数形结合在小学数学中的运用[大全5篇]

时间:2020-10-28 14:40:30下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《数形结合在小学数学中的运用》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《数形结合在小学数学中的运用》。

第一篇:数形结合在小学数学中的运用

数形结合在小学数学中的运用

数形结合是数学中重要思想方法之一。它既具有数学学科的鲜明特点,又是数学研究的常用方法。数形结合思想----就是将抽象的数学语言与直观的图形结合起来,使抽象思维与形象思维结合。

赞科夫说:“教会学生思考,这对学生来说,是一生中最有价值的本钱”,而要教会学生思考,实质是要教会学生掌握数学的思想方法。常用的数学思想方法有很多,而数形结合思想具有数学学科的鲜明特点,是解决许多数学问题的有效思想。将抽象的数量关系形象化,具有直观性强,易理解、易接受的特点。将直观图形数量化,转化成数学运算,常会降低难度,并且使知识的理解更加深刻明了。

一、数形结合的功能

1、有利于记忆

由于数学语言比较抽象,而图形语言则比较形象。利用图形语言进行记忆速度快,记得牢。笛卡尔曾说:“没有任何东西比几何图形更容易印入脑际了。因此,用这种方式来表达事物是非常有益的。”同时,由于图象是“形象”的,语言是“抽象”的,因此对图形的记忆往往保持得比较牢固。

2、有助于思考

用图进行思维可以说是数学家的思维特色。往往一个简单的图象就能表达复杂的思想,因此图象语言有助于数学思维的表达。在数学中,有时看到学生遇到难题百思不得其解时,如能画个草图稍加点拔,学生往往思路大开。究其原因就是充分发挥了图象语言的优越性。

二、培养学生数形结合思想方法的措施

1、强化意识,体会作用

我国著名数学家华罗庚所说:“数缺形时少直观,形少数时难入微,数形结合百般好,隔裂分家万事休。”数形结合思想方法能巧妙地实现数与形之间的互换,使得看似无法解决的问题简单化、明朗化,让人有“山穷水尽疑无路,柳暗花明又一村”的感觉。数形结合思想方法在解题中的重要性决定了它在平时的教学中也应该受到重视。在数学教学中教师要有意识地沟通数、形之间的联系,帮助学生逐步树立起数形相结合的观点,提高主动运用的意识,并使这一观点扎根到学生的认知结构中去,成为运用自如的思想观念和思维工具,从而提高学生数学修养与解题能力。

例如,学生学完长方形和正方形的周长后,有一题是这样的:用4个变长为2厘米的正方形拼成一个长方形或正方形,周长最大是多少?最小是多少(周长为整厘米数)? 一开始学生看不懂,问我“老师,什么意思?”我说:“看不懂的话,照题目说的拼拼看,可以同桌合作。先想有几种拼法?再想拼好后长和宽各是多少?”在我的启发下,学生很快拼出了两种:

第一种:(8+2)×2=20厘米 第二种: 4×4=16厘米

在这样的探究过程中,教师把“数学结合思想方法”有意识的渗透在学生获得知识和解决问题的过程中,充分利用直观图形,把抽象内容视觉化、具体化、形象化,化深奥为浅显,让学生在观察、实验、分析、抽象、概括的过程中,看到知识背后负载的方法、蕴涵的思想,那么,学生所掌握的知识才是鲜活的,可迁移的,学生的数学素质才能得到质的飞跃。

2、扩大范围,广泛应用

要培养学生数形结合思想方法,首先教师要切实掌握数形结合的思想方法,以数形相结合的观点钻研教材,努力挖掘教材中可以进行数形结合思想方法渗透的各种因素,都要考虑如何结合具体内容进行数形结合思想方法渗透。“数形结合思想方法”包含“以形助数”和“以数辅形”两个方面,在小学数学“数与代数”领域教学中,用得最多的是前者,我们可以把数学结合思想方法渗透在教学中的每一内容。以数与形相结合的原则进行教学。

(1)数的认识方面,例如在教学《1000以内数的认识》这节课教学中利用小立方体有效的帮助学生构建知识,以及初步感知十进制的计数方法。数数的难点就是接近整百的数,学生无法感受抽象的数数之间满10的变化,那么我们就将数数的抽象思考方式放大,将思维暴露出来,让学生通过观察小方块的变化,一对一的数数,在数到9变成10时,通过演示让学生理解10的由来同时强化十进制关系。同时通过 “形”来感知数的多少,既形象又深刻,培养了学生良好的数感。

(2)数的运算方面,借助“形”来帮助学生理解非常重要,除了我们常用的可以利用小棒等实物或图形来理解算理外,我们还可以丰富其内容,如:被减数中间有0的减法,可以利用计数器有效的突破难点。

(3)问题解决方面,借助数形结合能化抽象为形象,帮助学生建立直观模型,让数量关系更形象、更清晰。例如:公鸡有50只,比母鸡少15只。母鸡有几只?

从线段图中很直观地看出母鸡的只数由两部分组成:与公鸡同样多的部分和多出来的部分,列式 50+15=65(只)整个过程数形结合,在直观图示的导引下,使问题化难为易,化抽象为具体。

(4)常见的量方面,例如在教学《24时记时法》的教学中可以利用钟表上的刻度,1个大格代表1小时,24小时就是钟面上的时针走了2圈,同时形象的理解了0时和24时在同一点上,让具体的“形”与抽象的数相辅相成。

(5)式与方程方面,例如,在认识方程的教学过程中,可以利用天平秤中的等量帮助学生理解方程中的等量关系。

(6)几何方面,例如,一个长方体的表面积是14平方厘米,并能把这个长方体分割成3个完全相同的正方体,求每个正方体的表面积是多少平方厘米?通过画图可以把抽象的问题形象化。

以上例子仅是代表而已,只要我们留意,数形结合思想方法存在“数与代数”领域的每一个角落。

三、图形结合的方法

数形结合的思想方法是数学学科里最常用的一种方法,它包含了转化、配方、分类讨论、方程思想等数学思想方法,可见数形结合思想方法是数学中极具综合性的思想方法。在平常的教学活动中让学生学到数形结合的方法。教师可以采用多种方式精心组织学生训练,让学生置身于具体的教学过程,才能在教师的引导下逐步领悟,理解和掌握。可以采用以下方式:

1、运用或联想实物。

2、画图。画图的形式很多,包括画线段图、画图形、画示意图、画面积图、画点子图、集合图等等。

3、利用数轴。数轴是体现数形结合思想的一个重要方法。利用数轴,找到实数与数轴上的点的对应关系,让数与数轴这个“形”,紧密融合在一起。例如,教学《小数大小比较》时,由于学生在学习本节课的内容之前只是初步的认识了小数,还没有深入的学习小数的意义,因此学生在总结比较的方法时用抽象的数学语言比较困难。当文字的表述有困难时,利用数轴能很好的解决这一问题。因为对于每一个小数,数轴上都有唯一确定的点与它对应,因此,两个小数的大小比较,是通过这两个小数在数轴上的对应点的位置关系进行的。借助数轴让学生理解小数的大小,知道在数轴上越往后这个数越大,越往前这个数就越小。这节课还设计了这样一道练习:

0.4 >()>()>()>()>0.3

在数轴上找出小于0.4大于0.3的小数以及能找出几个,这个练习借助数轴,让抽象的数学变得具体、形象。

4、几何模型。例如,教学“1-1/2-1/4-1/8-1/16=”,对于小学生来说由于逻辑推理有一定的难度,一批中下学生不容易明白,如果采用几何模型进行教学,学生都轻松的掌握了。将上面的算式构造成下面的几何模型图,把一个大正方形看成单位“1”,一次又一次地进行平均分,从图上很容易看出1-1/2-1/4-1/8-1/16=。运用数形结合思想方法可以把代数与几何沟通了,使形直观地反映数内在的联系,拓宽思路,把复杂问题简单化,从而顺利且快速的解决问题,使数学知识变的更有生命力,让人回味无穷。我们提倡多种方式来渗透数形结合思想,要培养学生胸中有图见数想图,以开拓学生的思维视野。

在数形结合的教学过程中,应该慎重考虑“先数后形”还是“先形后数” 两者呈现的结果是不一样的,要把握好。数形结合思想有助于学生思维更形象,数形结合思想的方法不是万能妙药,提高学生的抽象逻辑思维能力也是非常重要的,两者之间应平衡。

第二篇:数形结合在小学数学解决问题中的运用

数形结合在小学数学解决问题中的运用 【摘要】数学是研究现实世界的空间形式和数量关系的科学,数与形是数学的基本研究对象,数是形的抽象概括,形是数的直观表现。数形结合是小学数学教材编排的重要原则,也是小学数学教材的一个重要特点,更是解决问题时常用的方法。它包含 “以形助教”、“以数解形”和“数形互译”三个方面。

本文将结合小学数学中的教学实例,阐述数形结合思想在解决问题这个方面教学中的运用。

[关键词]数形结合;解决问题;小学数学 数学是以现实世界的空间形式和数量关系作为自己特定的研究对象,也就是说,数学是研究“数”与“形”及其相互关系的一门科学。数形结合的思想是数学的重要思想之一。

[1] 数形结合就是通过数(数量关系)与形(空间形式)的相互转化、互相作用来解决数学问题的一种思想方法。其实质是将抽象的数学语言、数量关系与直观的几何图形、位置关系结合起来,使得抽象的数学概念或复杂的数量关系直观化、形象化、简单化。

[2] 数形结合是指在数学问题解决过程中,结合问题中各要素间的本质联系,根据实际需要,将数量关系与几何图形相结合,依据数与形的对应关系,通过数与形相互转化的方式使问题得到巧妙解决的一种思想方法。在解决问题中,其策略具体表现为把有关数量关系的问题转化成图形性质的问题进行分析,或者将有关图形性质的问题转化成数量关系的问题加以讨论,最终解决问题。这种思想方法不仅分析问题的代数含义,而且还要揭示其几何意义,把抽象的数学运算和直观的几何图形紧密地联系起来。这种思想方法具备了数的精确性和形的直观性的双重优势,以数精确地分析形,或以形直观地表示数,正如数学家华罗庚所说:“数缺形时少直观,形少数时难入微”。故而,数形结合是小学数学教材编排的重要原则,也是小学数学教材的一个重要特点,更是解决问题时常用的方法。它包含 “以形助教”、“以数解形”和“数形互译”三个方面。

数学课程标准提出了“通过数学学习,掌握数学的基础知识、基本技能和思想方法。”其实在上海二期课改时关于数学基础知识的内容的界定上,也指出数学基础知识不仅指有关的数学概念、性质、公式等,还包括其中隐含的数学思想方法,以及学习数学和运用数学知识解决问题等。所以在教材编写上注重把数学思想方法贯穿在知识领域中,使每部分的数学知识不再孤立、零碎,组成一个有机的整体。

数学思想方法有许多,我们小学一般用到的如符号化、化归、数形结合、极限、模型、推理、几何变化、方程和函数、分类讨论、统计概率等思想。在小学数学教学过程中,有意识地对学生进行数学思想方法的渗透,可以让学生不再感觉数学是一门枯燥的学科,而初步了解数学的价值,从而感受数学思考的条理性、数学结论的明确性以及数学的美。下面就“数形结合”思想在小学数学教学中的应用谈些粗浅的想法。

一、数形结合思想的概念

数与形是数学中的两个最古老,也是最基本的研究对象,我们中小学数学研究的对象就分为数和形两大部分,数与形是有联系的,这个联系称之为数形结合,或形数结合。作为一种数学思想方法,数形结合的应用大致又可分为两种情形:

1、借助于数的精确性来阐明形的某些属性,即“以数解形”;

2、借助形的几何直观性来阐明数之间某种关系,即“以形助数”。

所谓数形结合,就是根据数与形之间的对应关系,通过数与形的相互转化来解决数学问题的思想。数形结合思想是一种可使复杂问题简单化、抽象问题具体化的常用的数学思想方法,具体地说就是将抽象的数学语言与直观图形对应起来,使抽象思维与形象思维结合起来,通过“数”与“形”之间的对应和转换来解决数学问题。

二、数形结合的三种应用方式

一般来说,数形结合的应用方式主要有三种类型:以数化形、以形变数和数形结合。

(1)以数化形

由于“数”和“形”是一种对应的关系,“数”比较抽象,而“形”具有形象,直观的优点,能表达较多具体的思维。在低年级教学中,我们常常会把数的认识与计算通过形(学具)的演示,让学生初步建立起数的概念,认识数、学习

数的加减乘除法;而高年级有些数量也较复杂,我们难以把握,于是就可以把“数”的对应——“形”找出来,利用图形来解决问题。画线段图的方法是每一个数学老师都把它当作学生学习数学的一项基本技能加以训练的,大家都知道,在教学应用题时,常可以借助形象的画线段图的方法,将问题迎刃而解。特别是行程问题的应用题,老师们总是不忘借助线段图进行讲解;还如我们在教五年级“时间的计算”这一课,虽然很多同学通过计算就能解决问题,但知其然还要知其所然,我们就可以把时间点、时间段通过线段图来表示,学生就更容易理解,这种把数量问题转化为图形问题,并通过对图形的分析、推理最终解决数量问题的方法,就是图形分析法。

(2)以形变数

虽然形有形象、直观的优点,但在定量方面还必须借助代数的计算,特别是对于较复杂的“形”,不但要正确的把图形数字化,而且还要留心观察图形的特点,发掘题目中的隐含条件,充分利用图形的性质或几何意义,把“形”正确表示成“数”的形式,进行分析计算,最典型的就是二年级教材中的“点图与数”,那正方形点图所表示的就是每行与每列的圆点个数都相同,写成算式是两个相同的因数,于是它们的乘积就是平方数;由此在高年级拓展三角形数时有这么个小故事:古希腊毕达哥拉斯学派认为“万物皆数”,他们常把数描绘成沙滩上的点子或小石子,根据点子或小石子排列的形状把整数进行分类,如:1、3、6、10、„„这些数叫做三角形数(如下图)。

·

·

·

·

·

·

·

·

·

·

·

· ·

·

·

·

·

·

·

· 那么,判断一下45、456、1830、5050这四个数中,哪一个不是三角形数。中高年级学生通过观察,可以利用等差数列求和的方法可以找出这个数;也可以发现如果把一个三角形数去乘2,就可以写成两个相邻自然数的积,那么高年级的同学就可以利用分解素因数的方法来判断一个数是否是三角形数了。如此以形变数,提高了学生的思维能力。

(3)形数互变

形数互变是指在有些数学问题中不仅仅是简单的以数变形或以形变数,而是需要形数互相变换,不但要想到由“形”的直观变为“数”的严密,还要由“数”的严密联系到“形”的直观。解决这类问题往往需要从已知和结论同时出发,认真分析找出内在的形数互变。一般方法是看形思数、见数想形。实质就是以数化

形、以形变数的结合。例如,“近似数”一课中,让学生掌握用“四舍五入法”求一个数的近似数是本节课的教学重点。通常我们会直接告诉学生“四舍五入法”这一概念,然后通过大量的练习强化求近似数的方法。那么我们不妨反思:学生做对了是否表明学生已经很好地理解了“四舍五入法”的含义呢?是否有部分学生的解题活动完全建立在对概念的机械模仿上呢?事实上,这种机械模仿的情况是客观存在的。如何帮助学生从本质上理解“四要舍、五要入”的意义呢?我们可以想到把直观的数轴引进这节课,在数轴上找最近的路,把四舍五入放到数轴上展开学习,利用数形结合帮助学生建立一个形象的数学模型,从而加深了学生对“四舍五入法”的理解。

又如在解决问题过程中,经常要用到“数”与“形”互译的数形结合思想,即把问题中的数量关系转译成图形,把抽象的数量关系形象化,再根据对图形的观察、分析、联想,逐步译成算式,以达到问题的解决。最常用的如“鸡兔同笼”一课:鸡兔同笼,有10个头、28条腿,鸡、兔各几只?本课的解决问题教学策略书上采用列表尝试法。如果采用数形互译的画图法解,二年级的学生都能解答,并且可以从画图法引出数量关系,列式解答。有几个头就画几个圆(表示动物的头),然后每个头下加两条腿(表示鸡有两条腿),剩余几条腿就再添在小动物身上,每个添2条(原来的鸡就变成了兔)。这样从图上可知兔有4只,鸡有6只。引导学生理解数量关系:首先假设10只全是鸡,每只鸡身上长2条腿,共10×2=20(条)腿,还剩余28-20=8(条)腿,鸡身上再长2条腿变成兔子,直到8条腿长完为止。这样就得到兔子有8÷(4-2)=4(只),鸡有10-4=6(只)。而对高年级学生借助于画示意图来分析数量之间的关系,是我们经常使用的办法。由此不难看出:“数”“形”互译的过程,既是问题解决的过程,又是学生的形象思维与抽象思维协同运用、互相促进、共同发展的过程。由于抽象思维有形象思维作支持,从而使解法变得十分简明扼要且巧妙。

所以,在小学数学教学中,数形结合能不失时机地为学生提供恰当的形象材料,可以将抽象的数量关系具体化,把无形的解题思路形象化,不仅有利于学生顺利的、高效的学好数学知识,更有利于学生学习兴趣的培养、数学思维的发展、知识应用能力的增强,使教学收到事半功倍之效。

三、发挥数形结合思想方法对知识获得的引领作用

1、要善于挖掘教材中含有数形结合思想的内容

教师在教学中要有渗透数形结合思想的意识,引导学生主动有效地利用课本中的图形,从图中读懂重要信息并整理信息,提出问题、分析问题、解决问题,即让学生通过“形”找出“数”。在小学“数与代数”、“空间与图形”、“统计与概率”、“实践与综合应用”这四个学习领域中,都能应用数形结合思想进行教学,我们通过对教材的分析,初步整理了小学数形结合思想方法在各教学领域的渗透点:(1)“数与代数”:数的认识及计算,都能借助小棒图、计数图来理解算理、法则和方法;(2)“空间与图形”:可以借助数的知识及数量关系进行各平面图形的周长和面积的计算;(3)“实践与综合应用”:从所给问题的情境中辨认出数与形的一种特定关系或结构,运用画线段图、画分析图、画示意图等方法分析理解;(4)“统计与概率”:通过图形演示移多补少来理解平均数的含义。

2、教学时让学生在探索中感受数形结合思想

布鲁纳指出:“掌握基本的数学思想方法,能使数学更易于理解和记忆,领会基本的数学思想和方法是通向迁移大道的‘光明之路’。”在教学中,要让学生自主探索,感受数形结合思想,增强对数形结合思维模式的认知,体会图形对数学知识形成的意义。如果教师在教学中教师充分利用学生形象思维的特点,大量地用“形”解释、演现,经常引导学生将数与形结合起来,借助形象的图形理解算理,提炼算法,就能降低学习难度,有效地改善突破教学难点的方法,提高课堂教学效率。

3、课后延伸时让学生在解决问题中体验数形结合思想

数学是研究现实世界的空间形式和数量关系的科学,而数形结合思想贯穿于整个数学领域,我们可以将复杂的数量关系和抽象的数学概念通过图形、图像变得形象、直观。同样,复杂的几何形体可以用数量关系、公式、法则等手段,转化为简单的数量关系。在课后的知识延伸中,经常引导学生通过数形结合来解决生活中的实际问题,从而体验数形结合的好处。

数形结合是小学阶段的一个重要手段,而这一手段对学生们今后在初、高中的学习构建空间思维起着关键作用。今天我所讲的只是一些初步的、浅显的认识,思维作为一个认知过程,总是与个体的动机、兴趣情感等密切联系并受其制约的,相信只要不断激发学生的兴趣,启迪学生的动机,就能够有效地增强学生的逻辑思维能力和空间想象能力。巧妙地渗透、应用数形结合思想,既能为小学数学教学开辟一片广阔的天地,又能为学生的终身学习和可持续发展奠定扎实的基础。

参考文献:

[1]文志君.数形结合思想在数学教学中的应用[J].考试周刊.2009,(30):75-76.[2]夏志新.“数形结合”就是妙[J].新课程改革与实践.2010,(7):57.[3]黄晓波.数形结合思想专题精讲[J].中学生数理化·中考版[J].2010,(6):17.[4]林振兴.“数形结合”思想在解题过程中的妙用[J].小学教学参考.2010,(5):43.[5]王彦伟,丁雁玲.数形结合思想在小学数学教学中的应用[J].中小学数学:小学版.2008,(11):13.

第三篇:数形结合在小学数学概念教学中的运用

期刊文章分类查询,尽在期刊图书馆

数形结合在小学数学概念教学中的运用

徐永加

(浙江省永康市石柱小学 浙江 永康 321300)

摘 要:在小学数学概念教学中,运用数形结合的方法,实际上就是借助于直观形象模型理解抽象的数学概念以及抽象的数量关系,来帮助学生感知、生成、深化概念。

关键词:数形结合 小学数学 概念教学

中图分类号: G623.5 文献标识码: C 文章编号: 1671-8437(2009)1-0103-01 数形结合不是真正数学意义上的数形结合思想,这里的“数”指的是小学数学的概念、定义、规律等数学知识,而不是代数式、函数解析式、方程;“形”则主要是指有形的数学学具、数学模型,而不是几何图形与直角坐标系下的函数图象。因而本文所说的数形结合指的是借助于直观形象模型理解抽象的数学概念以及抽象的数量关系,它是“数形结合”思想方法的雏形。本文结合教学实际,谈谈小学数学概念教学中如何运用数形结合的方法来帮助学生感知、生成、深化概念的。图形演示,注重概念引入

概念的引入将直接关系到学生对概念的理解和接受,在概念的引入过程中,要注意使学生建立清晰的表象。而表象的建立,是以对所感知材料的观察和分析为基础的。图形演示是小学数学概念引入教学中最常用的方法,因为小学生的思维还停留在形象思维的阶段,他们对抽象的概念的理解需要借助丰富的感性材料。在小学数学概念教学中,如果能够建立抽象的数学概念与形象的图形之间的联系,把数学概念中最本质的属性用恰当的图形演示出来,把数和形结合起来,就可以丰富学生的感性材料,为建构数学概念奠定基础。学生对所学数学概念就容易理解和掌握。

如小学应用题中常常涉及到“求一个数的几倍是多少”,学生最不易理解的是“倍”的概念,如何把“倍”的数学概念深入浅出地教授给学生,使他们能对“倍”有个深刻的印象?笔者认为用图形演示的方法是最简单又最有效的方法。可以利用多媒体技术在第一行排出3根一组的红色小木棒,再在第二行排出3根一组的蓝色的小木棒,第二行一共排4组蓝色小木棒。结合演示,让学生观察比较第一行和第二行小木棒的数量特征,通过教师启发,学生小组合作讨论和交流,使学生清晰地认识到:蓝色小木棒与红色小木棒比较,红色小木棒是1个3根,蓝色小木棒是4个3根;把一个3根当作一份,则红色小木棒是1份,而蓝色小木棒就有4份。用数学语言:蓝色小木棒与红色小木棒比,把红色小木棒当作1倍,蓝色小木棒的根数就是红色小木棒的4倍。这样,从演示图形中让学生看到从“个数”到“份数”,再引出倍数,很快就触及了概念的本质。

有些教师为了增强刺激效果,值得注意的是在数形结合的图形演示中,一味在图形的丰富性上下功夫,把图形本身搞得色彩斑斓,其效果适得其反。因为过度的无关刺激会发散学生的注意力,干扰学生的数学思维,从而妨碍对概念的理解。图形演示,目的不在于形,形只是手段,这里数形结合的目的在于更好地理解数学概念。因此用作演示的图形本身要求简洁明了。2 借形设问,探究形成过程

数学概念一般都有一个形成过程,在进行概念教学时如果能借助有形物体或图形,设置一些步步深入的诱导性问题,就可以经历从感知表象到认识的思维过程,学生在探究概念的形成过程中不仅理解概念,而且能够运用概念。这里的数形结合,其中“数”是我们要探究的数学概念知识,具体体现在环环相扣,步步递进的问题上;其中的“形”是问题的背景,教师借助学生熟知的能够触摸和直接感知的有形物体,作为问题的情境,增强问题的形象性,便于启迪学生的数学思维。在教师引导下,学生通过观察、比较、分析、抽象概括的过程,逐步形成新的概念。

如,教学“体积”概念。教师可以借助形象物体设问,引导学生分析比较。首先观察物体,初步感知。让学生观察一块橡皮和黑板擦,问学生:哪个大,哪个小?又出示两个边长分别为2厘米和5厘米的正方形,问:哪个大,哪个小?通过观察物体,让学生对物体的大小有个感性认识。接着在一个盛有半杯水的玻璃杯里慢慢加入小石子,学生可以观察到,随着小石子投入的增多,杯中的水位不断上升。问:玻璃杯里的水位为什么会上升?学生从这一具体事例中获得了物体占有空间的表象。在教师的引导下,对“为什么玻璃杯里的水位会随着小石子放入的增多而升高”这一问题进行深入讨论,通过讨论交流学生能够很自然地领悟“物体所占空间的大小叫体积”这一概念。为了进一步使概念在应用中得到巩固,继续在盛满水的玻璃杯里放石子,学生观察到水溢了出来,教师启发学生:从观察到的现象中你们发现了什么问题?学生思考后提出:杯里溢出的水的多少与放进去的石子有什么关系?经过讨论得出:从杯里溢出水的体积等于石子的体积。至此,学生不仅认识了概念,而且能够应用概念。

在利用实物创设问题情境时,教师要特别注意数与形的有机结合,以问题引导学生观察,不仅要用诱导性问题,更要用一些启发性问题,激疑性问题,让学生在观察中发现问题,自己提出问题和解决问题。教师除了提供充分的形象感性材料让学生形成鲜明的表象外,还必须在此基础上,引导学生分析和比较,及时抽象出概念的本质属性,使学生在主动参与中完成概念的建构。画图体验,揭示概念本质 小学生由于生活经历少,常常不能借生活经验把实际问题转化为数学问题,从而来理解数学概念。因此教师要根据教学内容的实际情况,引导学生利用直尺、三角板和圆规等作图工具画出已学过的图形,通过动手作图,帮助学生建立表象,从画图体验中领悟概念。通过作图观察、比较分析,可以发展学生的空间观念,培养学生分析、综合、抽象、概括的能力。

如,讲三角形的“高”和“底”,如果离开图形来讲解,是很难讲清楚的,既使学生听懂了也不会有深刻的理解。而让学生自己动手作图,亲自经历一个发现的过程,学生对“高”和“底”的理解就会深刻得多。教师可以让学生先作图:(1)过直线上的一点画一条和这条直线垂直的直线;(2)过直线外一点画一条和这条直线垂直的直线;(3)给出三个不同的三角形,要求学生作一条过顶点和顶点所对的边垂直的线段。在大量作图的基础上,让学生观察比较,分析讨论,学生就能概括出“高”和“底”的概念。新课程理念倡导发现学习,通过作图来概括“高”和“底”的概念的知识,实际是引导学生自己发现知识的过程。让学生在作图过程中自己去探索,去发现这个图形所具有的特征,充分调动自身原有的生活经验,培养他们的观察和操作能力,让学生更加深刻的体会到“高”和“底”的存在,深刻理解“高”和“底”的本质属性。

画图体验最重要的是要引导学生在作图过程中体验和领悟、探究和发现、把握和发展数学概念。让作图过程成为促使学生获得成功的体验,提高学生学习兴趣的过程,让学生在“再发现”中学会“再创造”。

第四篇:数与形结合在小学数学教学中的运用

数与形结合在小学数学教学中的运用

“空间与图形”是小学数学教学中的重要内容之一,在以后的学习中体现得更为明显。数形结合带给教学以蓬勃之生命,赋予教学以持续性的活力,使有效教学的策略更丰富,更清晰。

1以童真唤起兴趣,营造乐学的有效教学情境

著名教育家皮亚杰说过:“儿童是具有主动性的人,所教的东西要能引起儿童的兴趣,符合他们的需要,才能有效地促使他的发展。”在我们的童年的记忆中,好的动画片和童话书总会给人一种最美好的的印象,那种感觉挥之不去,抹之不灭。新课改教材里各种鲜艳逼真的情境图,各种平移、旋转、对称的美丽图案,可以让学生真切地体会到了数学的美,受到美的熏陶。因此,在教学《分数的初步认识》时,与学生互相问好后,笔者设计了“分数乐园”这个孩子特别喜欢的卡通画面,可是“智慧大门”却关闭着。生动形象的动画谜语,一下子就吸引了孩子们的目光。成功地激发学生的挑战精神和战胜困难的斗志。学生猜对后,引出生活中分东西的经验,自然而然地导出课题“认识几分之一”。笔者利用信息技术资源,创设了一个生动有趣的故事情境,引出孩子们特别熟悉和喜欢的———“分数乐园里智勇闯三关”的游戏,使学生们的自主参与意识自然而然的产生,主动探索,学习新知。

2看图说话,鼓励多提问;先学后导,作图更有效

陶行知先生说过:“创造始于问题”。学生没将题目读懂时,他是没有问题的,这与他没读题效果一样。只有钻研之后,才会生出“看似绝壁,却辟小径”之感。在《分数的初步认识》学习过程中,要引导学生自主发现问题,提出问题,分析问题,解决问题。因此,在新授部分,笔者利用多媒体展开教学,分三次展示课件“分数乐园”,从易到难,由浅入深地逐层深入地让学生观看直观的感性材料,启发学生自己发现数学信息,提出问题,自主学习与合作探究相结合地学习新知。课件出示:两个小朋友,和一些食物(包括:两瓶水,四个苹果和一块月饼。)让学生根据生活经验分苹果和水后,引导只有一块月饼,要分给两个小朋友,该怎么办呢?随之“半块”的答案就悄然产生,紧接着让学生说说自己是怎么想的,那么把一个月饼平均分成2份,一份就是半块?”那半块是怎么样的呢?经过动态展示比较平均分与不平均分的“一半”月饼,让学生形象充分地理解平均分,在突出平均分的基础上,介绍二分之一的意义,从而自然引出1/2的写法和读法。

3数形结合,不忘操作 根据新课程标准的要求,笔者在本课中设计了“折一折”这个游戏环节。让学生通过自己动手操作折纸,来突破难点,完成“把一个整体平均分成几份,一份就是它的几分之一”的转化过程。学生兴致勃勃地在“折一折”中玩起了折纸游戏,使他们在玩中发现问题,开动脑筋想办法解决问题。同时,笔者还设置了“快乐猜猜猜”的小游戏,让孩子们在玩中体验数学知识,运用数学知识。

3.1强化认识,完整叙述

由平均分实物导出,图形也可以平均分成2份,其中一份就是它的1/2。要求学生利用自己喜欢的图形(包括长方形、正方形和圆)折出它的1/2。引导学生动手操作,在小组合作中解决疑难。通过进行比较交流,说一说:你拿的是什么图形?如何得到它的二分之一?哪部分是它的二分之一。使学生能够完整叙述1/2的含义,提高表达能力。这个过程不但培养了学生的自主学习的能力,激发了学生主动参与的意识,还让他们明白数学无处不在,源于我们的生活。最后,在共同交流,检查所学习的新知识,达到锻炼学生语言表达能力的目的。

3.2动手操作,促进内化

紧接着,顺势引导:你能继续折出这个图形的1/4吗?引发学生继续探索新知的欲望,逐层深入的诱导新知。交流汇报意义后,课件引出长方形的4种不同的折法,引导学生思考:为什么涂色部分都可以用1/4来表示呢?让学生体会到:虽然纸的形状不同、折法不同,但把这张纸都“平均分”成了4份,所以每一份就表示这张纸的四分之一。这个过程由浅入深地逐层深入,学生自主探索,欲望强烈,解决了疑难问题,使他们充分地体验到了成功。

3.3顺势引路,巧妙迁移

认识了二分之一和四分之一,你还想认识几分之一呢?让孩子们乘胜追击,继续研究各种几分之一。顺势教师要求:你能试着折一折,涂一涂表示出你想认识的几分之一吗?拿出学具袋中的材料,每人选择一样试一试。经过折涂,学生之间的交流介绍,让学生展示并解说成果。通过变换板书的数字,引导学生讨论:你发现了什么?师提示:把一个图形平均分成3份,每一份是它的三分之一,那平均分成5份、6份、100份呢?学生总结出:把一个整体平均分成几份,一份就是它的几分之一。锻炼他们语言能力的同时,培养了学生们的逻辑思维能力。

4“形→数”、“数→形”,分阶段把握数形结合知识难度,制定相应的教学策略 低段学生及图形建构差的的学生适宜“形→数”的直观思维,其教学大多以观察、操作等活动开始,在感知和积累了大量空间图形的具体形象及抽象化图形后,自然过渡到复杂、抽象的图形学习。高段的学生适宜“数→形”、“数→数”的抽象思维,因其数形知识有了一定积累后,几何直观图形感知能力,逻辑思维能力已有一定程度的发展。他们在观察、分析、思考题目后,对于简单的图,不一定每次都要画出来。数量关系式、图形能用“脑图”表现出来再好不过,“脑图”才是我们最美好的追求。我们要做的,就是将数与形的知识结合起来,降低学生的认知难度,使问题迎刃而解。对于学习有困难的学生,应视其情况,降低层次,回溯到相应的基础上再予以教学。

第五篇:数形结合在小学教学中的应用范文

“数形结合”思想在小学数学教学中的渗透与应用

数学思想有许多,数形结合思想就是其中一种重要的思想。“数”和“形”是紧密联系的。我们在研究“数”的时候,往往要借助于“形”,在探讨“形”的性质时,又往往离不开“数”。

新课标的修订,从原来的“双基”拓展到“四基”,即增加了基本思想、基本活动经验。知识和技能是数学的“双基”,而数学思想方法则是数学的灵魂。以数与形相结合的原则进行教学,这就要求我们切实掌握数形结合的思想方法,以数形相结合的观点钻研教材,努力挖掘教材中可以进行数形结合思想方法渗透的各种因素,都要考虑如何结合具体内容进行数形结合思想方法渗透。小学数学中虽然不像初中数学那样,将数形结合的思想系统化, 但作为学习数学的启蒙和基础阶段,数形结合的思想已经渐渐渗透其中,为更好的学习数与代数、空间与图形两方面的知识做铺垫,同时也在培养抽象思维,解决实际问题方面起了较大的作用。

一、运用图形,建立表象,理解本质

在低年级教学中学生都是从直观、形象的图形开始入门学习数学。从人类发展史来看,具体的事物是出现在抽象的文字、符号之前的,人类一开始用小石子、贝壳、木棍、骨头记事,慢慢的发展成为用形象的符号记事,最后才有了数字。这个过程和小学生学习数学的阶段和过程有着很大的相似之处。一年级的小学生学习数学,也是从具体的物体开始认数,很多知识都是从具体形象逐步向抽象逻辑思维过渡,但这时的逻辑思维是初步的,且在很大程度上仍具有具体形象性。

如小学应用题中常常涉及到“求一个数的几倍是多少”,学生最难理解的是“倍”的概念,如何把“倍”的数学概念深入浅出地教授给学生,使他们能对“倍”有自己的理解,并内化称自己的东西?我认为用图形演示的方法是最简单又最有效的方法。就利用书上的主题图。在第一行排出3根一组的红色小棒,再在第二行排出3根一组的绿色的小棒,第二行一共排4组绿色小棒。结合演示,让学生观察比较第一行和第二行小棒的数量特征,通过教师启发,学生小组合作讨论和交流,使学生清晰地认识到:绿色小棒与红色小木棒比较,红色小棒是1个3根,绿色小棒是4个3根;把一个3根当作一份,则红色小棒是1份,而绿色小棒就有4份。用数学语言:绿色小棒与红色小棒比,把红色小棒当作1倍,绿色小棒的根数就是红色小棒的4倍。这样,从演示图形中让学生看到从“个数”到“份数”,再引出倍数,很快就触及了概念的本质。

这方面的例子很多,如低年级开始学习认数、学习加减法、乘除法,到中年级的分数的初步认识、高年级的认识负数等都是以具体的事物或图形为依据,学生根据已有的生活经验,在具体的表象中抽象出数,算理等等。

在小学中高年级的教学中,我们要注重运用直观图形,巧妙地把数和形结合起来,把抽象的数学概念直观化,帮助学生形成概念。

例如:如,教学“体积”概念。教师可以借助形象物体设问,引导学生分析比较。首先观察物体,初步感知。让学生观察一块橡皮和铅笔盒,提问:哪个大,哪个小?又出示一个魔方和一个骰子,提问:那个大,那个小?通过观察物体,让学生对物体的大小有个感性认识。接着在一个盛有半杯水的玻璃杯里慢慢加入一块石头,学生可以观察到,随着石头的投入,杯中的水位不断上升。问:玻璃杯里的水位为什么会上升?学生从这一具体事例中获得了物体占有空间的表象。在教师的引导下,对“为什么玻璃杯里的水位会随着石头放入而升高”这一问题进行深入讨论,通过讨论交流学生能够很自然地领悟“物体所占空间的大小叫体积”

这一概念。为了进一步使概念在应用中得到巩固,继续在盛满水的玻璃杯里放石子,学生观察到水溢了出来,教师启发学生:从观察到的现象中你们发现了什么问题?学生思考后提出:杯里溢出的水的多少与放进去的石子有什么关系?经过讨论得出:从杯里溢出水的体积等于石子的体积。至此,学生不仅认识了概念,而且能够应用概念。

在利用实物创设问题情境时,教师要特别注意数与形的有机结合,以问题引导学生观察,不仅要用诱导性问题,更要用一些启发性问题,激疑性问题,让学生在观察中发现问题,自己提出问题和解决问题。教师除了提供充分的形象感性材料让学生形成鲜明的表象外,还必须在此基础上,引导学生分析和比较,及时抽象出概念的本质属性,使学生在主动参与中完成概念的建构。

二、画出图形,表达数量,揭示本质 小学生由于生活经历少,常常不能借生活经验把实际问题转化为数学问题,从而来理解数学概念。因此教师要根据教学内容的实际情况,引导学生利用直尺、三角板和圆规等作图工具画出已学过的图形,通过动手作图,帮助学生建立表象,从画图体验中领悟概念。通过作图观察、比较分析,可以发展学生的空间观念,培养学生分析、综合、抽象、概括的能力。例如,在教学“学校六月份用水210吨,比五月份节约了。五月份用水多少吨?”这一例题时,笔者没有急着和学生一起画线段图,而是让学生在认真读题和初步思考后汇报算式并说明列式的理由。这样做的目的有:一,注重学生的直觉思维,学生的直觉思维是学生真实水平的体现,根据学生的回答教师可以随时调整教学方案;二,在没有教师的任何提示下,学生的汇报与交流是学生逻辑思维水平发展的重要手段;三,当学生交流出现矛盾时,迫使学生产生验证的需要。当学生有需要时,教师就要及时引导学生画线,当线段图完成的时候,学生的争论也就戛然而止了。因为有了线段图的合理支撑,学生对210÷ 这一算式已坚信不疑了。可见,通过画线段图即数形结合的方法能有效将题目中抽象的数量关系直观形象地表示出来,从而降低解题难度。而根据学生的实际情况适当采取先数后形的策略,可以使学生的学习主动性大大增强,同时使学生的逻辑思维能力不断得到锻炼。

三、数形结合,为建立函数思想打好基础。

在实际教学中,数和形往往是紧密结合在一起,相互并存的。因此,在实际教学中教师要把数和形结合起来考察,根据问题的具体情形,把图形的问题转化为数量关系的问题,或者把数量关系的问题转化为图形的问题,使复杂问题简单化,抽象问题具体化,使数与形相得益彰。

用形的直观来分析数据中的关系,体现了数形结合思想方法的优点,在数学整个发展过程中,人们也总是利用数形结合或数形的转化来研究数学问题,可见数形结合思想的重要性。

小学数学中虽然没有学习函数,但还是慢慢的开始渗透函数的思想。总之,在小学数学教学中,数形结合能不失时机地为学生提供恰当的形象材料,可以将抽象的数量关系具体化,把无形的解题思路形象化,不仅有利于学生顺利地、高效率地学好数学知识,更用于学生学习兴趣的培养、智力的开发、能力的增强,为学生今后的数学学习打下坚实的基础。参考文献:

下载数形结合在小学数学中的运用[大全5篇]word格式文档
下载数形结合在小学数学中的运用[大全5篇].doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    数形结合在中学数学教学中的应用

    安 阳 师 范 学 院 数形结合在中学数学教学中的应用 甘世军 (安阳师范学院数学与统计学院 河南 安阳 455002) 摘 要:数形结合是数学教学中的一种非常重要的思想方法,“数”与......

    数形结合在小学数学教学中的应用(样例5)

    数学思想方法对研究和应用数学具有指导意义,学生一旦掌握终生受益。数形结合是小学数学中常用的一种数学思想方法,“数”和“形”是小学数学教学的研究对象,也是贯穿小学数学教......

    初中数学教学中的数形结合法

    初中数学教学中的数形结合法 覃斗中学徐慧贤数学课程标准总体目标明确提出:“让学生获得未来社会生活和进一步发展所必须的重要数学知识,以及基本的数学思想方法和必要的应用......

    小学数学教学中数形结合运用的几点体1

    小学数学教学中数形结合运用的几点体会(责编推荐:数学试题jxfudao.com/xuesheng)时间:2014-01-31 07:03来源:网络整理 作者:游客 点击: 197 次华罗庚曾经说过这么一段话:数缺形......

    浅谈数形结合在数学教学中的运用

    龙源期刊网 http://.cn 浅谈数形结合在数学教学中的运用 作者:朱军 来源:《中国科教创新导刊》2013年第04期 摘 要:数学是研究客观世界的空间形式和数量关系的科学,数与形是数学......

    读写结合在课堂上的运用

    读写结合在课堂上的运用《语文课程标准》在“课程的基本理念中指出:“语文课程应培育学生热爱祖国语文的思想感情,指导学生正确地理解和运用祖国语文,丰富语言的积累,培养语感,发......

    浅谈小学数学教学数形结合思想的运用

    浅谈小学数学教学数形结合思想的运用 摘要:数形结合思想是新课程背景下重要的数学教学理念,受到了广泛的重视。在小学数学一线教学中,数形结合思想还有待数学教师进一步的学习......

    读写结合在小学语文阅读教学中的应用

    读写结合在小学语文阅读教学中的应用 摘要:小学生的语文课程,在整个小学阶段具有重要的意义。是为其奠定语文素养的基础。在小学语文教学中,老师需要重视学生们对文字的感知能......