2014年下东中学数学中考复习:几何证明[样例5]

时间:2019-05-15 14:10:29下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《2014年下东中学数学中考复习:几何证明》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《2014年下东中学数学中考复习:几何证明》。

第一篇:2014年下东中学数学中考复习:几何证明

2014年下东中学数学中考复习:几何证明

1.(8分)(2013•株洲)已知四边形ABCD是边长为2的菱形,∠BAD=60°,对角线AC与BD交于点O,过点O的直线EF交AD于点E,交BC于点F.(1)求证:△AOE≌△COF;(2)若∠EOD=30°,求CE的长.

2.(2012•株洲)如图,在矩形ABCD中,AB=6,BC=8,沿直线MN对折,使A、C重合,直线MN交AC于O.(1)求证:△COM∽△CBA;(2)求线段OM的长度.

三.模拟训练:--------(A)

1.(2013怀化)如图6,已知在△ABC与△DEF中,∠C=54°,∠A=47°,∠F=54°,∠E=79°,求证:△ABC∽△DEF

A

D

B

C图6

E

F

2.(2013宜宾)如图:已知D、E分别在AB、AC上,AB=AC,∠B=∠C,求证:BE=CD.

3.(2013•常州)如图,C是AB的中点,AD=BE,CD=CE.

求证:∠A=∠B.

4.(2013•郴州)如图,已知BE∥DF,∠ADF=∠CBE,AF=CE,求证:四边形DEBF是平行四边形.

5.(2013•湘西州)如图,在矩形ABCD中,E、F分别是边AB、CD的中点,连接AF,CE.

(1)求证:△BEC≌△DFA;

(2)求证:四边形AECF是平行四边形.

6.(2013•邵阳)将一幅三角板拼成如图所示的图形,过点C作CF平分∠DCE交DE于点F.(1)求证:CF∥AB.(2)求∠DFC的度数.

7.(2013•益阳)如图,在△ABC中,AB=AC,BD=CD,CE⊥AB于E.

求证:△ABD∽△CBE.

(B)

1.(2013怀化)如图8,在等腰Rt△ABC中,∠C=90°,正方形DEFG的顶点D地边AC上,点E、F在边AB上,点G在边BC上。

⑴求证:△ADE≌△BGF;

⑵若正方形DEFG的面积为16cm,求AC的长。

F

E

G

CA D

图82.(2013•湘西州)如图,Rt△ABC中,∠C=90°,AD平分∠CAB,DE⊥AB于E,若AC=6,BC=8,CD=3.(1)求DE的长;(2)求△ADB的面积.

3.(2013永州)如图,M是△ABC的边BC的中点,AN平分∠BAC,BNAN于点N,延长BN交AC于点D,已知AB=10,BC=15,MN=3(1)求证:BN=DN(2)求△ABC的周长.4.(2013常德)如图,在△ABC中,AD是BC边上的高,AE是BC边上的中线,∠C=45°,sinB=,AD=1.(1)求BC的长;(2)求tan∠DAE的值.

5.(2012广东深圳)如图,将矩形ABCD沿直线EF折叠,使点C与点A重合,折痕交AD于点E、交BC于点F,连接AF、CE.(1)求证:四边形AFCE为菱形;(2)设AE=a,ED=b,DC=c.请写出一个a、b、c三者之间的数量关系式.

第二篇:初一(下)几何证明

初一几何证明

1.如图,点D、E、F分别在AB、BC、AC上,且DE∥AC,EF∥AB,下面写出了说明“∠A+∠B+∠C=180°”的过程,请填空:

因为DE∥AC,AB∥EF,所以∠1=∠,∠3=∠.()

因为AB∥EF,所以∠2=∠___.()

因为DE∥AC,所以∠4=∠___.()

所以∠2=∠A(等量代换). BD12ECAF

因为∠1+∠2+∠3=180°,所以∠A+∠B+∠C=180°(等量代换).

2.如图,长方形ABCD,E为AB上一点,把三角形CEB沿CE对折,设GE交DC于

点F,若∠EFD=80,求∠BCE的度数. 0AEB

D G

3如图12,AB∥CD,需增加什么条件才能使∠1=∠2成立?(至少举出两种)

4.(本题12分)如图14,AB∥CD,BN,DN分别平分∠ABM,∠MDC,试问∠M与∠N之间的数量关系如何?请说明理由.

4C

5.(本题13分)如图15,已知∠B=∠C.

(1)若AD∥BC,则AD平分∠EAC吗?请说明理由.

(2)若∠B+∠C+∠BAC=180°,AD平分∠EAC,则AD∥BC吗?请说明理由.

56.如图(18),ABA⊥BD,CD⊥MN,垂足分别是B、D点,∠FDC=∠EBA.(1)判断CD与AB的位置关系;

(2)BE与DE平行吗?为什么?

F

E

A

M

7.如图(19),∠1+∠2=180°,∠DAE=∠BCF,DA平分∠BDF.(1)AE与FC会平行吗?说明理由.(2)AD与BC的位置关系如何?为什么?

(3)BC平分∠DBE吗?为什么.F

B

N

A

B

E例4(2006年山东省中考题)如图,已知12,34,5C,求证:AB∥DE.

D3B

E

F2

C

9(2006年北京市海淀区中考题)如图所示,已知DE∥BC,12,试说明CD是ECB的平分线.

A

D

EB

10如图,AD∥BC,∠BAD=∠BCD,请说明AB∥CD的理由.D

C

A

B

11如图,EF∥AD,∠1 =∠2,∠BAC = 70°。将求∠AGD的过程填写完整。

12已知:如图∠1=∠2,∠C=∠D,∠A=∠F相等吗?试说明理由(10分)

FED

H

G 1

ABC

第三篇:中考几何证明题复习

中考复习

(二)中考复习:几何证明题

说明一:在直角三角形中,或是题中出现多个直角时,要证明两个角相等,涉及到的知识点:

同角(或等角)的余角相等。

例1:已知:如图,在△ABC中,∠ACB=90,CDAB于点D,点E 在AC上,CE=BC,过E点作AC的垂

线,交CD的延长线于点F.求证:AB=FC

说明二:(1)一般情形,题中有多个问题时,第二问都与第一问有直接的关系,利用第一问的结论解题。(2)判别菱形的方法:例:如图,在平行四边形ABCD中,AE

(1)求证:△ABE∽△ADF;(2)若AG

例3:如图,设在矩形ABCD中,点O为矩形对角线的交点,∠BAD的平分线AE交BC于点E,交OB于点F,已知AD=3, AB

⑴求证:△AOB为等边三角形;⑵求BF的长.A

AH

BC

A

E

于E,AF

CD

于F,BD与AE、AF分别相交于G、H.

B

D,求证:四边形ABCD是菱形.

D

B

E

C

说明:在解梯形的题中,一般需要作辅助线。

例4:如图,在梯形ABCD中,AD∥BC,BD⊥DC,∠C=60°,AD=4,BC=6,求AB的长。

说明:证明正方形的方法:例:如图,已知:在四边形ABFC中,∠ACB=90°,BC的垂直平分线EF交BC于点D,交AB于点E,且CF=AE。(1)试探究,四边形BECF是什么特殊的四边形;

(2)当A的大小满足什么条件时,四边形BECF是正方形? 请回答并证明你的结论.例:如图,在梯形ABCD中,AD∥BC,BC=4,点M是AD的中点,△MBC是等边三角形.(1)求证:梯形ABCD是等腰梯形;

(2)动点P、Q分别在线段BC和MC上运动,且∠MPQ60保持不变.设PCx,MQy,求

y与x的函数关系式;

C

(3)在(2)中当y取最小值时,判断△PQC的形状,并说明理由.

A

M

D

60°

B

P

C

圆中计算与相关证明

说明:关于圆的计算,若出现直径,要联想到:直径所对的圆周角是直角;

若出现切线,要连接圆心和切点,就出现直角;

如弦长,联想到垂径定理(垂直,平分弦,构建直角三角形)

例:如图,AB是半圆O上的直径,E是 ⌒BC的中点,OE交弦BC于点D,过点C作⊙O切线交OE的延长线于

点F.已知BC=8,DE=2.⑴求⊙O的半径;⑵求CF的长;⑶求tan∠BAD 的值。

说明:证明圆的切线的办法:(1)连半径,证垂直;(2)作垂直,证半径。例:如图,点D在⊙O的直径AB的延长线上,点C在⊙O上,ACCD,D30°,(1)求证:CD是⊙O的切线;(2)若⊙O的半径为3,求弧BC的长.(结果保留π)

例:如图,在Rt△ABC中∠ABC=90°,斜边AC的垂直平分线交BC与D点,交AC与E点,连接BE。(1)若BE是△DEC的外接圆的切线,求∠C的大小?(2)当AB=1,BC=

2,求△DEC外接圆的半径。

A

B

O B

如图,⊙O的直径AB=4,C、D为圆周上两点,且四边形OBCD是菱形,过点D的直线EF∥AC,交BA、BC的延长线于点E、F.

(1)求证:EF是⊙O的切线;(2)求DE的长.

说明:出现三角函数值,必须在直角三角形中,或作垂直或找出相等的角,该角在直角三角形中。如图,等腰三角形ABC中,AC=BC=6,AB=8.以BC为直径作⊙O交AB于点D,交AC于点G,DF⊥AC,垂足为F,交CB的延长线于点E.(1)求证:直线EF是⊙O的切线;(2)求sin∠E的值.

如图,AB是⊙O的直径,BD是⊙O的弦,延长BD到点C,使DC=BD,连接AC,过D作DE⊥AC,垂足为E.

(1)求证:AB=AC;(2)若⊙O的半径为4,∠BAC=60º,求DE的长.

C

F

B

第四篇:中考第一轮复习:简单的几何证明(四边形)

2012年初三数学中考备考复习资料

5几何证明(四边形2)专题

学校:___________姓名:______________评价:_________________ 【知识归纳】

观察下图,回答下列问题

直角梯形

菱形

思考1——特殊四边形性质的角度

1、对角线互相平分的特殊四边形有______________________________________________

2、对角线相等特殊四边形的有__________________________________________________

3、对角线互相垂直的特殊四边形有______________________________________________

【巩固训练】

1、如图,在□ABCD中,E,F为BC上两点,且BE=CF,AF=DE.求证:△ABF≌△DCE;

A

D

B E F C/

42、如图,在△ABC中,D是BC边上的一点,E是AD的中点,过A点作BC的平行线交CE的延长线于点F,且AF=BD,连结BF。(1)求证:BD=CD;

(2)如果AB=AC,试判断四边形AFBD的形状,并证明你的结论。

3、如图,在四边形ABCD中,点E是线段AD上的任意一点(E 与A,D不重合),G,F,H

分别是BE,BC,CE的中点.(1)证明四边形EGFH是平行四边形;

(2)在(1)的条件下,若EFBC,且EF1BC,证明平行四边形EGFH 是正方形.

B

E

H

D

F4、已知,如图,梯形ABCD中,AD∥BC,∠B=60°,∠C=30°,AD=2,BC=8.求梯形两腰AB、CD的长.2 /

4B

C

【基础检测】

一、选择题(每小题5分,共25分)

1、下列事件中是必然事件的是()A.打开电视机,正在播广告.B.从一个只装有白球的缸里摸出一个球,摸出的球是白球.C.从一定高度落下的图钉,落地后钉尖朝上.D.今年10月1日,厦门市的天气一定是晴天.2、如图1,在直角△ABC中,∠C=90°,若AB=5,AC=4,则sin∠B=()343

4D.55433、“比a的1的数”用代数式表示是()

53+1B.a+1C.aD.-

123224、已知:如图2,在△ABC中,∠ADE=∠C,则下列等式成立的是()ADAEAEAD

B.=

ABACBCBDDEAEDEAD

C.=D.=

BCABBCAB5、已知:a+b=m,ab=-4, 化简(a-2)(b-2)的结果是()A.6B.2 m-8C.2 mD.-2 m

二、填空题(本大题共10小题,每小题4分,共40分)

6、-3的相反数是.7、分解因式:5x+5y=.8、如图3,已知:DE∥BC,∠ABC=50°,则∠ADE=度.9、2÷2=.10、某班有49位学生,其中有23位女生.在一次活动中,班上每一位学生的名字都各自写在一张小纸条上,放入一盒中搅匀.如果老师闭上眼睛从盒中随机抽出一张纸条,那么抽到写有女生名字纸条的概率是.11、如图4,⊙O的直径AB垂直于弦CD,垂足为E,若∠COD=120°,OE=3厘米,则OD=厘米.12、如果甲邀请乙玩一个同时抛掷两枚硬币的游戏,游戏的规则如下:同时抛出两个正面,乙得1分;抛出其他结果,甲得1分.谁先累积到10分,谁就获胜.你认为(填“甲”或“乙”)获胜的可能性更大.1113、一根蜡烛在凸透镜下成一实像,物距u,像距v和凸透镜的焦距f满足关系式:图

4B

1C

ADB

EC

3uv

f

若f=6厘米,v=8厘米,则物距u=厘米.14、已知函数y-3x-1-2,则x的取值范围是.若x是整数,则此函数的最小值是./

415、已知平面直角坐标系上的三个点O(0,0)、A(-1,1)、B(-1,0),将△ABO绕点O按顺时针方向旋转135°,则点A、B的对应点A1、B1的坐标分别是A(),B1(,).1,三、解答题

16、先化简,再求值:1212x1,其中x

1x1x1x2x

17、我们知道,当一条直线与一个圆有两个公共点时,称这条直线与这个圆相交.类似地,我们定义:当一条直线与一个正方形有两个公共点时,称这条直线与这个正方形相交. 如图,在平面直角坐标系中,正方形OABC的顶点为O(0,0)、A(1,0)、B(1,1)、C(0,1).15

(1)判断直线y=+与正方形OABC是否相交,并说明理由;

(2)设d是点O到直线y3x+b的距离,若直线y3x+b与正方形OABC相交,求

d的取值范围./ 4

第五篇:中考数学几何证明复习题

几何证明练习

1.如图13-1,一等腰直角三角尺GEF的两条直角边与正方形ABCD的两条边分别重合在一起.现正方形ABCD保持不动,将三角尺GEF绕斜边EF的中点O(点O也是BD中点)按顺时针方向旋转.

(1)如图13-2,当EF与AB相交于点M,GF与BD相交于点N时,通过观察或测量BM,FN的长度,猜想BM,FN满足的数量关系,并证明你的猜想;

(2)若三角尺GEF旋转到如图13-3所示的位置时,线段FE的延长线与AB的延长线相交于点M,线

段BD的延长线与GF的延长线相交于点N,此时,(1)中的猜想还成立吗?若成立,请证明;若

不成立,请说明理由.

A(E)图13-1 图13-

2图13-

32.将两块全等的含30°角的三角尺如图(1)摆放在一起,它们的较短直角边长为3.(1)将△ECD沿直线l向左平移到图(2)的位置,使E点落在AB上,则CC′=______;

(2)将△ECD绕点C逆时针旋转到图(3)的位置,使点E落在AB上,则△ECD绕点C旋转的度数=______;

(3)将△ECD沿直线AC翻折到图(4)的位置,ED′与AB相交于点F,求证AF=FD′

A A A A

E E’ E’D’ F’

l B(2)

(3)D’(4)

3.填空或解答:点B、C、E在同一直线上,点A、D在直线CE的同侧,AB=AC,EC=ED,∠BAC=∠CED,直线AE、BD交于点F。

(1)如图①,若∠BAC=60°,则∠AFB=_________;如图②,若∠BAC=90°,则∠AFB=_________;(2)如图③,若∠BAC=α,则∠AFB=_________(用含α的式子表示);

(3)将图③中的△ABC绕点C旋转(点F不与点A、B重合),得图④或图⑤。在图④中,∠AFB与∠α的数量关系是________________;在图⑤中,∠AFB与∠α的数量关系是________________。请你任选其中一个结论证明。

D

4.用两个全等的正方形ABCD和CDFE拼成一个矩形ABEF,把一个足够大的直角三角尺的直角顶点与这个矩形的边AF的中点D重合,且将直角三角尺绕点D按逆时针方向旋转.

(1)当直角三角尺的两直角边分别与矩形ABEF的两边BE,EF相交于点G,H时,如图甲,通过观察或测量BG与EH的长度,你能得到什么结论?并证明你的结论.

(2)当直角三角尺的两直角边分别与BE的延长线,EF的延长线相交于点G,H时(如图乙),你在图甲中得到的结论还成立吗?简要说明理由.

图②(第5题图)

图①

A图③

B图④

(第5题图)

图⑤

H

A B

F A B

F E

G

C 图甲

C 图乙

5.已知∠AOB=90,在∠AOB的平分线OM上有一点C,将一个三角板的直角顶点与C重合,它的两条直角边分别与OA、OB(或它们的反向延长线)相交于点D、E.

当三角板绕点C旋转到CD与OA垂直时(如图1),易证:2OC.

当三角板绕点C旋转到CD与OA不垂直时,在图

2、图3这两种情况下,上述结论是否还成立?若成立,请

给予证明;若不成立,线段OD、OE、OC之间又有怎样的数量关系?请写出你的猜想,不需证明。

6.把一副三角板如图甲放置,其中∠ACB∠DEC90,∠A45,∠D30,斜边AB6cm,DC7cm.把三角板DCE绕点C顺时针旋转15°得到△D1CE1(如图乙).这时AB与CD1相交于点O,与

D1E1相交于点F.

(1)求∠OFE1的度数;(2)求线段AD1的长;

(3)若把三角形D1CE1绕着点C顺时针再旋转30°得△D2CE2,这时点B在△D2CE2的内部、外部、还是边上?说明理由.

A

C

(甲)

E(乙)

1B

D

A

D

17.如图,在△ABC 中,点O是AC边上的一个动点,过点O作直线MN∥BC,设MN交∠BCA的角平分线于点E,交∠BCA的外角平分线于点F.(1)求证:EO=FO;(2)当点O运动到何处时,四边形AECF是矩形?并证明你的结论.

MB

E

OC

FN

(第19题图)

8.如图甲,在△ABC中,∠ACB为锐角.点D为射线BC上一动点,连接AD,以AD为一边且在AD的右侧作正方形ADEF. 解答下列问题:

(1)如果AB=AC,∠BAC=90º.

①当点D在线段BC上时(与点B不重合),如图乙,线段CF、BD之间的位置关系为,数量关系为.

②当点D在线段BC的延长线上时,如图丙,①中的结论是否仍然成立,为什么?

(2)如果AB≠AC,∠BAC≠90º,点D在线段BC上运动.

试探究:当△ABC满足一个什么条件时,CF⊥BC(点C、F重合除外)?画出相应图形,并说明理由.(画图不写作法)

(3)若AC

=BC=3,在(2)的条件下,设正方形ADEF的边DE与线段CF相交于点P,求线段CP

F

长的最大值.

E

A F

CBBECE

图甲 图乙 图丙

第8题图

9.如图,矩形纸片ABCD中,AB8,将纸片折叠,使顶点B落在边AD的E点上,折痕的一端G点在边

BC上,BG10.

(1)当折痕的另一端F在AB边上时,如图(1),求△EFG的面积;(2)当折痕的另一端F在AD边上时,如图(2),证明四边形BGEF为菱形,并求出折痕GF的长.

H(A)

E(B)E(B)D

A D

C B C

G

图(1)图(2)

10.如图,在边长为4的正方形ABCD中,点P在AB上从A向B运动,连接DP交AC于点Q.(1)试证明:无论点P运动到AB上何处时,都有△ADQ≌△ABQ;(2)当点P在AB上运动到什么位置时,△ADQ的面积是正方形ABCD面积的1; 6

(3)若点P从点A运动到点B,再继续在BC上运动到点C,在整个运动过程中,当点P 运动到什么

位置时,△ADQ恰为等腰三角形.

11.如图15,平行四边形ABCD中,ABAC,AB

1,BC.对角线AC,BD相交于点O,将直线AC绕点O顺时针旋转,分别交BC,AD于点E,F.(1)证明:当旋转角为90时,四边形ABEF是平行四边形;

(2)试说明在旋转过程中,线段AF与EC总保持相等;

(3)在旋转过程中,四边形BEDF可能是菱形吗?如果不能,请说明理由;如果能,说明理由并求出此时AC绕点O顺时针旋转的度数.

FD

B C图15

12.已知∠MAN,AC平分∠MAN。

⑴在图1中,若∠MAN=120°,∠ABC=∠ADC=90°,求证:AB+AD=AC;

⑵在图2中,若∠MAN=120°,∠ABC+∠ADC=180°,则⑴中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由;⑶在图3中:

①若∠MAN=60°,∠ABC+∠ADC=180°,则AB+AD=____AC;②若∠MAN=α(0°<α<180°),∠ABC+∠ADC=180°,则AB+AD=____AC(用含α的三角函数表示),并给出证明。

M

MM

CCC

DDD

ABNABABN N

13.已知,将两块等腰直角三角板ABC和ADE如图放置,再以CE,CB为边作平行四边形CEHB,连DC,CH。a)如图1,连接DH,请你判断△DHC的形状,猜想CH与CD之间有何数量关系?请说明理由。b)将图1中的△ADE绕A点逆时针旋转45°得图2,请你猜想CH与CD之间的数量关

系。

c)将图1中的△ADE绕A点顺时针旋转a(0°<a<45°)得图3,(2)中的猜想是否还成立,若

成立,请给出证明;不成立,说明理由。

14.如图13—1,以△ABC的边AB,AC为直角边作等腰△ABE和△ACD,M是BC的中点.(1)若∠BAC=90°,如图13—1.请你猜想线段DE,AM的数量关系,并证明你的结论;(2)若∠BAC≠

90°.

①如图13—2.请你猜想线段DE,AM的数量关系,并证明你的结论; ②如图13—3.请你判断线段DE,AM的数量关系.A D

B

D

E图13—3图13—1 图13—2

下载2014年下东中学数学中考复习:几何证明[样例5]word格式文档
下载2014年下东中学数学中考复习:几何证明[样例5].doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    八(下)11章 几何证明初步复习学案(一)

    几何证明初步复习学案(一)单位:马兰初中主备:王慧敏审核:黄丽英课本内容:P114—124课前准备:三角板铅笔复习目标:1. 识别定义、命题、公理、定理,会区分命题的条件和结论,理解原命题和......

    中考数学专题复习几何证明与计算分析

    中考数学专题复习:几何图形证明与计算题分析【2011中考真题回顾与思考】如图9,已知在⊙O中,点C为劣弧AB上的中点,连接AC并延长至D,使CD=CA,连接DB并延长交⊙O于点E,连接AE。(1)求证:AE......

    七年级下数学几何证明5篇

    1.已知:如图2-81,DE∥GF,BC∥DE,EF∥DC,DC∥AB,求证:∠B=∠F. 证明:∵DE∥GF( 已知)∴∠F+∠E=180°(两直线平行,同旁内角相等)∵EF∥DC(已知)∴∠E+∠D=180°(两直线平行,同旁内角相等)∴∠F=∠D( 同角......

    中考数学几何证明压轴题

    AB1、如图,在梯形ABCD中,AB∥CD,∠BCD=90°,且AB=1,BC=2,tan∠ADC=2. 求证:DC=BC; E是梯形内一点,F是梯形外一点,且∠EDC=∠FBC,DE=BF,试判断△ECF的形状,并证明你的结论; 在(2)......

    中考数学几何证明经典难题

    经典难题(一)1、已知:如图,O是半圆的圆心,C、E是圆上的两点,CD⊥AB,EF⊥AB,EG⊥CO. 求证:CD=GF.(初二)EA BD O F2、已知:如图,P是正方形ABCD内点,∠PAD=∠PDA=150.A D求证:△PBC是正三角形.(初二)C B......

    《几何证明选讲》综合复习

    选修4-1 《几何证明选讲》广东高考考试大纲说明的具体要求:(1)了解平行线截割定理,会证直角三角形射影定理.(2)会证圆周角定理、圆的切线的判定定理及性质定理.(3)会证相交弦定理、......

    初一下专题6-几何推理-几何证明

    专题6:几何推理-几何证明1、已知:如图,CD⊥AD,DA⊥AB,∠1=∠2.求证:DF∥AE.CDEAFB2、已知:BF⊥AC于F,GD⊥AC于D,∠1=∠2.求证:EF∥BD.AFEBDCG3、已知:如图,AE平分∠BAC,CE平分∠ACD,且∠1+......

    河北历届中考几何证明试题1

    河北历届中考几何证明试题1、(2005年中考第23题,满分8分)如图14—1,14—2,四边形ABCD是正方形,M是AB延长线上一点.直角三角尺的一条直角边经过点D,且直角顶点E在AB边上滑动(点E不与......