高中数学会考复习全套资料73推理与证明中的证明方法

时间:2019-05-15 14:57:22下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《高中数学会考复习全套资料73推理与证明中的证明方法》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《高中数学会考复习全套资料73推理与证明中的证明方法》。

第一篇:高中数学会考复习全套资料73推理与证明中的证明方法

推理与证明中的证明方法

一、直接证明

(1)综合法例1:已知ab1,求证ab2a4b30

(2)分析法例2:设a,b是两个不相等的正实数,求证:ababab

二、间接证明:

反证法例3:已知ac2(bd),求证:方程xaxb0与xcxd0中至少有一个方程有实数根。

三、数学归纳法

例4:利用数学归纳法证明:(n1)(n2)(nn)213(2n1)(nN*)

n22332222

第二篇:高中数学高考总复习推理与证明

高考总复习推理与证明

一、选择题

0,1这三个整数中取值的数列,若a1a2a509,1.设a1,a2,,a50是从1,且(a11)2(a21)2(a501)2107,则a1,a2,,a0

5A.10B.11C.12D.13 中为0的个数为()

2.平面内有n条直线,最多可将平面分成f(n)个区域,则f(n)的表达式为()

A. n1B. 2n

2C

. nn1 3.某人进行了如下的“三段论”推理:如果f'(x0)0,则xx0是函数f(x)的极值

33点,因为函数f(x)x在x0处的导数值f'(0)0,所以x0是函数f(x)x的极值点。你认为以上推理的A.大前提错误B.小前提错误

C.推理形式错误D.结论正确

4.观察(x2)′=2x,(x4)′=4x3,(cosx)′=-sinx,由归纳推理可得:若定义在R上的函数f(x)满足f(-x)=f(x),记g(x)为f(x)的导函数,则g(-x)=()

A.f(x)B.-f(x)C.g(x)D.-g(x)

5xN*),猜想f(x)的表达式为()

6.用反证法证明命题“三角形的内角中最多只有一个内角是钝角”时,应先假设()

A.没有一个内角是钝角B.有两个内角是钝角

C.有三个内角是钝角D.至少有两个内角是钝角

'''f(x)sinx,f(x)f(x),f(x)f(x),,f(x)f(x),nN,则01021n1n7.设

f200(7x)()

A.sinxB.sinxC.cosxD.cosx

8.已知整数对按如下规律排成一列:(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3),(3,2),(4,1),„„,则第60个数对是()

A(10,2)B.(2,10)C.(5,7)D.(7,5)

9.设数列{an}的前n项和为Sn,Taa„„,称n为数列1,2,试卷第1页,总4页

an的“理想数”aaaa,已知数列1,2,„„,500的“理想数”为2004,那么数列2,1,a2,„„,a500的“理想数”为()

A、2008B、2004C、2002D、2000

10.对于任意的两个实数对(a,b)和(c,d),规定:(a,b)(c,d),当且仅当ac,bd;运算“”为:(a,b)(c,d)(acbd,bcad);运算“”为:(a,b)(c,d)(ac,bd),设p,qR,若(1,2)(p,q)(5,0),则(1,2)(p,q)„„„()A

.(4,0)B.(2,0)C.(0,2)D.(0,4)

二、填空题

11.用反证法证明命题:“三角形的内角中至少有一个不大于60度”时,反设是

照此规律,计算1223n(n1)

(nN).13.在平面几何里,已知直角三角形ABC中,角C为90,AC=b,BC=a,运用类比方法探求空间中三棱锥的有关结论:有三角形的勾股定理,给出空间中三棱锥的有关结论:________

*

若三角形ABC________

14.将全体正奇数排成一个三角形数阵: 1 3

57911 13151719 „„

按照以上排列的规律,第n 行(n ≥3)从左向右的第3个数为.

15.如图所示,从中间阴影算起,图1表示蜂巢有1层只有一个室,图2表示蜂巢有2层共有7个室,图3表示蜂巢有3层共有19个室,图4表示蜂巢有4层共有37个室.观察蜂巢的室的规律,指出蜂巢有n层时共有_______个室.试卷第2页,总4页

三、解答题

17.a,b,c

至少有一个大于0.18.已

知a,b,c中,求证:关于x的三个方程x4ax34a0,x2a1xa20,x24ax15a40中至少有一个方程有实数根.19.已知a,b,c

试卷第3页,总4页

20.已知a>0,b>0,且a+b=1,21.已知数列{an}中,Sn是它的前n项和,并且Sn+1=4an+2(n=1,2,„),a1=1.(1)设bn=an+1-2an(n=1,2,„),求证:数列{bn}是等比数列;(2)设cn

„),求证:数列{cn}是等差数列;

(3)求数列{an}的通项公式及前n项和公式.22.设数列

(1)猜想(2)设的前

项和为,且满足,.的通项公式,并加以证明;,且,证明:

.试卷第4页,总4页

参考答案

1.B2.C3.A4.D5.B6.D7.D8.C9.C10.B 11.三角形的内角都大于60度12

2222

13.在三棱锥O-ABC中,若三个侧面两两垂直,则SOABSOACSOBCSABC;在三棱

锥O-ABC中,若三个侧面两两垂直,且三条侧棱长分别为a,b,c,则其外接球的半径为

14.nn515.3n23n1 16.

首先,我们知道

则有,所以,同理,得

则有,.,17.证明略18.见解析19.证明见解析20.证明略 21.(1)证明略(2)证明略(3){an}的前n项和公式为Sn=(3n-4)·2n-1+2 22.(1)由

即∵∴

∴,得,即,两式作差得,是首项为1,公差为1的等差数列,∴,(2)要证只要证代入,即证

即证

∵,且∴

即得证

答案第1页,总1页

第三篇:高中数学推理与证明练习题

克拉玛依市启航教育培训中心0990-6888887

高中数学推理与证明练习题

一.选择题

1.分析法是从要证明的结论出发,逐步寻求使结论成立的()

A.充分条件 B.必要条件 C.充要条件 D.等价条件

2.下面叙述正确的是()

A.综合法、分析法是直接证明的方法 B.综合法是直接证法、分析法是间接证法

C.综合法、分析法所用语气都是肯定的 D.综合法、分析法所用语气都是假定

3.用反证法证明命题:若整系数一元二次方程ax2bxc0(a0)有有理根,那么a,b,c中至少有一个是偶数时,下列假设中正确的是()

A.假设a,b,c都是偶数

B.假设a,b,c都不是偶数

C.假设a,b,c至多有一个是偶数

D.假设a,b,c至多有两个是偶数

4.在△ABC中,sinAsinCcosAcosC,则△ABC一定是()

A.锐角三角形 B.直角三角形 C.钝角三角形 D.不确定

5.在证明命题“对于任意角,cos4sin4cos2”的过程:“cos4sin4(cos2sin2)(cos2sin2)cos2sin2cos2”中应用了 A.分析法 B.综合法 C.分析法和综合法综合使用 D.间接证法

二.证明题

6.设a,b,c都是正数,求证

12a12b12c1ab1bc1ca

克拉玛依市启航教育培训中心0990-6888887

7.已知:sin230sin290sin2150

sin2323

25sin265sin1252

通过观察上述两等式的规律,请你写出一般性的命题,并给出的证明

8.ABC的三个内角A,B,C成等差数列,求证:1

ab1

bc3

abc

第四篇:推理与证明 复习

山东省xx一中20xx级

高二数学课时学案(文)

班级小组姓名________使用时间______年______月______日编号05

第2页

第3页

第4页

第五篇:【高中数学】推理与证明

【高中数学】推理与证明

归纳推理

把从个别事实中推演出一般性结论的推理,称为归纳推理(简称归纳)归纳推理的一般步骤:

(1)通过观察个别情况发现某些相同的性质;

(2)从已知的相同性质中推出一个明确表述的一般命题(猜想);

(3)证明(视题目要求,可有可无)。

类比推理

由两类对象具有某些类似特征和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理称为类比推理(简称类比).类比推理的一般步骤:

(1)找出两类对象之间可以确切表述的相似特征;(2)用一类对象的已知特征去推测另一类对象的特征,从而得出一个猜想;

(3)检验猜想。

合情推理

归纳推理和类比推理都是根据已有的事实,经过观察、分析、比较、联想,再进行归纳、类比,然后提出猜想的推理。“合乎情理”的推理.2.演绎推理

从一般性的原理出发,推出某个特殊情况下的结论,这种推理称为演绎推理。简言之,演绎推理是由一般到特殊的推理。

演绎推理的一般模式

(1)大前提----已知的一般原理;

(2)小前提----所研究的特殊情况;

(3)结论----据一般原理,对特殊情况做出的判断.3.直接证明与间接证明

立。

要点:顺推证法,由因导果。

成立的条件(已知条件、定理、定义、公理等)为止.要点:逆推证法,执果索因。

(3):一般地,假设原命题不成立,经过正确的推理,最后得出矛盾,因此说明假设错误,从而证明了原命题成立的证明方法,它是一种间接的证明方法。

第 1 页

①(反设)假设命题的结论不成立;

②(推理)根据假设进行推理,直到导出矛盾为止;③(归谬)断言假设不成立; ④(结论)肯定原命题的结论成立.反证法法证明一个命题的一般步骤:

4.数学归纳法:数学归纳法是证明关于正整数n的命题的一种方法.用数学归纳法证明命题的步骤:

(1)(归纳奠基)证明当n取第一个值n0(n0N*)时命题成立;

(2)(归纳递推)假设nk(kn0,kN*)时命题成立,推证当nk1时命题也成立.只要完成了这两个步骤,就可以断定命题对从n0开始的所有正整数n都成立.1.下列推理是归纳推理的是()

A.A,B为定点,动点P满足|PA|+|PB|=2a>|AB|,则P点的轨迹为椭圆 B.由a1=1,an=3n-1,求出S1,S2,S3,猜想出数列的前n项和Sn的表达式

x2y2222

2C.由圆x+y=r的面积πr,猜想出椭圆2+2=1的面积S=πab

ab

D.科学家利用鱼的沉浮原理制造潜艇

111357

2.设n为正整数,f(n)=1+++„+,经计算得f(2)=,f(4)>2,f(8)>,f(16)>3,f(32)>,观察上述结果,可推测

23n222出一般结论()

2n+

1A.f(2n)>

2n+2

C.f(2n)≥

n+2

B.f(n2)≥

2D.以上都不对

3.有一段演绎推理是这样的:“若直线平行于平面,则该直线平行于平面内所有直线;已知直线b∥平面α,直线a⊂平面α,则直线b∥直线a”,结论显然是错误的,这是因为()

A.大前提错误 h,则()

A.h>h1+h2+h3C.h

3B.h=h1+h2+h3

D.h1,h2,h3与h的关系不定

B.小前提错误

C.推理形式错误

D.非以上错误

4.若点P是正四面体A-BCD的面BCD上一点,且P到另三个面的距离分别为h1,h2,h3,正四面体A-BCD的高为

5.下图1是一个水平摆放的小正方体木块,图

2、图3是由这样的小正方体木块叠放而成,按照这样的规律继续逐个叠放下去,那么在第七个叠放的图形中小正方体木块数应是()

A.25B.66C.9

1D.120

6.已知等差数列{an}中,a10=0,则有等式a1+a2+„+an=a1+a2+„+a19-n(n<19,n∈N*)成立,那么等比数列{bn}中,若b9=1,则有等式_成立。

第 2 页

7.(2010·陕西)观察下列等式:13+23=(1+2)2,13+23+33=(1+2+3)2,13+23+33+43=(1+2+3+4)2,„,根据上述规律,第四个等式为_.8.观察下列等式:

①sin210°+cos240°+sin10°cos40°=

43②sin26°+cos236°+sin6°cos36°=

由上面两题的结构规律,你是否能提出一个猜想?并证明你的猜想.111

9.在△ABC中,AB⊥AC,AD⊥BC于D,求证:=ABCD中,类比上述结论,你能得到

ADABAC怎样的猜想,并说明理由.10.下面的(a)、(b)、(c)、(d)为四个平面图.

(1)数一数,每个平面图各有多少个顶点?多少条边?分别围成了多少个区域?将结果填入下表(按填好的例子做)

(2)观察上表,推断一个平面图的顶点数、边数、区域数之间有什么关系?

(3)现已知某个平面图有2008个顶点,且围成了2008个区域,试根据以上关系确定这个平面图的边数.第 3 页

311.用数学归纳法证明:n5n能被6整除;

12.若a,b,c均为实数,且

求证:a,b,c中至少有一个大于0.13.用数学归纳法证明: 1

14.观察(1)tan10tan20tan20tan60tan60tan101;

(2)tan5tan10tan10tan75tan75tan51 由以上两式成立,推广到一般结论,写出你的推论 并加以证明。,,1111nn;2342

1000000

000000

第 4 页

1、下列表述正确的是()

①归纳推理是由部分到整体的推理; ③演绎推理是由一般到特殊的推理; ⑤类比推理是由特殊到特殊的推理.A.①②③

B.②③④

C.②④⑤

D.①③⑤.②归纳推理是由一般到一般的推理; ④类比推理是由特殊到一般的推理;

2、下面使用类比推理正确的是()

A.“若a3b3,则ab”类推出“若a0b0,则ab” B.“若(ab)cacbc”类推出“(ab)cacbc”

abab

(c≠0)” ccc

nnnn

(ab)anbn” 类推出(D.““ab)ab”

C.“若(ab)cacbc” 类推出“

(A)假设三内角都不大于60度;(C)假设三内角至多有一个大于60度;A.29

B.2543、用反证法证明命题:“三角形的内角中至少有一个不大于60度”时,反设正确的是()

(B)假设三内角都大于60度;

(D)假设三内角至多有两个大于60度。C.60

2D.200

401234、在十进制中2004410010010210,那么在5进制中数码2004折合成十进制为()

n+

15、利用数学归纳法证明“1+a+a+…+a

(A)

11an2=,(a≠1,n∈N)”时,在验证n=1成立时,左边应该是()1a

(C)1+a+a2(D)1+a+a2+a

3(B)1+a6、某个命题与正整数n有关,如果当nk(kN)时命题成立,那么可推得当nk1时命题也成立.现已知当n7时该命题不成立,那么可推得()

A.当n=6时该命题不成立C.当n=8时该命题不成立

n

B.当n=6时该命题成立 D.当n=8时该命题成立

7、当n1,2,3,4,5,6时,比较2和n的大小并猜想()

n

2A.n1时,2n

n2

B.n3时,2n n2

D.n5时,2n

n2

C.n4时,2n

x8、定义运算:xy

y

(xy)的是()例如344,则下列等式不能成立....

(xy),B.(xy)zx(yz)

D.c(xy)(cx)(cy)(其中c0)

A.xyyxC.(xy)xy

第 5 页

cos2Acos2B1

1。a2b2a2b29、在△ABC中,证明:

10、设a,b,x,yR,且ab1,x2y21,试证:ax1。

11、用反证法证明:如果x

12、已知数列a1,a2,,a30,其中a1,a2,,a10是首项为1,公差为1的等差数列;a10,a11,,a20是公差为d的等差数列;a20,a21,,a30是公差为d2的等差数列(d0).(1)若a2040,求d;

(2)试写出a30关于d的关系式,并求a30的取值范围;

(3)续写已知数列,使得a30,a31,,a40是公差为d3的等差数列,……,依次类推,把已知数列推广为无穷数列.提出同(2)类似的问题((2)应当作为特例),并进行研究,你能得到什么样的结论?

12,那么x2x10。2

第 6 页

下载高中数学会考复习全套资料73推理与证明中的证明方法word格式文档
下载高中数学会考复习全套资料73推理与证明中的证明方法.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    推理与证明复习(基础)

    宁陕中学导学案(数学)高二级班姓名年月日《推理与证明》复习学习目标:1、能对推理与证明的各种方法进行梳理,建立知识网络,把握整体结构。2、能比较数学证明的几种基本方法的思维......

    推理与证明总复习

    推理与证明总复习编写人:杨素华审核:高二数学组(1)一、知识结构框图二、考纲分解解读1合情推理与演绎推理(1)了解合情推理的含义,能利用归纳和类比等进行简单的推理,了解合情推......

    推理与证明小结复习

    推理与证明复习一、基础知识1.推理:根据一个或几个已知的判断来确定一个新的判断的思维过程。推理一般分为合情推理与演绎推理两类。2.合情推理比,然后提出猜想的推理,把它们通称......

    推理与证明

    第3讲 推理与证明 【知识要点】 1.归纳推理:由某类事物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,或由个别事实概括出一般结论的推理 2.类比推理是从......

    推理与证明

    “推理与证明”是数学的基本思维过程,也是人们学习和生活中经常使用的思维方式。推理一般包括合情推理和演绎推理。“推理与证明”是数学的基本思维过程,也是人们学习和生活中......

    推理与证明

    浅谈我对推理与证明的几点认识 初中数学中,推理与证明是非常重要的,主要是培养学生的逻辑思维能力,推理与证明是人类认识世界的重要手段。中学数学教育的一个重要职能是培养学......

    推理与证明

    推理与证明1. 蜜蜂被认为是自然界中最杰出的建筑师,单个蜂巢可以近似地看作是一个正六边形,如图为一组蜂巢的截面图. 其中第一个图有1个蜂巢,第二个图有7个蜂巢,第三个图有19个蜂......

    推理与证明

    推理与证明学生推理与证明的建立,是一个漫长的过程,这个过程的开始可以追溯到小孩牙牙学语时候起,小孩在爸爸妈妈跟前不停的问为什么,可以看做推理的雏形。接着到幼儿园、小学,教......