第一篇:DF4B运行中抱轴瓦温度高的处理方法
当机车出库以后,运行到中间站时,发现抱轴瓦温度在50-60度时,检查方法:检查相应油盒中的油壁子是否断裂,弹簧是否断裂或脱落;油位是否到位,油膜是否发黑.处理方法:更换油壁子或弹簧(车上备有那是最好的),补轴油.理论上理解,甩电机后,抱轴瓦受力减轻,温度有可能降低。但如果是瓦本身出故障,甩电机也没有用,因为油已经代不上去了,很快就会化的。运用规定是不超过70度。《内燃机车运用与保养》中规定:温度不应超过70度,如温度过高或冒烟是在,禁止用油、水进行人工冷却,以免轴颈产生裂纹。为避免车轴弯曲,帮必须让机车在线路上慢慢移动,直到温度恢复正常为止
牵引运行时,无停车条件,发现抱轴瓦温度高,甩掉相应的牵引电机能起到降低温度的效果,有轴温报警装置的机车观察温度变化,发现温度继续升高(70摄氏度以下),前方停车站检查,缺油补油,检查毛线架状态。
第二篇:东风4型内燃机车水温度高的原因分析及处理方法
东风4型内燃机车水温度高的原因分析及处理方法
【摘 要】df4型内燃机车经常出现水温高故障。在理论上对该型机车水温高问题产生的原因进行了详尽分析,并结合多年的生产工作实践论述了水温高故障的判断和处理方法。
【关键词】df4型;故障;水温高;水循环
强制循环冷却是东风4型内燃机车选用的16V240ZJB型柴油机采用的冷却方式,其冷却系统分为低温循环水系统和高温循环水系统。低温循环水系统主要用于冷却增压空气、机油及静液压油等;高温循环水系统主要用于冷却汽缸盖、汽缸套和增压器等部件。在柴油机工作时,低温水泵将冷却水送入热交换器和中冷器,高温水泵将冷却水送入柴油机和增压器,流出的冷却水分别经过各自的散热器组并借助冷却风扇将带出的热量散入大气,继续回流经高、低温水泵循环使用。外界空气由冷却风扇吸入,以一定的流速横向通过散热器组,带走冷却水中的热量。柴油机油、水管路上的控制阀自动控制冷却风扇的转速,以保证机车正常运行需要的冷却效果。1.问题的提出
在机车柴油机工作时,当出口冷却水温达到或超过88℃时,某些零件就会处于过热状态,柴油机零件的正常工作间隙因温度的升高被破坏,诱发了机油的变质和烧结,柴油机的润滑条件恶化,不仅会加剧零部件磨损,而且严重时可能造成零件拉缸、卡死等。
为了防止冷却水温过高影响柴油机的工作,东风4型内燃机车上设置了水温保护装置——水温继电器WJ。水温继电器由测量机构和执行机构组成,其构造如图所示。温包、波纹管、弹簧及有关杠杆等构成了测量机构,触头为执行机构。温包插在柴油机冷却系统的循环水中,内部充满容易蒸发的感温液体丙酮,当柴油机冷却水温超过88℃时,由于温包内的丙酮蒸发通过金属毛细管进入波纹管室内,导致波纹管受压,推杆向上推动常开触头闭和,中间继电器2ZJ线圈的得电电路被接通,继发走车电路中的2ZJ常闭触头断开,相应的励磁机励磁接触器LLC和励磁接触器LC线圈的得电电路也断开,柴油机自然卸载,从而保护了柴油机。
df4型机车柴油机冷却系统分为高温和低温循环水系统。高温循环水系统主要用于冷却气缸套、气缸盖、增压器等部件;低温循环水系统主要用于冷却机油、增压空气、静液压油等。柴油机各部件的热量通过冷却循环系统,在冷却间由散热器单节将大部分热量传递给空气,以保证柴油机等各部件得到及时冷却,使其处在最佳工作温度下。然而,运用过程中,特别是在盛夏时节,由于机车本身存在潜在故障以及外界气温较高等客观因素的存在,造成机车油、水温度高的现象,严重影响了机车的正常运用和运输任务的完成。2.水温度高的原因分析
(1)水循环系统内的水量不足。造成水量不足的原因除水系统发生泄漏外,在向水系统补水、上水时,有可能放气阀没有打开水系统内有气,以至于造成充满水的假象。所以在补、上水时必须打开有关放气阀,便于充水过程中将系统内的空气彻底排出,以免充不满水。如果气体存在于散热器内,导致冷却水不能在散热器内进行有效循环,就会造成水温急速上升。因此,运用机车时严格执行水箱水位达到2/3以上。
(2)温度控制阀的感温元件作用不良,造成冷却风扇不转或转动太慢,造成空气流通量较小,空气流速下降,换热效率降低,达不到冷却降温的要求,导致水温升高。
(3)静液压系统工作油量不足,或污染严重;安全阀旁通阀芯被异物垫起,造成阀芯关闭不良,风扇转速慢,空气流速下降,也会导致水温升高。
(4)散热单节太脏。大气中的各式各样污物粘附甚至堵塞冷却单节,如灰尘、油污及季节性的毛絮、货场的煤粉、尘土、农作物收获时的悬浮颗粒等。因此,这也是正常运用机车水温度逐渐升高的关键原因。
(5)散热器的散热片倒伏太多或水腔内表面水垢太厚,影响散热器换热效果,也是水温度高的原因,散热器内腔水垢多,一般发生于加装不合格冷却水,尤其是长期加自来水后该问题更为严重。(6)冷却水泵故障,水轮活,有异物,造成流量低、压力小、有空气,导致冷却水循环无法正常进行,影响散热效果。
(7)冷却水系统管路的各阀开、闭不当或管路内的异物堵塞,造成冷却水系统循环受阻,影响散热效果。是刚施修后的机车发生水温度高的一个原因。
(8)冷却间百叶窗没有打开或打不开,使冷却散热器的空气无法循环或进气量不足。这在夏季温度高时最易发生,所以天气温度高时打开百叶窗是很有必要的。3.水温度判断和处理
在机车上若水温继电wj运作后,2zj吸合,机车卸载,操纵台上水温高及卸载红灯亮。应立即将主手柄回“0”位,检查水温表,水温均超过98°c时,为wj、2zj正常作用,否则为误动作。排除水温继电器误动作的前提下进行处理。处理水温高故障的程序应本着由表及里、由外到内、由简单到复杂的原则。柴油机各部件(如、循环水泵等部件)工作状态正常的前提下可进行检查和处理。(1)当水温高于98°c时,确认高温水箱补水阀在开放位,水箱水位不足时,检查泄漏处所,积极处理,低手柄或惰力运行维持到前方站补水。
(2)水位均正常时,确认静液压油箱油位,不足时补油,如有漏泄积极处理。
全面检查故障机车静液压系统,确保静液压马达、静液压泵及管路质量良好确保正常。
(3)检查故障机车冷却水系统各部位有无漏泄,保证各环节的流通量,这是处理这一故障的基础,也是最难立即见效、工作量严重超常,其中包括部件下车检修和实验。(4)冷却单节或称散热器的检查和处理方法。①倒片过多的冷却单节,应对散热片扶正或更换。
②检查冷却间的自动与手动百叶窗是否能打开,如打不开,应进行处理。
③冷却风扇正常旋转是否(可从第二司机室后墙动力间的圆孔玻璃进行观察)。如旋转不正常先用手摸温度控制阀处油管的温度,如该处温度没有明显低于静液压泵进、出油管的温度,说明温度控制阀内的滑阀没有堵死阀口,此时可通过阀体内的手动调速螺钉,顺时针转动到极限位置,如 十分钟后,温度控制阀的进、出油管温度有了明显下降,表明该温度控制阀的感温元件损坏。运行途中若将温度控制阀故障调节螺钉人工调节后,如遇柴油机停机,在启动柴油机前,必须把温度控制阀故障调节螺钉逆时针方向拧回,启动完毕后根据需要再调节。温度控制阀故障调节螺钉人工调节过后,回段必须及时报修。
④散热器扁管的外部有大量的污垢堵塞在铜片之间甚至内侧的散热片之间,造成冷却空气通过阻力大,空气流速和散热面积减少,散热量降低,因此,冷却组的各缝隙应用软材料堵塞填实。定期检查散热器的外部状态及定期吹扫,如有污物,可用高压清洗机反向清洗,若污物过多,应拆下散热器单节更换,因为简单的清洗不仅不能清洗出散热片内夹存的污物、毛絮,而且使内存的各异物板结粘贴得更加牢固,所以,将冷却单节拆下清洗十分必要。⑤手摸散热器的各冷却单节,如发现有的冷却单节很凉,说明冷却单节内有空气,影响了冷却水系统的正常循环。此时如打开散热器上方的放气阀排气,必要时须对水系统进行补水。
(5)检查故障机车水泵是否存在问题。重点是实验冷却水泵的流量、压力、吸水真空度。同时确认故障机车的机油热交换器冷却水管堵焊数量,认真清洗机油交换器冷却水管内的水垢。4.结束语
水系统是内燃机重要组成部分,通过上述分析及采取相关措施,减少机车水温高造成的故障,对提高机车质量与节约检修成本起到了非常重要的作用,更保证的机车运输的顺利进行。【参考文献】
[1]杨兆昆.东风4型内燃机车乘务员[m].北京:中国铁道出版社,2002.[2]杨晓村.内燃机车故障综合处理与分析[m].北京:中国铁道出版社,2001.[3]王连森.内燃机车检修[m].北京:中国铁道出版社,2001.
第三篇:变压器设备运行异常现象及处理方法
附录C:(资料性附录)设备运行异常现象及处理方法
1.变压器设备
1.1变压器在运行中,发生下列故障之一时,应立即将变压器停运,事后报告当值调度员和主管领导:
(1)变压器声响明显增大,很不正常,内部有爆炸声;(2)严重漏油或喷油,使油面下降到低于油位计指示限度;(3)套管有严重的破损和放电现象;(4)变压器冒烟着火;
(5)当发生危及人身和设备安全的故障,而变压器的有关保护拒动时;(6)当变压器附近的设备着火、爆炸或发生其它情况,对变压器构成严重威胁时。
1.2当变压器发生下列情况之一时,允许先报告当值调度员和上级领导联系有关部门后,将变压器停运:
(1)变压器声音异常;
(2)变压器油箱严重变形且漏油;(3)绝缘油严重变色;
(4)套管有裂纹且有放电现象;(5)轻瓦斯动作,气体可燃并不断发展。
1.3变压器油温的升高超过报警值时,应按以下步骤检查处理:(1)检查变压器的负荷和冷却介质的温度,并与在同一负荷和冷却介质温度下正常的温度核对;
(2)核对温度表;
(3)检查变压器强迫冷却装置;
附录C— 1(4)若温度升高的原因是由于冷却系统故障,且在运行中无法修复者,应将变压器停运修理;若不需停运修理时,则值班人员应申请调整变压器的负荷至允许运行温度下的相应容量。
(5)变压器在各种超额定电流方式下运行,若油温超过85℃,应立即申请降低负荷。
1.4 变压器自动跳闸处理:主变压器无论何种原因引起跳闸,一方面应尽快转移负载,改变运行方式。另一方面查明何种保护动作。应立即停止潜油泵,检查保护动作有无不正常现象,跳闸时变压器有无过载,输馈线路有无同时跳闸,除确认是误动作可以立即合闸外,应测量绝缘电阻并根据以下情况进行判断处理:
(1)因过负载引起跳闸,在减少负载后将主变投入;
(2)因输、馈电线路及其它设备故障影响越级跳闸时,若变压器绝缘电阻及外部一切正常,瓦斯继电器又无气体,可切除故障线路(设备)后恢复变压器运行;
(3)保护未掉牌并无动作过的迹象,系统又无短路,检查各方面正常,此时应检查继电器保护二次回路及开关机构是否误动作,如果误动作,在消除缺陷后,可以恢复变压器运行。如果查不出原因,应测量变压器绝缘电阻和直流电阻,并取变压器油作色谱分析,再根据分析确定是否可以恢复运行。如果发现变压器有任何一种不正常现象时,均禁止将变压器投入运行。
1.5 变压器过负荷的处理方法
(1)检查变压器的负荷电流是否超过整定值;
(2)确认为过负荷后,立即联系调度,减少负荷到额定值以下,并按允许过负荷规定时间执行;
(3)按过流、过压特巡项目巡视设备。1.6 变压器油温异常升高的处理方法
(1)检查变压器的负载和冷却介质的温度,并与在同一负载和冷却介质温度下正常的温度核对;
(2)核对测温装置动作是否正确;
(3)检查变压器冷却装置,若温度升高的原因是由于冷却系统的故障,且在附录C— 运行中无法修理时,应报告当值调度员,将变压器停运并报告领导;
(4)在正常负载和冷却条件下,变压器温度不正常并不断上升,且经检查确认温度指示正确,则认为变压器已发生内部故障,应立即联系当值调度员将变压器停运;
(5)变压器在各种超额定电流方式下运行时,若顶层油温超过105℃应立即降低负荷。
1.7 变压器轻瓦斯动作的处理方法
(1)检查轻瓦斯继电器内有无气体,记录气量、取气样,并检查气体颜色及是否可燃。取油样进行分析,并报告有关领导;
(2)如瓦斯继电器内无气体,应检查二次回路有无问题;(3)如气体为无色,不可燃,应加强监视,可以继续运行;
(4)如气体可燃,油色谱分析异常则应立即报告调度,将变压器停电检查。1.8 重瓦斯保护动作跳闸的事故处理(1)记录跳闸后的电流、电压变动情况;
(2)检查压力释放装置释放动作有无喷油、冒烟等现象。油色和油位有无显著变化;
(3)检查瓦斯继电器有无气体,收集气样,检查是否可燃,观察颜色;(4)检查变压器本体及有载分接开关油位情况。(5)检查二次回路是否有误动的可能;
(6)变压器跳闸后,应立即停油泵,并进行油色谱分析。(7)应立即将情况向调度及有关部门汇报。(8)应根据调度指令进行有关操作。
(9)现场有着火等特殊情况时,应进行紧急处理。1.9 冷却系统故障的处理方法
(1)全部冷却器故障,在设法恢复冷却器的同时必须记录冷却器全停的时间,监视和记录顶层油温,如油温未达到75℃则允许带额定负载运行30分钟,若30分钟后仍未恢复冷却器运行但顶层油温尚未达到75℃时,则允许上升到75℃,但这种状态下运行的最长时间不得超过1小时,到规定的时间和温度时应
附录C— 立即将变压器停止运行。
(2)个别冷却器故障,应把故障元件停运,并检查备用冷却器是否按规定自动投入然后再处理故障冷却器。
(3)冷却器故障,当短时不能排除故障,应使完好的部分冷却器恢复运行后,再处理故障。
(4)记录故障起始时间,如超过冷却系统故障情况下负载能力规定的运行时间,应请示当值调度员减负载或停止主变运行。
(5)注意顶层油温和线圈温度的变化。1.10 有载分接开关故障的处理方法
(1)操作中发生连动或指示盘出现第二个分接位置时,应立即切断控制电源,用手动操作到适当的分接位置;
(2)在电动切换过程中,开关未到位而失去操作电源,或在手动切换过程中,开关未到位而发现切换错误时,应按原切换方向手动操作到位,方可进行下一次切换操作。不准在开关未到位情况下进行反方向切换;
(3)用远方电动操作时,计数器及分接位置指示正常,而电压表和电流表又无相应变化,应立即切断操作电源,终止操作;
(4)当出现分接开关发生拒动、误动;电压表及电流表变化异常;电动机构或传动机构故障;分接位置指示不一致;内部切换有异声;过压力的保护装置动作;看不见油位或大量喷油危及分接开关和变压器安全运行的其它异常情况时,应禁止或中断操作;
(5)运行中分接开关的油流控制继电器或气体继电器应具有校验合格有效的测试报告。若使用气体继电器替代油流控制继电器,运行中多次分接变换后动作发信应及时放气。若油流控制继电器或气体继电器动作跳闸,在未查明原因消除故障前不得将变压器及分接开关投入运行;
(6)当分接开关油位异常升高或降低,且变压器本体绝缘油的色谱分析数据出现异常(主要是乙炔和氢的含量超标),应及时汇报当值调度员,暂停分接开关切换操作,进行追踪分析,查明原因,消除故障;
(7)运行中分接开关油室内绝缘油的击穿电压低于30kV时,应停止自动电
附录C— 压控制器的使用。低于25kV时,应停止分接变换操作并及时处理。
1.11 差动保护动作跳闸的处理:
(1)检查变压器油位、油色有无显著变化。压力释放器有无动作和喷油、冒烟现象,油箱有无变形,套管有无闪烙,周围有无异味;
(2)对差动保护范围内的所有一次设备进行检查,即变压器各侧设备、引线、电流互感器、穿墙套管、避雷器等有无故障;
(3)检查差动变流器的二次回路有无断线、短路现象;(4)应立即将情况向调度及有关部门汇报。(5)应根据调度指令进行有关操作。
(6)当怀疑变压器内部故障时,取油样做色谱分析。1.12 变压器着火的处理
变压器着火时,应立即向当值调度员报告,并立即将变压器停运,同时关停风扇和潜油泵等相关设备电源,启动水喷淋系统灭火、或使用干式灭火器灭火;若油溢在变压器顶上而着火时,则应打开下部油门放油到适当油位;若是变压器内部故障着火时,则不能放油,以防止变压器爆炸,在灭火时应遵守《电气设备典型消防规程》的有关规定。当火势蔓延迅速,用现场消防设施难以控制时,应打火警电话“119”报警,请求消防队协助灭火。2. 互感器设备
2.1当发生下列情况之一时,应立即将互感器停用(注意保护的投切):(1)电压互感器高压熔断器连续熔断2-3次;
(2)高压套管有严重裂纹、破损,互感器有严重放电,已威胁安全运行时;(3)互感器内部有严重异音、异味、冒烟或着火;
(4)SF6气体绝缘互感器严重漏气、压力表指示为零;电容式电压互感器分压电容器出现漏油时;
(5)互感器本体或引线端子有严重过热时;(6)膨胀器永久性变形或漏油;(7)压力释放装置(防爆片)已冲破;
附录C— 5(8)电流互感器末屏开路、二次开路;电压互感器接地端子N(X)开路、二次短路,不能消除时;
(9)树脂浇注互感器出现表面严重裂纹、放电; 2.2电压互感器常见的异常判断与处理
2.2.1三相电压指示不平衡:一相降低(可为零),另两相正常,线电压不正常,或伴有声、光信号,可能是互感器高压或低压熔断器熔断;
2.2.2中性点非有效接地系统,三相电压指示不平衡:一相降低(可为零),另两相升高(可达线电压),或指针摆动,可能是单相接地故障或基频谐振;如三相电压同时升高,并超过线电压(指针可摆到头),则可能是分频或高频谐振;
2.2.3高压熔断器多次熔断,可能内部绝缘严重损坏,如绕组层间或匝间短路故障;
2.2.4中性点有效接地系统,母线倒闸操作时,出现相电压升高并以低频摆动,一般为串联谐振现象;若无任何操作,突然出现相电压异常升高或降低,则可能是互感器内部绝缘损坏,如绝缘支架、绕组层间或匝间短路故障;
2.2.5中性点有效接地系统,电压互感器投运时出现电压表指示不稳定,可能是高压绕组N(X)端接地接触不良;
2.3电压互感器回路断线处理:
(1)根据继电保护和自动装置有关规定,退出有关保护,防止误动作;(2)检查高、低压熔断器及自动开关是否正常,如熔断器熔熔断,应查明原因立即更换,当再次熔断时则应慎重处理;
(3)检查电压回路所有接头有无松动、断头现象,切换回路有无接触不良现象。
2.4电容式电压互感器常见的异常判断:
2.4.1二次电压波动:二次连接松动,分压器低压端子未接地或未接载波线圈;
2.4.2二次电压低:二次连接不良,电磁单元故障或电容单元C2损坏; 2.4.3电磁单元油位过高,下节电容单元漏油或电磁单元进水; 2.4.4二次电压高:电容单元C1损坏,分压电容接地端未接地;
附录C— 2.4.5投运时有异音,电磁单元中电抗器或中压变压器螺栓松 2.5电流互感器常见的异常判断及处理:
2.5.1电流互感器过热,可能是内、外接头松动,一次过负荷或二次开路; 2.5.2互感器产生异音,可能是铁芯或零部件松动,电场屏蔽不当,二次开路或电位悬浮,末屏开路及绝缘损坏放电;
2.5.3绝缘油溶解气体色谱分析异常,应按DL/T722-2000进行故障判断并追踪分析,若仅氢气含量超标,且无明显增加趋势,其他组份正常,可判断正常;
2.6电流互感器二次回路开路处理:
(1)立即报告集控值班员,按继电保护和自动装置有关规定退出有关保护;(2)查明故障点,在保证安全前提下,设法在开路处附近端子上将其短路,短路时不得使用熔丝,如不能消除开路,应考虑停电处理;
(3)互感器着火时,应立即切断电源,用灭火器材灭火;
(4)发生不明原因的保护动作,除核查保护定值选用是否正确外,还应设法将有关电流、电压互感器退出运行,进行电流复合误差、电压误差试验和二次回路压降测量。
3.阻波器、干式电抗器、消弧线圈
在下列情况下应立即申请停电处理:(1)瓷瓶严重破损,放电闪络;(2)内部声音异常或放电闪络;
(3)引线接头发热烧红或断股脱落,金具变形(4)悬挂或支持瓷瓶断裂,金具脱落;
(5)阻波器结合滤波器引线松脱,引起电容式电压互感器保护间隙放电时;(6)接头、接点发热,温升超过70℃应立即申请当值调度员减负载,或将设备退出运行。
附录C— 7
第四篇:污水处理厂运行异常事故应急处理方法
污水处理厂运行异常事故应急处理方法
一、水量不足
当水量不足时,工艺控制如下:
1.提升泵房尽量保持水泵平稳进水,但需避免水泵低液位运行。
2.水量在设计水量的50%以下,污水处理系统单组运行(双组系统)或间歇运行(单组系统),注意监控生化系统运行参数(DO、pH、MLSS等),及时调整工艺。
3.回流比控制在50-100%。
4.二沉池投入一半。
二、水量超过设计负荷
当水量超过设计负荷时,工艺控制如下:
1.提升泵房满负荷生产,但不超过设计负荷的变化系数。
2.粗、细格栅现场连续开启,并及时清除栅渣。
3.水量突增初期,污水处理系统曝气设备全开,注意监控生化系统运行参数(DO、pH、MLSS等),及时调整工艺。
4.加大生化池上清液、二沉池出水及总出水的抽检频次。
5.二沉池全部投入使用。
6.随着生化系统逐渐稳定,DO上升,系统氨氮较低,可考虑减少曝气设备的开启台数及开启频率。
三、污泥膨胀
当出现污泥膨胀时,值班人员应马上向生产主管汇报,通知化验室立刻采集水样,对水样BOD、COD、MLSS、DO、PH、SV进行测定和进行生物镜检,再根据现场情况初步分析污泥决定采取下列何种措施。污泥膨胀最突出的表现是污泥沉降性能指标SVI大于150%。污水中如碳水化合物较多,溶解氧不足,缺乏氮、磷等养料,水温高或pH值较低情况下,均易引起污泥膨胀。此外,超负荷、污泥龄过长或有机物浓度梯度小等,也会引起污泥膨胀。排泥不畅则引起结合水性污泥膨胀。
针对引起膨胀的原因工艺调整如下:
1.缺氧、水温高等加大曝气量,或降低水温,减轻负荷,或适当降低MLSS值,使需氧量减少等;
2.污泥负荷率过高,可适当提高MLSS值,以调整负荷,必要时还要停止进水“闷曝”一段时间;
3.缺氮、磷等养料,可投加硝化污泥或氮、磷等成分;
4.pH值过低,可投加石灰等调节pH(6-8);
5.污泥大量流失,可投加5-10mg/L氯化铁,促进凝聚,刺激菌胶团生长,也可投加漂白粉或液氯(按干污泥的0.3%-0.6%投加),抑制丝状繁殖,特别能控制结合水污泥膨胀。此外,投加石棉粉末、硅藻土、粘土等物质也有一定效果。
四、污泥解体
当出现污泥解体现象时,表现现象为:处理水质浑浊、污泥絮凝体微细化,处理效果变坏等。
工艺应如下调整:
1.对进水水质进行化验分析,确定是污水中混入有毒物质时,应考虑这是新的工业废水混入的结果,应减少进水水量加大曝气量,尽快使生化系统恢复活性。
2.调整进水量。
3.调整回流污泥量控制MLSS。
4.调整曝气量,控制溶解氧在2.0mg/L左右。
5.调整排泥量。
五、污泥脱氮效果差
污泥在二沉池呈块状上浮的现象,并不是由于腐败所造成的,而是由于在曝气池内污泥龄过长,硝化过程进行充分,在沉淀池内产生反硝化,硝酸盐的氧被利用,氮即呈气体脱出附于污泥上,从而比重降低,整块上浮。所谓反硝化是指硝酸盐被反硝化菌还原成氨或氮的作用。反硝化作用一般溶解氧低于0.5mg/L时发生。
试验表明,如果让硝酸盐含量高的混合液静止沉淀,在开始的30-90mm左右污泥可以沉淀得很好,但不久就可以看到,由于反硝化作用所产生的氮气,在泥中形成小气泡,使污泥整块地浮至水面。在做污泥沉降比试验,只检查污泥30mm的沉降性能。
因此,往往会忽视污泥的反硝化作用。这是在活性污泥法的运行中应当注意的现象,为防止这一异常现象的发生,应采取增加污泥回流量或及时排除剩余污泥,或降低混合液污泥浓度,缩短污泥龄和降低溶解氧浓度等措施,使之不进行到硝化阶段。
六、沉淀池异常
6.1
出水带有大量悬浮颗粒
1.原因
水力负荷冲击或长期超负荷,因短流而减少了停留时间,以至絮体在沉降前即流出出水堰。
2.解决办法
均匀分配水力负荷;调整进水、出水设施不均匀,减轻冲击负荷影响,有利于克服短流;投加絮凝剂,改善某些难沉淀悬浮物的沉降性能,如胶体或乳化油颗粒的絮凝;调整进入初沉池的剩余污泥的负荷。
6.2
出水堰脏且出水不均
1.原因
污泥粘附、藻类长在堰上,或浮渣等物体卡在堰口上,导致出水堰脏,甚至某些堰口堵塞导致出水不均。
2.解决办法
经常清除出水堰口卡住的污物;适当加药消毒阻止污泥、藻类在堰口的生长积累。
6.3
污泥上浮
1.原因
污泥停留时间过长,有机质腐败。
2.解决办法
一是保持及时排泥,不使污泥在二沉池内停留时间太长;检查排泥设备故障;清除沉淀池内壁,部件或某些死角的污泥。二是在曝气池末端增加供氧,使进入二沉池的混合液内有足够的溶解氧,保持污泥不处理于反硝化状态。对于反硝化造成的污泥上浮,还可以增大剩余污泥的排放,降低SRT,控制硝化,以达到控制反硝化的目的。
6.4
浮渣溢流
1.原因
浮渣去除装置位置不当或去除频次过低,浮渣停留时间长。
2.解决办法
维修浮渣刮除装置;调整浮渣刮除频率;严格控制浮渣的产生量。
6.5
污泥管道或设备堵塞
1.原因
二沉池污泥中易沉淀物含量高,而管道或设备口径太小,又不经常工作造成的。
2.解决办法
设置清通措施;增加污泥设备操作频率;改进污泥管道或设备。
6.6
刮泥机故障
1.原因
刮泥机因承受过高负荷等原因停止运行。
2.解决办法
缩短贮泥时间,降低存泥量;检查刮板是否被砖石、工具或松动的零件卡住;及时更换损坏的连环、刮泥板等部件;防止沉淀池表面积冰;调慢刮泥机的转速。
七、生化池泡沫问题
在污水处理厂的运行管理中,当发现生化池中产生大量泡沫时。立刻向生产主管汇报,根据现场情况决定采取何种措施消除泡沫。一般可以采取以下三种措施:第一,用自来水或处理后的出水喷洒生化池水面。第二,投加消泡剂,如柴油,煤油。第三,加大回流污泥量,增加生化池中活性污泥的浓度。
八、生物除磷效果差
厌氧区应保持严格厌氧状态,即溶解氧低于0.2mg/L,此时聚磷菌才能进行磷的有效释放,以保证后续处理效果。而好氧区的溶解氧需保持在2.0mg/L以上,聚磷菌才能有效吸磷。因此,当出水出现总磷不达标时(>1
mg/L),则视具体情况可通过调整鼓风机的充氧量和调节回流污泥量使得溶解氧在厌氧区控制低于0.2mg/L,好氧区控制在2
mg/L以上。
第五篇:空压机维修中一些常见故障处理方法(范文)
问: 最小压力阀的用途是什么?
答: 两个作用: 1)最小压力阀的作用是缓冲一下,当机器在加载瞬间,我们假设排放到大气中,机器内部分离前与分离后产生的大压差将全部加在分离器上,造成对分离器芯的伤害; 2)机器油润滑是靠机器本身的压力差进行,没有额外的油泵辅助,当机器在空载状态时,仍需一定压力维持油循环,所以进气阀门相对关闭,而最小压力阀防止压力泄漏,这样保证润滑油循环。
问: 对于同种气体的混合(压力不同)市场上有什么好的装置,可以使输出达到最理想?
答: 压力不同的同种气体混合后,应该是会自身调节为统一压力,如在各处所使用的压力不同需求,假设装上压力调节器,我想应该可以达到你所满意的需求。
问: 单螺杆压缩机与双螺杆压缩机的区别在什么地方,从节能、转子轴承使用寿命方面来说,有何区别?
答: 单螺杆与双螺杆从构造上而言双螺杆的制造工艺比单螺杆复杂,而寿命和工作效率差别不是很大,但是目前国内单螺杆的制造技术没双螺杆的成熟。主要问题是解决传动和密封,也就是说寿命和检修方面,单螺杆要欠缺些。
问: 我有一台空压机,由于备件的原因一直没有开机,这两天一开机就出现故障:能正常开机,星三角转换结束,正常加载,很快显示背压启动而停机,请问是什么原因?
答: 这是长期不用,水分无法及时排除,最小压力阀和管道截止阀等生锈无法正常开启,只要对这些阀清洗即可。
问: 我厂干除灰空压机运行中自动卸载或停机时,进气口向外喷油,经常把进气软管烫破,如何解决?
答: 请检查断油阀和止逆阀。
问: 请问螺杆机的最小压力阀在油分离桶的压力低于最小压力阀设定的压力时,最小压力阀打开吗,如果不打开,那么当主机出口压力较低时,油分离桶是否放气?
答: 如果筒体压力低于最小压力阀开启压力,最小压力不能打开,而此时如果处于卸载状态时,筒体上的放气气磁阀将放气以平衡。
问: 请问由油分离器回油管路回到主机的油是直接被主机吸到压缩腔内吗?如果是,那么压缩腔内是否是油气混合物?另外,阴阳转子需要润滑吗?
答: 经过分离后的油需要进行冷却和过滤,然后回到主机,与空气一起被压缩。所以主机压缩是油和空气的混合物;而转子的润滑就是这些油。这是微油螺杆机油路走向。对于一般工厂来讲,从供电局引进的高压动力线,经过变压器变压为 380V,再分成几条线供给不同用途的用电线路。如果空压机起动电流过大,会对电网产生很大的冲击。如果变压器容量不够,空压机起动就会对其余用电线路造成影响,会对生产精度以及正常生产带来不可估计的后果。此时,采用软起动器起动可以控制空压机的起动电流,减小起动时对电网的冲击。
问: 我公司的空压机由于加卸载频繁,造成加载汽缸损坏,现将原来的在线靠压力开关调节加卸载状态改为用 MV 调节阀调节,使空压机始终处于加载状态,运行电流 90A,压力 8.1 公斤。不知长期这样运行对电机有无影响,这样运行的优缺点是什么? 答: 如果选用调节控制,对机器无影响,只是调节器寿命缩短,但比起另两件损坏还是值得。但是此模式下,电量消耗最大。可考虑用节能控制器来解决加卸载频繁,节能和提高部件寿命。
问: 维修人员在更换主轴密封套件时曾敲击过主轴是否会对主机出力有影响 ? 原压力设定在 0.8MPA 还自动停机 , 换主轴密封后机组不自动停机也达不到 0.7MPA 是否与此有关联
答: 主轴密封的更换不会影响原机组的排气量。至于电磁阀的因素会影响机器的排气量,如果加载电磁阀没有打开,进气阀门无法打开,直接使机组的工作受影响。
问:近来我发现我的空压机输出空气中含水比较高 , 主要表现在空气总管后 , 空气罐前的 NL 模块上(NL 模块的作用是尽量滤出压缩空气中的水或油)总可以排出较多的水 , 我怀疑是输水器或水冷凝器有问题 , 导致压缩空气含水高 , 不知对否.求高手解答 , 造成水多的原因 , 如何解决 ? 这是不是空压机加卸载频繁的原因吗 ? 谢谢!
答: 你有否检查空压机的冷凝水排放情况,如果排出水少需要对疏水阀进行清洁。压缩空气经过后冷却,相当部分的水分在水分离器中析出,疏水系统将其排出,如果疏水阀不通,势必将水带入系统。通常过滤器(你所指的 NL 模块也应当属于相同类型)对液态水较难处理,所以造成大量水排出。你可以用英格索兰的节能排污阀装在模块前,以减轻模块的工作压力。
问: 请问气动活塞上的出气口的塑料头是做什么作用的。可否从此口添加液压油起润滑作用?活塞加液压油可以正常工作,但不知对设备有无影响!
答: 您指的是调节气缸吗?如果是的话我们讨论。此塑料头只是作为盖子,防止灰尘进入,而此孔作为回气用的。添加润滑剂作用不是很大。
问: 我公司一台双螺杆的压缩机在加载时,加载阀驱动汽缸活塞,总是出现加不上负载,表现为蝶阀驱动汽缸活塞动作,但动作行程小,使进气蝶阀只能打开大约 20~10 度。不知为什么原因,请高手解答或留电话!
答: 这情况较复杂,检查加载过程中,气缸有无开启到最长位置。如果气缸与蝶阀轴松动或已经移位,气缸虽全开,蝶阀并没有到达位置。还有一种情况,气缸损坏不能正常开启。
问: 我所指的就是汽缸不能正常开启,导致蝶阀无法正常打开加载。请问汽缸损坏都有什么原因造成,汽缸内加滑油可否?汽缸损坏如何修?空压机运行时,加载、卸载时间都为 50 秒,此种工况运行时否正常?谢谢!感谢 MPY 的回答!谢谢!还有一事不明 , 您提到加载时油量情况 , 是指什么油 , 是滑油吗 ? 我看了我们的图纸(我们的机器是 SSR MH-55), 此汽缸的驱动为气驱动 , 此气来自油气分离器出口 , 并且通过调节汽缸原始位置 , 可以引起油气分离器的倍压的变化(我设定倍压为 1.8Kpa).再有我认为送往汽缸的管路没有与油路相连.汽缸和加载电磁阀的寿命一般大约是多少 ? 可以给个量的概念吗 ? 加载电磁阀在维修时我已经清洗了 , 但故障依旧 , 这样是否可以确定汽缸已经损坏了.答: 气缸无法打开或打开异常,与负载电磁阀供油情况有关。检查送往气缸的管路中,在加载时油量情况,清洗负载电磁阀。气缸是无法修复的只能进行更换。气缸寿命包括负载电磁阀与使用次数有关,如果机器频繁加 / 卸载,势必影响使用寿命。
问: 现象:空压机在加载动作完成后,有一股清烟从进气口排出(带压力),经调整进气口蝶阀后仍有类似现象,请问这油烟从何而来?应如和处理?盼 答: 这是停机后,系统还有压力造成。我们可以 1)清洗放气管路,保持顺畅; 2)检查止逆阀密封状况; 3)延长停机卸载时间.问: 我司有 6 台螺杆机联网,请问应该如何设定它们的最小压力调节器?我们如何知道每台的最小压力值?(比如当管网的气量达到饱和时哪台机的蝶阀先动作?)
答: 单机调试,压缩机多台份联网后,一般情况无需对压缩机压力有特别的调整,除非需要 6 台机器的顺序控制。如果这样需要对压缩机单体设置压力,但工作量相当大。因为过一时间段就需要重设,使机器运行时间相同。可使用 ISC 或 IEO 产品进行顺序控制,她独有的节能功能和精确控制,减轻了人员工作强度,又使系统压力相当稳定,通过节能得到投资回报。
问: 有螺杆机呕油不知道该怎么解决请赐教
答: 进气阀处的膜片更换,如果不是油太多 , 那就是油气分离芯已坏.问: 在空压机什么都正常的情况下,为啥老是很难加载或加载困难。
答: 加载困难有多种因素,一般在系统压力很低的情况下。您可以适当调整,通常调整到 1.7 ~ 3.2kg。
问: 请问贵公司,如何根据排气量确定系统的干管管径?
答: 排气管的直径与压缩机排气口相同,便于连接,然后放大。根据最大用气量进行;使用足够管径保证压力损失不超过 0.021MPA,使整个气流系统压力损失保持在 10 %。
问: 冷冻式冷干机通常会出现什么样的报警 ?
答: 根据各厂家设计不同,通常有电机过载报警、高压报警、压力露点高报警。有电机热保护和高低压报警。解决方法是:排除电机过载的可能性;调整工况解决冷凝压力高和蒸发压力低报警。
问; 请问蒸发压力和冷凝压力是什么意思 ? 有什么关系吗 ?
答: 低温低压的气态冷媒经压缩后变成高温高压的过热冷媒蒸汽,这时的压力称为蒸发压力。经管道进入冷凝器,冷却凝结成为高压液体冷媒,此时经过膨胀阀进入蒸发器,而后蒸发过程中吸收压缩空气的热量并变成气态冷媒,回到压缩机入口,这时的压力称为冷凝压力。经过节流减压后的的低温制冷济剂吸热蒸发后的压力.它经过压缩后变成高温高压的气体 , 经过放热冷凝液化 , 此时的压力及冷凝压力典型的制冷循环会经过压缩 / 冷凝 / 节流 / 蒸发四个过程,其中冷凝和蒸发过程都会涉及到热交换。在这个过程中制冷剂的状态会发生变化,而压力是考核这个变化的指标之一。所以有冷凝压力和蒸发压力的区别。一般在冷干机上都会有这两个压力的指示。
问: 请问冷干机的进气压力和排气压力是否相等 ?
答: 您指的是压缩空气吗?如果是那么应当有一定的压差,数值在 0.35bar 以下。
问: 请问负载电磁阀 1sv 和进气阀是什么关系 ? 答: 负载电磁阀动作后,气体将进气阀门打开或关闭。或者通过液压装置使机械结构件将阀门打开关闭。