816
C.(602x)(40x)2816
D.(60x)(402x)2816
一、填空题(每题3分,共18分)
11、不等式–3x25的解集是
12、若二次根式a 与是同类二次根式,则ab = ______________________
13、观察下列等式(式子中的“!”是一种数学运算符号)1!= 1,2!= 2×1,3!= 3×2×1,4!= 4×3×2×1,„„,那么计算:
14、关于x的一元二次方程 k1xk212009!=__________。2010!6x80 的解为_________________.
15.已知关于的方程x2-px+q=0的两个根是0和-3,则
P=______ , q=__.
216、如图为二次函数y的图象,给出下列说法: axbxcx
21,x3xbxc0①ab0;②方程a的根为x;③12
abc01x3;④当x1时,y随x值的增大而增大;⑤当y0时,. 其中,正确的说法有.(请写出所有正确说法的序号)
二、解答题(共72分)
3 x5y1917、(10分)计算:①、2sin60º+21-(
2010)0–②、4x3y618、(6分)解方程:
19.(8分)先化简,再求值:(20、某班到毕业时共结余班费1800元,班委会决定拿出不少于270元但不超过300元的资金为老师购买纪念品,其余资金用于在毕业晚会上给50位同学每人购买一件T恤或一本影集作为纪念品.已知每件T恤比每本影集贵9元,用200元恰好可以买到2件T恤和5本影集.
⑴求每件T恤和每本影集的价格分别为多少元?
⑵有几种购买T恤和影集的方案?
21.关于的一元二次方程x2+2x+k+1=0的实数解是x1和x2。
(1)求k的取值范围;
(2)如果x1+x2-x1x2<-1且k为整数,求k的值。
22、(10分)某商场试销一种成本为每件60元的服装,规定试销期间销售单价不低于成本单价,且获利不得高于45%,经试销发现,销售量y(件)与销售单
3x20 x1x(x1)a2a14a1)a.,其中22a2aa4a4a
2价x(元)符合一次函数ykxb,且x65时,y55;x75时,y45.
(1)求一次函数ykxb的表达式;
(2)若该商场获得利润为W元,试写出利润W与销售单价x之间的关系式;销售单价定为多少元时,商场可获得最大利润,最大利润是多少元?
(3)若该商场获得利润不低于500元,试确定销售单价x的范围.
23、(10分)某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台.
(1)假设每台冰箱降价x元,商场每天销售这种冰箱的利润是y元,请写出y与x之间的函数表达式;(不要求写自变量的取值范围)
(2)商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元?
(3)每台冰箱降价多少元时,商场每天销售这种冰箱的利润最高?最高利润是多少?
24、阅读材料:
小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如23+=(1+).善于思考的小明进行了以下探索:
设a+b=(m+n)2(其中a、b、m、n均为整数),则有a+b=m2+2n2+2mn.
22∴a=m+2n,b=2mn.这样小明就找到了一种把类似a+b的式子化为平方式的方法.
请你仿照小明的方法探索并解决下列问题:
(1)当a、b、m、n均为正整数时,若a+b=,用含m、n的式子
=(+
分别表示a、b,得:a=,b=;(2)利用所探索的结论,找一组正整数a、b、m、n填空:+)2;
(3)若a+4=,且a、m、n均为正整数,求a的值?