1~100圆周率倍数表(五篇材料)

时间:2021-02-12 11:43:22下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《1~100圆周率倍数表》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《1~100圆周率倍数表》。

第一篇:1~100圆周率倍数表

1~100 圆周率倍数表

第二篇:圆周率快速记忆法

一、背圆周率的口诀

.1

山巅一寺一壶酒,尔乐苦煞吾,把酒吃,酒杀尔,杀不死,乐尔乐。

0

死珊珊,霸占二妻。

救吾灵儿吧!

不只要救妻,一路救三舅,救三妻。

0

0

0

吾一拎我爸,二拎舅(其实就是撕吾舅耳)三拎妻。

0

0

不要溜!司令溜,儿不溜!儿拎爸,久久不溜!

0

0

饿不拎,闪死爸,而吾真是饿矣!要吃人肉?吃酒吧!

(作者华罗庚)

来历:有个教书先生,喜欢喝酒,每次总是给学生留道题,就到私塾的后山上找山上的老和尚喝酒。这天,他给学生留了道题,就是背这个圆周率,然后自己提壶酒就到山上的庙里去了。圆周率位数这么多,不好背啊,其中有个聪明的学生就想出了一个办法,把圆周率编了个打油诗:山巅一寺一壶酒,尔乐苦煞吾,把酒吃;酒杀尔杀不死,乐尔乐。其实就是3.14***932384626的谐音。先生一回来,学生居然都把这个给背了下来,很是奇怪,一想,就什么都明白了,原来是在讽刺他呀……

中国人用的是谐音记忆法

二、10分钟教你记下圆周率前100位

请看下面一则小故事(留意故事主要人物哦)

PART1:

老王拿着一把钥匙交给一只鹦鹉让她自己回家。鹦鹉走在路上看到地上有个球儿,于是奋力一踢,结果球儿砸破了一户人家的锣鼓,锣鼓里面有很多珊瑚碎落一地,掉在旁边的芭蕉树下,芭蕉树上绑着一个气球。突然,远方飞来一只仙鹤,不小心戳破了气球,自己受到惊吓掉了下去,刚好被下面的沙发接住,沙发旁还放着一桌的石榴,仙鹤就在那翘着二郎腿开心的吃着石榴了。

看完以上的故事,闭上眼睛回忆一下,看看能不能把红色主要情节回忆出来。

如果你做到了,那么恭喜你,你已经把圆周率前20位记忆下来了!!

钥匙---14

鹦鹉--15

球儿--92

锣鼓--65

珊瑚--35

芭蕉--89

气球--79

仙鹤--32

沙发--38

石榴--46

应用同样的方法,我们可以记忆圆周率之后的80位,甚至更多····

我们不妨自己开始用这样的故事串联的方式去记忆下面4组数字。

第三篇:圆周率记忆训练

圆周率记忆训练

我先举例记忆圆周率前100位,首先就是将这100位数字转化成50个词语,然后利用奇象连锁记忆法串成故事来记忆。若不会转化的朋友请看我博客中数字转码记忆训练。

1415926535 8979323846 2643383279 5028841971 6939937510 5820974944 5923078164 0628620899 8628034825 3421170679 钥匙 鹦鹉 球儿 老虎 珊瑚 八角 气球 扇儿 妇女 石榴 按钮 死山 妇女 扇儿 气球 孙悟空 恶霸 巴士汽车 药酒 奇异果 牛角 三角裤 旧伞 气雾 衣领

尾巴 自行车 紫荆花旗 狮狗 石狮 五角星 耳塞 令旗 白蚁 牛屎 羚牛 恶霸 驴儿 泥巴 救护车 八路军 恶霸 灵山佛 丝瓜 二胡 三丝 鳄鱼 仪器 羚牛 气球

记忆方法:

钥匙插在鹦鹉的背上,鹦鹉吐出一个球儿,球儿砸到了老虎,老虎栽进了珊瑚里,珊瑚里长出了很多八角,八角刺破了气球,气球爆炸后掉出一把扇儿,扇儿上画着一个妇女,妇女正在吃石榴,石榴里钻出来一个按钮,按钮一按启动了死山,死山里喷出很多妇女,妇女拿着扇儿,扇儿拍打着气球,气球下面掉着一个孙悟空,孙悟空去追杀恶霸,恶霸跑上了巴士汽车上,巴士汽车座位上摆着很多药酒,药酒里泡着奇异果,奇异果里冒出个牛角,牛角上挂着一个三角裤,三角裤掉到了旧伞上,旧伞打开后喷出了气雾,气雾喷到了衣领上,衣领里挂着一条尾巴,尾巴缠住了自行车,自行车上铺着紫荆花旗,紫荆花旗披在了狮狗身上,狮狗跳到了石狮的头上,石狮嘴里叼着一个五角星,五角星带着耳塞,耳塞上插着一个令旗,令旗上爬满了白蚁,白蚁在吃牛屎,牛屎中

冒出一只羚牛,羚牛顶个恶霸的屁股,恶霸踢了驴儿一脚,驴儿全身涂满了泥巴,泥巴溅到了救护车上,救护车上坐着一个八路军,八路军去抓恶霸,恶霸跑到了灵山佛,灵山佛在吃丝瓜,丝瓜在拉二胡,二胡弹出了三丝,三丝掉到了鳄鱼的眼睛上,鳄鱼在吞仪器,仪器砸到了羚牛,羚牛在吹气球。

背诵圆周率的好处

1、快速提高注意力: 背数字的过程是一个注意力相当集中的过程,这必然延长孩子精神专注的时间,从而培养良好的长时间专注的品质,对终生有益。

2、快速提高记忆力,增强自信心: 数字没有意义,相互之间缺乏联系,背诵起来只有靠各种记忆方法才能快速高效。所以,当不断地练习以“脑图像”为主的多种记忆方法后,可以快速激发孩子记忆潜能,迅速提高记忆能力。

3、提高自信心: 正反背数字,可作为孩子的一个特长去展现,有助于他们提高自信心。迅速提高记忆力后,让孩子只读2—3遍就能完成过去读5—20遍才能完成的背诵作业,为他们节约了时间,同时还让他们在学习过程中产生成就感,为成长为自觉、主动的学习者奠定了基础。

4、发展形象思维能力: 背数字,特别是倒背,需要孩子在大脑中呈现出数字的形象才能完成,这必然促进孩子形象思维能力的发展。

5、发展逻辑思维能力: 要使30—100位甚至更多毫无规律的数字正反背下来,就要求孩子在运用形象思维的同时,辅之以一定的逻辑思维,将数字人为地建立起相关联系。这,必然在一定程度上发展了孩子的逻辑思维能力。

6、发展创造性思维能力: 在背诵数字的过程中,每个孩子进行的记忆方法整合并不相同,也就是各有其创造特点。这也是一个很好的发展创造性思维的过程。

7、提高左右脑协调并用能力: 在记背数字的过程中,主管形象思维的右脑和主管逻辑思维的左脑要协调作战、脑细胞活跃程度相当高,对大脑潜能的开发非常。

圆周率背诵记录

日本人的记录:日本人友寄英哲于1995年创造的无差错背诵小数点后第42195位;

英国人的记录:在英国牛津大学科学历史博物馆礼堂内众多专家和观众面前,为了替英国“癫痫症治疗协会”募集资金,英国肯特郡亨里湾的丹尼尔·塔曼特在5小时之内成功地将圆周率背诵到了小数点后面22514位!它是目前欧洲背诵圆周率小数点后数字最多的人; 中国人的记录:西北农林科技大学硕士研究生吕超用24小时零4分钟,不间断无差错地背诵圆周率至小数点后67890位;

经典案例

我国著名科学家茅以升,年幼上学时通过刻苦努力,能背诵圆周率小数点后面100位数字,一次在新年同乐晚会上,他当众精确背出圆周率值一百位,使同学们惊讶不已。此后他常年坚持,把背诵圚率100位作为脑子锻炼的一项活动,所以即使到了晚年,他仍能背出圆周率值一百位,由于他深感背诵圆周率对锻炼脑子有好处,所以也要求子女背诵圆周率100位。

以下是圆周率前1000位数据

π=3.1415926535 8979323846 2643383279 5028841971 6939937510(: 50)5820974944 5923078164 0628620899 8628034825 3421170679(: 100)8214808651 3282306647 0938446095 5058223172 5359408128(: 150)4811174502 8410270193 8521105559 6446229489 5493038196(: 200)4428810975 6659334461 2847564823 3786783165 2712019091(: 250)4564856692 3460348610 4543266482 1339360726 0249141273(: 300)7245870066 0631558817 4881520920 9628292540 9171536436(: 350)7892590360 0113305305 4882046652 1384146951 9415116094(: 400)3305727036 5759591953 0921861173 8193261179 3105118548(: 450)0744623799 6274956735 1885752724 8912279381 8301194912(: 500)9833673362 4406566430 8602139494 6395224737 1907021798(: 550)6094370277 0539217176 2931767523 8467481846 7669405132(: 600)0005681271 4526356082 7785771342 7577896091 7363717872(: 650)1468440901 2249534301 4654958537 1050792279 6892589235(: 700)4201995611 2129021960 8640344181 5981362977 4771309960(: 750)5187072113 4999999837 2978049951 0597317328 1609631859(: 800)5024459455 3469083026 4252230825 3344685035 2619311881(: 850)7101000313 7838752886 5875332083 8142061717 7669147303(: 900)5982534904 2875546873 1159562863 8823537875 9375195778(: 950)

1857780532 1712268066 1300192787 6611195909 2164201989(: 1000)

第四篇:圆周率的故事

历史上求圆周率的故事

古今中外,许多人致力于圆周率的研究与计算。为了计算出圆周率的越来越好的近似值,一代代的数学家为这个神秘的数贡献了无数的时间与心血。十九世纪前,圆周率的计算进展相当缓慢,十九世纪后,计算圆周率的世界纪录频频创新。整个十九世纪,可以说是圆周率的手工计算量最大的世纪。

进入二十世纪,随着计算机的发明,圆周率的计算有了突飞猛进。借助于超级计算机,人们已经得到了圆周率的2061亿位精度。

历史上最马拉松式的计算,其一是德国的鲁道夫,他几乎耗尽了一生的时间,计算到圆的内接正262边形,于1609年得到了圆周率的35位精度值,以至于圆周率在德国被称为鲁道夫数;其二是英国的威廉·山克斯,他耗费了15年的光阴,在1874年算出了圆周率的小数点后707位,并将其刻在了墓碑上作为一生的荣誉。可惜,后人发现,他从第528位开始就算错了。

把圆周率的数值算得这么精确,实际意义并不大。现代科技领域使用的圆周率值,有十几位已经足够了。如果用鲁道夫算出的35位精度的圆周率值,来计算一个能把太阳系包起来的一个圆的周长,误差还不到质子直径的百万分之一。以前的人计算圆周率,是要探究圆周率是否循环小数。自从1761年兰伯特证明了圆周率是无理数,1882年林德曼证明了圆周率是超越数后,圆周率的神秘面纱就被揭开了。

现在的人计算圆周率,多数是为了验证计算机的计算能力,还有,就是为了兴趣。

据说,从前有位私塾先生,经常想出怪招来惩罚学生,而他自己却溜出去玩。有一次上课时,一位学生调皮,老师罚所有学生放学后留下背出圆周率小数点后20位数字才能回家,而他自己却跑到山顶上的一个寺庙里与和尚喝酒。大家很郁闷,怎么也背不出来。一位学生看看自己、想想老师,灵感勃发,用了谐音的方法编了一套顺口溜,迅速背出了圆周率:“山巅一寺一壶酒(3.14159),尔乐苦煞吾(26535),把酒吃(897),酒杀尔(932),杀不死(384),乐尔乐(626)”。老师回来,一看大家能在很短的时间内能把圆周率背到小数点后22位,惊诧不已;听着大家背诵的内容,不由得脸红了。

大家都知道,我国南北朝时的祖冲之最早把圆周率到在3.1415926和3.1415927之间。他按照当时计算使用分数的习惯,祖冲之还采用了两个分数值的圆周率:“约率”22 / 7(或称之为“疏率”)以及“密率”355 / 113,比欧洲人早了1000多年。

我国桥梁专家茅以升小时候为了锻炼自己的记忆力和毅力,能把圆周率背到小数点后100多位。

一项数字世界里的新世界纪录于日前诞生:一名日本人Akira Haraguchi将圆周率π算到了小数点后的83431位。在一个现场解说验证活动中,这名孜孜不倦的59岁老人向观众讲解了长达13个小时,最终获得认同。这一纪录已经被收入了Guinness世界大全中。

据报道,此前的纪录是由一名日本学生于1995年计算出的,当时的精度是小数点后的42000位。

第五篇:圆周率的故事

圆周率的故事

标签: 圆周率

圆,是人类最早认识的一种曲线,也是用途最广的一种曲线。还在遥远的古代,火红的太阳、皎洁的月亮、清晨的露珠,以及动物的眼睛,水面的波纹,都给人以圆的启示。现代,从滚动的车轮到日常用品,从旋转的机器到航天飞船,到处都有圆的身影。人们的生活与圆早已结下了不解之缘。圆,以它无比美丽的身影带给人们无限美好的遐想。圆满、团圆,这些美妙的词语寄托了人们多少美好和幸福的憧憬!

圆周率是圆的灵魂,是圆的化身,可是这位仙子,却迟迟不肯揭开她那神秘的面纱。

人们对圆周率的认识经历了漫长的历史岁月,许多数学家为此献出了毕生的精力。现在,就让我们穿过时间隧道,与这些伟大的数学家作一次亲密接触吧!

早在三千多年以前的周朝,我们的祖先就从实践中认识到圆的周长大约是直径的3倍,所以在距今2000多年前的西汉初年,在我国最古老的数学著作《周髀算经》里就有了“周三径一”的记载。

随着生产的发展和文明的进步,对圆周率精确度的要求越来越高。西汉末年,数学家刘歆提出把圆周率定为3.1547。到了东汉,张衡——就是那位发明候风地动仪的天文学家,建议把圆周率定为3.1622。但是,这两种建议都因为缺乏科学依据而很少有人采用。一直到了公元263年,三国时期魏国的刘徽创立了割圆术,才使圆周率的计算走上了科学的道路。

什么是割圆术呢?原来,刘徽在整理我国古老的数学著作《九章算术》时发现,所谓的“周三径一”,实质上是把圆的内接正6边形的周长作为圆的周长的结果。于是他想到:如果用圆的内接正12边形、24边形、48边形、96边形……的周长作为圆的周长,岂不是更加精确。这就是割圆术。用他自己的话说就是:“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣。”但是,因为计算过程随着边数的增加越来越复杂,限于当时的条件,刘徽只计算到圆的内接正96边形,使圆周率精确到两位小数,得到3.14。后来,刘徽又算到圆的内接正3072边形,使圆周率精确到四位小数,得到3.1416。还记得,我们那一代人上小学的时候,圆周率用的就是这个值。

又过了大约200年,到了南北朝的时候,我国出了一位大数学家,也是天文历算学家祖冲之。祖冲之于公元429年4月20日出生于范阳郡遒县(现在的河北省涞水县)。他小时候没上过什么学,也没得到过什么名师指点,但是他自学非常刻苦,尤其是对天文、数学有着浓厚的兴趣。他广泛搜集认真阅读了前人有关天文、数学的许多著作,却从来不盲目接受,总要亲自进行测量和推算。公元460年,他采用刘徽的割圆术,一直算到圆的内接12288边形,推算出圆周率应该在3.1415926到3.1415927之间。同时,他还提出用两个分数作为圆周率的近似值,一个是22/7,叫“疏率”,约等于3.142857;另一个是355/113,叫“密率”,约等于3.1415929。祖冲之对圆周率的计算,开创了一项世界纪录,比欧洲早了一千多年。国际上为了纪念这位伟大的中国数学家,把3.1415926称为“祖率”,并把月球上的一座环形山命名为“祖冲之山”。这是我们中华民族的骄傲。

向往完美,向往精确是人类的天性。尽量把圆周率算得准确一点,一直成为人们的不懈追求。

在古希腊,人们也是把圆周率取为3。后来也发现了疏率22/7,直到1573年,德国数学家奥托才发现了密率355/113,比祖冲之晚了1113年。

在古埃及的纸草书(以草为纸写的书)中,有一道计算圆形土地面积的题目,所用的方法是:圆的面积等于直径减去直径的1/9,然后再平方。如果我们假设半径为1,直径就是2,圆的面积就是2÷9×8再平方,约等于3.16,也就是说圆周率约等于3.16。(因为S=πr2,当r=1时,S=π。)

1593年,荷兰数学家罗梅,用割圆术把圆周率算到了小数点后15位,虽然打破了祖冲之的纪录,但是已时隔1133年。

1610年,德国数学家卢道夫,用割圆术使π值精确到小数点后第35位,几乎耗费了他一生的大部分心血。

随着数学的发展,人们又陆续发明了另外一些计算圆周率的方法。

1737年,经过瑞士大数学家欧拉的倡导,人们开始广泛地使用希腊字母π表示圆周率。1761年,德国数学家兰伯特证明了π是一个无限不循环小数。

1873年,英国的向克斯用了20年的精力,把π值计算到小数点后707位。可惜后来有人用电脑证明,向克斯的计算结果,在小数点后第528位上发生了错误,以致后面的179位毫无意义。一个数字之差使向克斯白白耗费了十多年的精力!他的失误警示人们,科学上容不得半点疏忽。这个教训值得我们永远记取。

随着电脑的不断升级换代,π值的计算不断向前推进,早在上个世纪80年代末,日本人金田正康已将π值算到了小数点后133554000位。当代,π值的计算已经成为评价电子计算机性能的指标之一。

最后,还有两件与圆周率有关的趣事不能不谈。

第一件:1777年,法国数学家布丰用他设计的,看似与圆周率毫无关系的“投针试验”,求出圆周率的近似值是3.12。1901年意大利数学家拉兹瑞尼用“布丰投针试验”求出圆周率的近似值是3.1415929。至于什么是“布丰投针试验”,请看拙文“布丰投针试验的故事”。

第二件:用普通的电子计算器就能算出圆周率的高精度近似值。算式是:

1.09999901×1.19999911×1.39999931×1.69999961≈3.141592573…

这几个小数很好记,如果不看小数点的话四个因数都是对称的,中间是5个9,前面两位分别是10、11、13、16,后面两位分别是01、11、31、61。至于是什么道理,不清楚。据我猜测,很可能是某位有心人,殚精竭虑编出的一道趣味数学题。

无独有偶,下面这些由十个不同数字组成的算式,也可以算出圆周率的高度近似值。

76591÷24380

95761÷3048

239480÷12567 97468÷3102

537869÷1205

495147÷30286

49270÷1568

383159÷26470

78960÷25134 显然,这些题目中的数字是凑出来的,渗透了创编者的良苦用心。

在分享了上面这些算式带给我们的惊喜和启迪之余,不禁要对这两位数学爱好者表示崇高的敬意!

几千年来,圆周率精确值不断推进的过程,反映了人类崇高的科学精神,闪烁着人类智慧的光芒,同时也让热爱数学、甘愿为数学献身的人们充分感受到数学的无比美妙,享受到数学给予他们的无限幸福。

在相当长的一段历史时期内,人们往往用圆周率的精确程度,作为衡量一个国家、一个民族数学发展水平的标志。我国古代数学一直处于世界领先的地位,作为炎黄子孙,我们一定要继承祖先的光荣传统。而作为小学数学教师,一定要教育我们的学生,学无止境,科学的发展也没有止境,一座座科学高峰正等待着他们去攀登。刘徽、祖冲之、卢道夫……这些光辉的名字永远是鼓舞全人类前进的榜样。

下载1~100圆周率倍数表(五篇材料)word格式文档
下载1~100圆周率倍数表(五篇材料).doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    百数表教学设计

    《百数表》教案 教学目标: 1.通过填写、观察百数表,使学生更清楚地了解100以内数的排列顺序,构建数与数之间的关系,为后面比较数的大小做准备。 2.通过观察、分析百数表,探究发......

    百数表教学反思

    百数表教学反思7篇 百数表教学反思1 对学习素材感兴趣,产生主动学习的愿望,是学生主动探索的重要前提。百数表是孩子们第一次接触,因为之前有了百数图,教师又告诉大家百数表里藏......

    背圆周率的口诀

    【背圆周率的口诀】 3 . 1 4 1 5 9 2 6 5 3 5 8 9 7 9 3 2 3 8 4 6 2 6 山顶一寺一壶酒,尔乐苦煞吾,把酒吃,酒杀尔,杀不死,乐尔乐。4 3 3 8 3 2 7 9 5 0 2 8 8 4 1 9 7 1 6 9 3......

    圆周率的教学[合集]

    教学目标小精灵儿童网站 结合圆周率发展历史的阅读,体会人类对数学知识的不断探索过程,感受数学文化的魅力,激发民族自豪感。 教学过程:一、 情境引入 课件回放教材14页第一幅......

    圆周率π的计算历程

    圆周率π的计算历程 一、教学目标:1、认识圆周率的无限不循环性; 2、了解圆周率的计算和我国著名数学家在计算圆周率上的贡献; 3、培养学生的爱国主义思想,激发他们作为中国人的......

    圆周率的背景历史

    希腊欧几里得《几何原本》(约公元前3世纪初)中提到圆周率是常数,中国古算书《周髀算经》( 约公元前2世纪)中有“径一而周三”的记载,也认为圆周率是常数。历史上曾采用过圆周率的......

    圆周率π的计算历程

    圓周率π的計算歷程 圓周率是一個極其馳名的數。從有文字記載的歷史開始,這個數就引進了外行人和學者們的興趣。作?一個非常重要的常數,圓周率最早是出於解決有關圓的計算問題......

    《做个百数表》教学设计

    做个百数表 教学目标: 1.在百数表上认识100以内的数。 2.在百数表上进行数的定位练习,探究数与数之间的关系。 3.培养和提升学生的思维能力、学习能力,让学生获得积极的情感体......