探讨出租车计价误差测量不确定度的评定论文(范文大全)

时间:2019-12-04 17:17:31下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《探讨出租车计价误差测量不确定度的评定论文》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《探讨出租车计价误差测量不确定度的评定论文》。

第一篇:探讨出租车计价误差测量不确定度的评定论文

出租汽车计价器计费的使用情况

1.1 参数相同产生的误差

为方便了解出租车计价器使用的情况,我们以一辆租车为

样本,在不同的时间、相同地点、同一驾驶员,取十次实验样本.1.2 参数不同产生的误差

为了进一步了解出租汽车计价器产生误差的选因,现在选取不同的出租汽车在不同的时间、不同的地点、使用不同的驾驶员进行驾驶实验出租汽车计价器产生的误差。由于这类统计很难直接统计出每一次测试的参数,所以以不确定度产生的分类与该不确定度出现的状况进行统计.计价器产生误差的综合分析

2.1 综合误差分析

以实际情况来说,由于种种因素目前出租汽车计价器一定会出现误差,要让计价器的误差结果尽量减少,就要对误差产生的不确定性进行评定。

2.2 出租汽车轮胎修正系数与误差计算

由于出租汽车的滚轮运行的情况不一,有时可能会产生直

径的误差,它会使计价器产生误产。为了避免误差带来的计价

误差,因此有必要引进轮胎修正系数对出租汽车计价器产生的不确定度进行修正。目前现行的轮胎修正系数公式为:

C=(A/B-1)*100%

该公式的各项参数数值为:

C(单位:%):轮胎修正值;

A(单位:米):主滚轮上测出的左右驱动轮转5 周的平均值;

B(单位:米):在地面上测出的左右驱动轮转5 周的平均值。

以上轮胎修正系数被应用到出租汽车计价器计价公式中,目前现行的出租汽车计价器使用的公式为:

Dw=(D*(1+C)-Jd)/Jd*100%

该公式的各项参数数值为:

Dw(单位:%):使用误差;

D(单位:米):计价器显示的实际路程

C(单位:%):轮胎修正值;

Jd(单位:米):检定装置显示的里数;

误差值取相关规定的误差数+1.0%--4.0%

2.3 出租汽车计价器的误差评估方法

1)全程误差评估

全程进行评估,就要考虑到出租汽车每一米虽然产生的误差虽然很微小,然而如果出租汽车行驶的距离过长,经过积累,它可能会产生很大的误差,因此要对全程的误差进行评估。比如计程差行驶固定的距离后对可能产生的误差进行修正,使出租汽车的计价尽可能贴进真实的计价结果。

评估方法如下:假设将出租汽车计价器的初始值设定为k1,那么如果行驶D 公里后,可得到计价器的结果为Jd,如果引用轮胎修正系数可对全程误差进行评估,所得结果为:Jd/(1+C)/K1×D,应用该值可对全程产生的误差进行评估和修正。

2)分段误差评估

分段计算评估,是指出租汽车计价器每隔一段时间就可能会产生一个微小的误差,这个误差会不确定的、不均匀的分布。因此要对计程产生生的平均分段计算产生的误差进行评估并进行合理的修正,如果能不断的修整分段计算评估,就会在计算时减少全程误差的出现。

评估方法如下:根据以上全程评估结果,如果将之进行平均分段,如果检定装置中的实际里程为:Jd,那么实际上车辆行驶的里程为:Jd/(1+C),如果设计价器无误差的数值为k,那么计价器上显示的数值为:K×Jd/(1+C)。然而实际上出租汽车是会出现误差的,所以这个K 值为:

3)最大误差评估

最大误差计算是指出租汽车的计价器误差是不可避免的,然而为了让这种误差减少对计费的影响,所以必须将误差控制在一个范围以内,这个范围内的计价误差是允许的,如果出现更大的误差,就要对出租汽车与计价器进行调整。

出租汽车在实际行驶时,轮胎修正系数难以确定,因此以

上的公式可以简化为:

K=K1*D/Jd

依照目前的实际行驶情况,一般允许K 值在300-1000 以内浮动,新车通常设定为500。

4)整体误差评估

出租汽车在行驶时,如果出租汽车计价器经常使用,而不进行调整,有可能会出现计价器使用的参数已不再符合该出租汽车的实际情况,所以要针对出租汽车整体驾驶情况进行评估。目前是定期对出租汽车与计价器进行维护,将K 值控制在误差范围内。结语

出租汽车的计价器产生误差是难以避免的事情,为了使不确定性尽量减小,需针对它的分类并做好评估工作,才能对计价器进行合理修正,使出租汽车的计价更加准确。

第二篇:测量不确定度

测量不确定度

开放分类: 仪器、测量

测量不确定度是指“表征合理地赋予被测量之值的分散性,与测量结果相联系的参数”。

这个定义中的“合理”,意指应考虑到各种因素对测量的影响所做的修正,特别是测量应处于统计控制的状态下,即处于随机控制过程中。也就是说,测量是在重复性条件(见JJG1001-1998《通用计量术语及定义》第条,本文××条均指该规范的条款号)或复现性条件(见

条)下进行的,此时对同一被测量做多次测量,所得测量结果的分散性可按现性标准〔偏〕差sR表示。

条的贝塞尔公式算出,并用重复性标准〔偏〕差sr或复

定义中的“相联系”,意指测量不确定度是一个与测量结果“在一起”的参数,在测量结果(见整表示中应包括测量不确定度。

条)的完

测量不确定度从词义上理解,意味着对测量结果可信性、有效性的怀疑程度或不肯定程度,是定量说明测量结果的质量的一个参数。实际上由于测量不完善和人们的认识不足,所得的被测量值具有分散性,即每次测得的结果不是同一值,而是以一定的概率分散在某个区域内的许多个值。虽然客观存在的系统误差是一个不变值,但由于我们不能完全认知或掌握,只能认为它是以某种概率分布存在于某个区域内,而这种概率分布本身也具有分散性。测量不确定度就是说明被测量之值分散性的参数,它不说明测量结果是否接近真值。

为了表征这种分散性,测量不确定度用标准〔偏〕差表示。在实际使用中,往往希望知道测量结果的置信区间,因此,在本定义注1中规定:测量不确定度也可用标准〔偏〕差的倍数或说明了置信水准的区间的半宽度表示。为了区分这两种不同的表示方法,分别称它们为标准不确定度和扩展不确定度。

在实践中,测量不确定度可能来源于以下10个方面:

(1)对被测量的定义不完整或不完善;

(2)实现被测量的定义的方法不理想;

(3)取样的代表性不够,即被测量的样本不能代表所定义的被测量;

(4)对测量过程受环境影响的认识不周全,或对环境条件的测量与控制不完善;

(5)对模拟仪器的读数存在人为偏移;

(6)测量仪器的分辨力或鉴别力不够;

(7)赋与计量标准的值和参考物质(标准物质)的值不准;

(8)引用于数据计算的常量和其它参量不准;

(9)测量方法和测量程序的近似性和假定性;

(10)在表面上看来完全相同的条件下,被测量重复观测值的变化。

由此可见,测量不确定度一般来源于随机性和模糊性,前者归因于条件不充分,后者归因于事物本身概念不明确。这就使得测量不确定度一般由许多分量组成,其中一些分量可以用测量列结果(观测值)的统计分布来进行估算,并且以实验标准〔偏〕差(见

条)表征;而另一些分量可以用其它方法(根据经验或其它信息的假定概率分布)来进行估算,并且也以标准〔偏〕差表征。所有这些分量,应理解为都贡献给了分散性。若需要表示某分量是由某原因导致时,可以用随机效应导致的不确定度和系统效应导致的不确定度,而不要用“随机不确定度”和“系统不确定度”这两个业已过时或淘汰的术语。例如:由修正值和计量标准带来的不确定度分量,可以称之为系统效应导致的不确定度。

不确定度当由方差得出时,取其正平方根。当分散性的大小用说明了置信水准的区间的半宽度表示时,作为区间的半宽度取负值显然也是毫无意义的。当不确定度除以测量结果时,称之为相对不确定度,这是个无量纲量,通常以百分数或10的负数幂表示。

在测量不确定度的发展过程中,人们从传统上理解它是“表征(或说明)被测量真值所处范围的一个估计值(或参数)”;也有一段时期理解为“由测量结果给出的被测量估计值的可能误差的度量”。这些曾经使用过的定义,从概念上来说是一个发展和演变过程,它们涉及到被测量真值和测量误差这两个理想化的或理论上的概念(实际上是难以操作的未知量),而可以具体操作的则是现定义中测量结果的变化,即被测量之值的分散性。早在七十年代初,国际上已有越来越多的计量学者认识到使用“不确定度”代替“误差”更为科学,从此,不确定度这个术语逐渐在测量领域内被广泛应用。1978年国际计量局提出了实验不确定度表示建议书INC-1。1993年制定的《测量不确定度表示指南》得到了BIPM、OIML、ISO、IEC、IUPAC、IUPAP、IFCC

七个国际组织的批准,由ISO出版,是国际组织的重要权威文献。我国也已于1999年颁布了与之兼容的测量不确定度评定与表示计量技术规范。至此,测量不确定度评定成为检测和校准实验室必不可少的工作之一。由于测量不确定度的理论较新,在理解上有一定难度。本文就不确定度的一些特点进行讨论。

一、测量结果是一个区域

测量的目的是为了确定被测量的量值。测量结果的品质是量度测量结果可信程度的最重要的依据。测量不确定度就是对测量结果质量的定量表征,测量结果的可用性很大程度上取决于其不确定度的大小。所以,测量结果表述必须同时包含赋予被测量的值及与该值相关的测量不确定度,才是完整并有意义的。

表征合理地赋予被测量之值的分散性、与测量结果相联系的参数,称为测量不确定度。字典中不确定度(uncertainty)的定义为“变化、不可靠、不确知、不确定”。因此,广义上说,测量不确定度意味着对测量结果可信性、有效性的怀疑程度或不肯定程度。实际上,由于测量不完善和人们认识的不足,所得的被测量值具有分散性,即每次测得的结果不是同一值,而是以一定的概率分散在某个区域内的多个值。虽然客观存在的系统误差是一个相对确定的值,但由于我们无法完全认知或掌握它,而只能认为它是以某种概率分布于某区域内的,且这种概率分布本身也具有分散性。测量不确定度正是一个说明被测量之值分散性的参数,测量结果的不确定度反映了人们在对被测量值准确认识方面的不足。即使经过对已确定的系统误差的修正后,测量结果仍只是被测量值的一个估计

值,这是因为,不仅测量中存在的随机效应将产生不确定度,而且,不完全的系统效应修正也同样存在不确定度。

原来流量量传体系中要求上一级标准器的允许误差需小于下一级标准器的1/2~

1/3,不确定度理论的发展使得大家认可测量结果的不确定度按不确定度评定方法进行分析,当被测仪器重复性很好且测量过程得到较好控制时,两级标准器不确定度的差异可能会相差无几,这样就大大减少了传递过程中精度的损失,使得量值传递体系更为合理。

二、不确定度与误差

概率论、线性代数和积分变换是误差理论的数学基础,经过几十年的发展,误差理论已自成体系。实验标准差是分析误差的基本手段,也是不确定度理论的基础。因此从本质上说不确定度理论是在误差理论基础上发展起来的,其基本分析和计算方法是共同的。但在概念上存在比较大的差异。

测量不确定度表明赋予被测量之值的分散性,是通过对测量过程的分析和评定得出的一个区间。测量误差则是表明测量结果偏离真值的差值。经过修正的测量结果可能非常接近于真值(即误差很小),但由于认识不足,人们赋予它的值却落在一个较大区间内(即测量不确定度较大)。测量不确定度与测量误差在概念上有许多差异.三、不确定度的A类评定与B类评定

用对观测列的统计分析进行评定得出的标准不确定度称为A类标准不确定度,用不同于对观测列的统计分析来评定的标准不确定度称为B类标准不确定度。将不确定度分为“A”类与“B”类,仅为讨论方便,并不意味着两类评定之间存在本质上的区别,A类不确定度是

由一组观测得到的频率分布导出的概率密度函数得出:B类不确定度则是基于对一个事件发生的信任程度。它们都基于概率分布,并都用方差或标准差表征。两类不确定度不存在那一类较为可靠的问题。一般来说,A类比B类较为客观,并具有统计学上的严格性。测量的独立性、是否处于统计控制状态和测量次数决定A类不确定度的可靠性。

“A”、“B”两类不确定度与“随机误差”与“系统误差”的分类之间不存在简单的对应关系。“随机”与“系统”表示误差的两种不同的性质,“A”类与“B”类表示不确定度的两种不同的评定方法。随机误差与系统误差的合成是没有确定的原则可遵循的,造成对实验结果处理时的差异和混乱。而A类不确定度与B类不确定度在合成时均采用标准不确定度,这也是不确定度理论的进步之一。

第三篇:钢卷尺示值误差测量结果不确定度评定

钢卷尺示值误差测量结果不确定度评定

1、测量方法:将被检钢卷尺和标准钢卷尺平铺在检定台上,并分别加以相应的拉力后,被检钢卷尺与标准钢卷尺进行比较测量。两者之差即为比较钢卷尺的示值误差。当比较钢卷尺的标称长度大于5m时,采用分段方法进行检测(以30米比较钢卷尺,5m标准钢卷尺及检定台分6段为例)。

2、数学模型

LLLs20(t20)(12)LL

其中:(t20)(12)L为被检尺与标准尺偏离20℃的温度修正,当普通钢卷尺不进行温度修正时,则公式为:

LLLs20L

即:LLLLs20

设:aiLL;a0Ls20;Laa0 式中:L——被检钢卷尺示值误差(mm); ; a——被检钢卷尺测量值(mm)。a0——标准值(mm)

3、方差和灵敏系数

f2依据

ucu2(xi)

x2ucu2(L)c2(a)u2(a)c2(a0)u2(a0)2式中:c(a)(L)(L)1,c(a0)1 aa0222 ucu2(L)uaua0当被检钢卷尺的标称长度大于5m时,采用分段方法检测:被检钢卷尺全长示值误差:

L全i(a1a0)(a2a0)(a3a0)(aia0)aina0

i1i1nn式中:L全——被检钢卷尺全长示值误差(mm);

; ai——第i段被检钢卷尺测量值(mm); a0——标准值(mm)n——分段数。

灵敏系数:LLLLLn。1,a0aia1a2ai4、标准不确定度分量来源及评定

4.1、由标准钢卷尺标准值引入的不确定度分量ua0 4.1.1、标准钢卷尺的测量不确定度引入的不确定度分量ua01

根据JJG741-2005《标准钢卷尺》计量检定规程的规定,标准钢卷尺的测量不确定度为:

U(55L)m,k2

因此:当L=5m时:u01(555)/20.015mm=15m 4.1.2、标准钢卷尺示值稳定性引入的不确定度分量ua02

根据JJG741-2005《标准钢卷尺》计量检定规程的规定,标准钢卷尺示值误差的年变化量不超过0.01Lmm,因此,当L5m时年变化量不超过0.05mm,其属于半宽为0.025mm的均匀分布,覆盖因子k3

当L5m时:u020.025/314m 4.1.3、由拉力偏差给出的不确定度分量u03

L103p

9.8EF由拉力引起的偏差为:

式中:L——标准钢卷尺的长度;

p——拉力偏差,由JJG741-2005《标准钢卷尺》计量检定规程中给出p0.5N;

E——弹性系数E=20000kg/mm2; F——标准钢卷尺尺带横截面积;

取尺带横截面的宽度12mm;厚度为0.22mm;则F=2.64mm2 L1030.59.66104L 即:9.8200002.64拉力偏差以相等的概率出现在半宽为0.5N的区间,故:k3 当L5m时,u039.661045/30.0048/32.8m 标准钢卷尺标准值引入的不确定度分量ua0: 当L5m时,ua0222uauaua1521422.8221m 0102034.2、被检钢卷尺测量值引入的标准不确定度分量ua 4.2.1、测量重复性引入的不确定度分量ua1

采用0.01mm的读数显微镜对被检钢卷尺等精度独立测量10次,实验标准偏差ua140m 4.2.2、被检钢卷尺拉力偏差引入的标准不确定度分量ua2 根据JG4-1999《钢卷尺》计量检定规程规定,拉力偏差p1N 取尺带横截面宽度为10mm,厚度为0.14mm,则F=1.40mm2 同上文由拉力引起的偏差为3.6410L

k当L=5m时,ua23.641045/311m 4.2.3、线膨胀系数差引入的标准不确定度分量ua3

标准钢卷尺与被检钢卷尺线膨胀系数均为11.510℃,两种材料线膨胀系数界限在6143

(11.52)106℃1的范围内,以相同的概率出现在4×10-6℃-1区间内,属于半宽为2×10-6℃-1的均匀分布,包含因子-6k则:

根据JG4-1999《钢卷尺》计量检定规程规定,检定温度为(20±5)℃,温度偏离20℃的极限值为t5℃,故:

ua2L103tu

因此,当L=5m时,ua351051.15103629m

4.2.4、标准钢卷尺与被检钢卷尺之间的温度差引入的标准不确定度分量ua4 在测量时,标准钢卷尺与被检钢卷尺都需要在符合要求的温度环境条件下,充分地等温后才能读数。因此,两者之间的温度差tp不大于0.5℃,线膨胀系数1410℃,受检点L=5m,服从均匀分布(包含因子k613)

于是:ua3Ltpb5103141060.50.621m 被检钢卷尺测量值引入的标准不确定度分量为 当L=5m时,ua2222ua40211229221255m 1ua2ua3ua4

5、合成标准不确定度uc

根据上述标准不确定度分量间互不相关性,合成标准不确定度为:

22222uc2u2(L)uauanunu0 a0当L=5m

uc55221259m

当被检钢卷尺标称长度大于5m标准钢卷尺的长度时,采用分段方法进行检测。被检钢卷尺全长示值误差的测量不确定度为:

当L=5m

n=1

ucnuanua0uaua055

21uc0.059mm

当L=10m

n=2

ucnuanua02ua2ua0255421

uc0.088mm

当L=30m

n=6

ucnuanua06ua6ua0655621

uc0.185mm

当L=50m

n=10

ucnuanua010ua10ua010551021

uc0.273mm

6、扩展不确定度U

******2222222Ukuc

k2

当L=5m时:Ukuc20.0590.12mm,k2 当L=10m时:Ukuc20.0880.18mm,k2 当L=30m时:Ukuc20.1850.37mm,k2 当L=50m时:Ukuc20.2730.55mm,k2

第四篇:5m钢卷尺示值误差测量结果不确定度评定(精)

钢卷尺示值误差测量结果不确定度评定报告

1.概述

1.1测量方法:JJG4-1999《钢卷尺检定规程》。1.2环境条件:温度(20±5)℃,相对湿度≤75%。1.3测量标准:标准钢卷尺。

Ⅰ级标准钢卷尺最大允许示值误差为±(0.03+0.03L)mm 1.4被测对象:钢卷尺。Ⅰ级钢卷尺最大允许示值误差为±(0.1+0.1L)mm;Ⅱ级钢卷尺最大允许示值误差为±(0.3+0.2L)mm;本文以5m钢卷尺为例,即而得出不同规格钢卷尺的示值误差测量结果不确定度。

2.数学模型 ΔL = Δe 式中:ΔL—钢卷尺的示值误差;

Δe— 0~5m段钢卷尺在标准钢卷尺所对应的偏差读数值。3.输入量Δe的标准不确定度的评定

输入量Δe的标准不确定来源主要是测量重复性引起的标准不确定度分项u(Δe1);校准钢卷尺时人眼分辨率引起的标准不确定度分项u(Δe2);标准钢卷尺示值误差引起的标准不确定度分项u(Δe3);拉力误差引起的标准不确定度分项u(Δe4);线膨胀系数不同,当温度偏离标准温度20℃时引起的标准不确定度分项u(Δe5);被校准钢卷尺和标准钢卷尺各自线膨胀系数有不确定度,当温度偏离标准温度20℃时引起的标准不确定度分项u(Δe6);钢卷尺和标准钢卷尺温度差引起的标准不确定度分项u(Δe7)。

3.1 测量重复性引起的标准不确定度分项u(Δe1)的评定(采用A类方法进行评定)将被校准钢卷尺安放在检定台上,使其与标准钢卷尺平行,并使被校准钢卷尺和标准钢卷尺零位对齐,然后读出5m处示

值误差,作为一次测量过程。重复上述过程,在重复性条件下连续测量10次,得一测量列为:5000.3;5000.3;5000.2;5000.2;5000.3; 5000.3;5000.3;5000.2;5000.3;5000.3平均值 = 5000.27mm

单次实验标准差

所以 u(Δe1)=s =0.049mm 3.2 校准钢卷尺时人眼分辨率引起的标准不确定度分项u(Δe2)的评定(采用B类方法进行评定)

由于每次测量人眼分辨率大致为0.1mm,包含因子k为次测量

带有两次人眼分辨率误差,故,由于一u(Δe2)= = 0.041mm 3.3 标准钢卷尺示值误差引起的不确定度分项u(Δe3)的评定(采用B类方法进行评定)。

根据JJG741-2005《标准钢卷尺检定规程》,Ι级标准钢卷尺最大允许示值误差为±(0.03+0.03L)mm,半宽a为(0.03+0.03L)mm;认为其服从正态分布,包含因子k为3,则L以5m代入:

u(Δe3)=(0.03+0.03L)/3 = 0.06mm

3.4 由拉力误差给出的标准不确定度分项u(Δe4)的评定(采用B类方法进行评定)

由拉力引起的误差为:

δ= L×103×Δp/(9.8×E×F)(mm)式中: L—钢卷尺的长度,以m为单位取值;

Δp— 拉力偏差,由JJG741-1991《标准钢卷尺检定规程》知Δp≤0.5N;

E— 弹性系数,E=20000kg/mm2

F—钢卷尺的横截面积,该尺的横截面宽度为12mm,其厚度为0.22mm(F=12×0.22mm2)。

δ=9.66×10-4L(mm)

拉力误差Δp以相等的概率出现在半宽为0.5N的区间,认为其服从均匀分布,包含因子k取。由于被校准钢卷尺和标准钢卷尺都需加一定的拉力,故拉力误差在5m测量过程中影响两次。

3.5 两者线膨胀系数不同,当温度偏离标准温度20℃时引起的标准不确定度分项u(Δe5)的评定(采用B类方法进行评定)

钢卷尺的线膨胀系数为(11.5±1)×10-6/℃,而标准钢卷尺的线膨胀系数为(10.8±1)×10-6/℃,两者线膨胀系数中心值之差Δα=0.7×10-6/℃, Δt在半宽α为2℃范围内服从均匀分布,包含因子k为,L以5m代入,得 =L×103×α×Δα/

=0.004mm 3.6 被校准钢卷尺和标准钢卷尺线膨胀系数都存在不确定度,当温度偏离标准温度20℃时引起的标准不确定度分项u(Δe6)的评定(采用B类方法进行评定)

由于钢卷尺线膨胀系数和标准钢卷尺的线膨胀系数在(11.5±1)

×10-6/℃

和(10.8±1)×10-6/℃的范围内等概率分布,两者线膨胀系数之差Δα应在(0.7±2)×10-6/℃范围内服从三角分布,该三角分布半宽α为2×10-6/℃,包含因子k取得,L以5m代入,Δt以2℃代入,u(Δe6)=L×103×Δt×α/=0.0082mm 3.7 标准钢卷尺和被校钢卷尺温度差引起的标准不确定度分项u(Δe7)的评定(采用B类方法进行评定)

原则上要求标准钢卷尺和被校钢卷尺温度达到平衡后进行测量,但实际测量时,两者有一定温度差Δt存在,假定Δt在±0.1℃范围内等概率分布,则该分布半宽α为0.1℃,包含因子k取,L以5m代入,α以11.5×10-6/℃代入得标准不确定度分项u(Δe7)为

u(Δe7)=L×103×α×α/=0.0033mm 3.8 输入量Δe得标准不确定度的计算

= 0.055mm

4.合成标准不确定度的评定4.1 灵敏系数

数学模型 ΔL=Δe 灵敏系数

4.2 合成标准不确定度的计算

合成标准不确定度可按下式得

uc2(ΔL=[cu(Δe]2

uc(ΔL=0.055mm 5.扩展不确定度的评定

取包含因子k=2, 扩展不确定度为

U=k×uc(ΔL=2×0.055mm=0.11mm

6.测量不确定度的报告与表示

5m钢卷尺示值误差测量结果扩展不确定度为

U=0.11mm,k=2

第五篇:JJF 1135-2005_化学分析测量不确定度评定

JJF 1135-2005 化学分析测量不确定度评定

基本信息

【英文名称】Evaluation of Uncertainty in Chemical Analysis Measurement 【标准状态】现行 【全文语种】中文简体 【发布日期】2005/9/5 【实施日期】2005/12/5 【修订日期】2005/9/5 【中国标准分类号】暂无 【国际标准分类号】暂无

关联标准

【代替标准】暂无 【被代替标准】暂无

【引用标准】JJF 1059-1999,JJF 1001-1998,JJF 1071-2000,EURACHEM/CITAC Guide Quantifying Uncertainty in Analytical Measurement,ISO 5725

适用范围&文摘

本规范适宜 和于所有准确度要求的化学分析测量和从基础研究到例行分析测量的各个领域。例如:

a)建立国家化学计量基、标准及国际比对;b)标准物质的研制;c)化学测量方法的制定与评价、能力验证;d)化学分析仪器的检定/校准、型式评价;e)化学测量研究、开发和产品仲裁检验;f)科研、生产中的质量控制、质量保证等

下载探讨出租车计价误差测量不确定度的评定论文(范文大全)word格式文档
下载探讨出租车计价误差测量不确定度的评定论文(范文大全).doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    测量不确定度评定的简化应用

    最新【精品】范文 参考文献专业论文 测量不确定度评定的简化应用 测量不确定度评定的简化应用 摘要:测量不确定度评定是计量专业实验数据处理中的一项重要内容,但由于应用......

    JJF 1059.2-2012_用蒙特卡洛法评定测量不确定度

    JJF 1059.2-2012 用蒙特卡洛法评定测量不确定度 基本信息 【英文名称】Monte Carlo Method for Evaluation of Measurement Uncertainty 【标准状态】现行 【全文语种】中文......

    GB_T 27759-2011_流体流量测量 不确定度评定程序

    GB/T 27759-2011 流体流量测量 不确定度评定程序 基本信息 【英文名称】Measurement of fluid flow―Procedures for the evaluation of uncertainties 【标准状态】现行 【......

    JJF 1059.1-2012_测量不确定度评定与表示(推荐阅读)

    JJF 1059.1-2012 测量不确定度评定与表示 基本信息 【英文名称】Evaluation and Expression of Uncertainty in Measurement 【标准状态】现行 【全文语种】中文简体 【发布......

    标准不确定度的A类评定

    标准不确定度的A类评定 减小字体 增大字体 作者:李慎安 来源:www.xiexiebang.com 发布时间:2007-04-28 08:52:07 计量培训:测量不确定度表述讲座 国家质量技术监督局 李慎安 5.1......

    平面度误差的测量(5篇)

    平面度误差的测量 一、实验目的 1.了解平面度误差的测量原理及千分表的使用方法。 2.掌握平面度误差的评定方法级数据处理。 二、实验内容 用千分表测量平面度误差。 三、测量......

    垂直度误差、位置度误差的测量

    任务五 垂直度误差、位置度误差的测量 【课题名称】平面零件的误差测量 【教学目标与要求】 一、 知识目标 了解线、面垂直度误差和面对称度误差的检测工具及测量方法。 二......

    测量不确定度评估和报告通用要求

    CNAS—CL07 测量不确定度的要求 Requirements for Measurement Uncertainty (征求意见稿) 中国合格评定国家认可委员会 CNAS-CL07:2011 第 1 页 共 10 页 目录 前言…………......