第一篇:复数教案
2014年10月16日教案
教学课程
复数的有关概念
教学目标
(1)掌握复数的有关概念,如虚数、纯虚数、复数的实部与虚部、两复数相等、复平面、实轴、虚轴、共轭复数、共轭虚数的概念。
(2)正确对复数进行分类,掌握数集之间的从属关系;
(3)理解复数的几何意义,初步掌握复数集C和复平面内所有的点所成的集合之间的一一对应关系。
(4)培养学生数形结合的数学思想,训练学生条理的逻辑思维能力.
教学内容
1、复数的有关概念,由x^2+1=0,引进概念虚数 正确地对复数进行分类,弄清数集之间的关系
2、分类要求不重复、不遗漏,同一级分类标准要统一。根据上述原则,复数集的分类如下。
3、复数相等的充要条件,对于复数 数 时,一定有,实部是,虚部是 .注意在说复,否则,不能说实部是,虚部是 ,复数的实部和虚部都是实数。用复数相等的条件要注意:
①化为复数的标准形式
②实部、虚部中的字母为实数,即
4、复数的几何表示,①任何一个复数 都可以由一个有序实数对()唯一确定.这就是说,复数的实质是有序实数对.一些书上就是把实数对()叫做复数的.
②复数 而不是(用复平面内的点Z()表示.复平面内的点Z的坐标是(),),也就是说,复平面内的纵坐标轴上的单位长度是1,而不是 .由于 =0+1·,所以用复平面内的点(0,1)表示 时,这点与原点的距离是1,等于纵轴上的单位长度.这就是说,当我们把纵轴上的点(0,1)标上虚数 时,不能以为这一点到原点的距离就是虚数单位,或者 就是纵轴的单位长度.
③当
(时,对任何,时,是纯虚数,所以纵轴上的点())都是表示纯虚数.但当 是实数.所以,纵轴去掉原点后称为虚轴.
复数z=a+bi中的z,书写时小写,复平面内点Z(a,b)中的Z,书写时大写.
由此可见,复平面(也叫高斯平面)与一般的坐标平面(也叫笛卡儿平面)的区别就是复平面的虚轴不包括原点,而一般坐标平面的原点是横、纵坐标轴的公共点.
5、共轭复数的概念.要学生注意可以提一下当
于实轴本身对称,例如:5和-5也是互为共轭复数.当 轭虚数.可见,共轭虚数是共轭复数的特殊情行. 随即写几个例子
时的特殊情况,即实轴上的点关
时,与
互为共
6、“两个复数,如果不全是实数,就不能比较它们的大小”,要注意: 根据两个复数相等地定义,可知在 两式中,只要有一个不成立,那么
.两个复数,如果不全是实数,只有相等与不等关系,而不能比较它们的大小.
命题中的“不能比较它们的大小”的确切含义是指:“不论怎样定义两个复数间的一个关系‘<’,都不能使这关系同时满足实数集中大小关系地四条性质”:
(i)对于任意两个实数a,b来说,a<b,a=b,b<a这三种情形有且仅有一种成立;
(ii)如果a<b,b<c,那么a<c;
(iii)如果a<b,那么a+c<b+c;
(iv)如果a<b,c>0,那么ac<bc.(不必向学生讲解)
教学重难点
1.要注意知识的连续性:复数因而注意与平面解析几何的联系.
2.注意数形结合的数形思想:由于复数集与复平面上的点的集合建立了一一对应关系,所以用“形”来解决“数”就成为可能,在本节要注意复数的几何意义的讲解,培养学生数形结合的数学思想.
是二维数,其几何意义是一个点,3.注意分层次的教学:教材中最后对于“两个复数,如果不全是实数就不能本节它们的大小”没有证明,如果有学生提出来了,在课堂上不要给全体学生证明,可以在课下给学有余力的学生进行解答.
第二篇:复数 概念 教案
复数 教学目标
(1)掌握复数的有关概念,如虚数、纯虚数、复数的实部与虚部、两复数相等、复平面、实轴、虚轴、共轭复数、共轭虚数的概念。
(2)正确对复数进行分类,掌握数集之间的从属关系;
(3)理解复数的几何意义,初步掌握复数集C和复平面内所有的点所成的集合之间的一一对应关系。
(4)培养学生数形结合的数学思想,训练学生条理的逻辑思维能力. 教学建议
(一)教材分析
1、知识结构
本节首先介绍了复数的有关概念,然后指出复数相等的充要条件,接着介绍了有关复数的几何表示,最后指出了有关共轭复数的概念.
2、重点、难点分析
(1)正确复数的实部与虚部
对于复数,实部是,虚部是 .注意在说复数 时,一定有,否则,不能说实部是,虚部是 ,复数的实部和虚部都是实数。
说明:对于复数的定义,特别要抓住 这一标准形式以及 是实数这一概念,这对于解有关复数的问题将有很大的帮助。
(2)正确地对复数进行分类,弄清数集之间的关系
分类要求不重复、不遗漏,同一级分类标准要统一。根据上述原则,复数集的分类如下:
注意分清复数分类中的界限:
(3)不能乱用复数相等的条件解题.用复数相等的条件要注意:
①化为复数的标准形式 ②实部、虚部中的字母为实数,即
(4)在讲复数集与复平面内所有点所成的集合一一对应时,要注意:
①任何一个复数 都可以由一个有序实数对()唯一确定.这就是说,复数的实质是有序实数对.一些书上就是把实数对()叫做复数的.
②复数 用复平面内的点Z()表示.复平面内的点Z的坐标是(),而不是(),也就是说,复平面内的纵坐标轴上的单位长度是1,而不是 .由于 =0+1·,所以用复平面内的点(0,1)表示 时,这点与原点的距离是1,等于纵轴上的单位长度.这就是说,当我们把纵轴上的点(0,1)标上虚数 时,不能以为这一点到原点的距离就是虚数单位,或者 就是纵轴的单位长度.
③当 时,对任何,是纯虚数,所以纵轴上的点()()都是表示纯虚数.但当 时,是实数.所以,纵轴去掉原点后称为虚轴.
由此可见,复平面(也叫高斯平面)与一般的坐标平面(也叫笛卡儿平面)的区别就是复平面的虚轴不包括原点,而一般坐标平面的原点是横、纵坐标轴的公共点.
④复数z=a+bi中的z,书写时小写,复平面内点Z(a,b)中的Z,书写时大写.要学生注意.(5)关于共轭复数的概念
设,则,即 与 的实部相等,虚部互为相反数(不能认为 与 或 是共轭复数).
教师可以提一下当 时的特殊情况,即实轴上的点关于实轴本身对称,例如:5和-5也是互为共轭复数.当 时,与 互为共轭虚数.可见,共轭虚数是共轭复数的特殊情行.(6)复数能否比较大小
教材最后指出:“两个复数,如果不全是实数,就不能比较它们的大小”,要注意:
①根据两个复数相等地定义,可知在 两式中,只要有一个不成立,那么 .两个复数,如果不全是实数,只有相等与不等关系,而不能比较它们的大小.
②命题中的“不能比较它们的大小”的确切含义是指:“不论怎样定义两个复数间的一个关系‘<’,都不能使这关系同时满足实数集中大小关系地四条性质”:
(i)对于任意两个实数a,b来说,a<b,a=b,b<a这三种情形有且仅有一种成立;
(ii)如果a<b,b<c,那么a<c;
(iii)如果a<b,那么a+c<b+c;
(iv)如果a<b,c>0,那么ac<bc.(不必向学生讲解)
(二)教法建议
1.要注意知识的连续性:复数 是二维数,其几何意义是一个点,因而注意与平面解析几何的联系.
2.注意数形结合的数形思想:由于复数集与复平面上的点的集合建立了一一对应关系,所以用“形”来解决“数”就成为可能,在本节要注意复数的几何意义的讲解,培养学生数形结合的数学思想.
3.注意分层次的教学:教材中最后对于“两个复数,如果不全是实数就不能本节它们的大小”没有证明,如果有学生提出来了,在课堂上不要给全体学生证明,可以在课下给学有余力的学生进行解答.
复数的有关概念 教学目标
1.了解复数的实部,虚部;
2.掌握复数相等的意义;
3.了解并掌握共轭复数,及在复平面内表示复数. 教学重点
复数的概念,复数相等的充要条件. 教学难点
用复平面内的点表示复数M. 教学用具:直尺 课时安排:1课时 教学过程:
一、复习提问:
1.复数的定义。
2.虚数单位。
二、讲授新课
1.复数的实部和虚部:
复数 中的a与b分别叫做复数的实部和虚部。
2.复数相等
如果两个复数 与 的实部与虚部分别相等,就说这两个复数相等。
相等的意义,得方程组:
例2:m是什么实数时,复数 ,(1)是实数,(2)是虚数,(3)是纯虚数.解:
(1)∵ 时,z是实数, ∴ ,或.(2)∵ 时,z是虚数,∴,且
(3)∵ 且 时,z是纯虚数.∴
3.用复平面(高斯平面)内的点表示复数 复平面的定义
建立了直角坐标系表示复数的平面,叫做复平面.
复数 可用点 来表示.(如图)其中x轴叫实轴,y轴 除去原点的部分叫虚轴,表示实数的点都在实轴上,表示纯虚数的点都在虚轴上。原点只在实轴x上,不在虚轴上.
4.复数的几何意义:
复数集c和复平面所有的点的集合是一一对应的.
5.共轭复数
(1)当两个复数实部相等,虚部互为相反数时,这两个复数叫做互为共轭复数。(虚部不为零也叫做互为共轭复数)
(2)复数z的共轭复数用 表示.若,则: ;
(3)实数a的共轭复数仍是a本身,纯虚数的共轭复数是它的相反数.
(4)复平面内表示两个共轭复数的点z与 关于实轴对称.
三、练习
四、小结:
1.在理解复数的有关概念时应注意:
(1)明确什么是复数的实部与虚部;
(2)弄清实数、虚数、纯虚数分别对实部与虚部的要求;
(3)弄清复平面与复数的几何意义;
(4)两个复数不全是实数就不能比较大小。
2.复数集与复平面上的点注意事项:
(1)复数 中的z,书写时小写,复平面内点Z(a,b)中的Z,书写时大写。
(2)复平面内的点Z的坐标是(a,b),而不是(a,bi),也就是说,复平面内的纵坐标轴上的单位长度是1,而不是i。
(3)表示实数的点都在实轴上,表示纯虚数的点都在虚轴上。
(4)复数集C和复平面内所有的点组成的集合一一对应:
五、作业
第三篇:高中数学复数教案
高中数学复数教案
教学目标:(1)掌握复数的有关概念,如虚数、纯虚数、复数的实部与虚部、两复数相等、复平面、实轴、虚轴、共轭复数、共轭虚数的概念。(2)正确对复数进行分类,掌握数集之间的从属关系;(3)理解复数的几何意义,初步掌握复数集C和复平面内所有的点所成的集合之间的一一对应关系。(4)培养学生数形结合的数学思想,训练学生条理的逻辑思维能力.
教学重点难点:复数的概念,复数相等的充要条件.用复平面内的点表示复数M.
以及复数的运算法则
教学过程:
一、复习提问:
1.复数的定义。
2.虚数单位。
二、讲授新课
1.复数的实部和虚部:
复数z=a+bi中中的a与b分别叫做复数的实部和虚部
2.复数相等
如果两个复数的实部与虚部分别相等,就说这两个复数相等。
3.用复平面(高斯平面)内的点表示复数
复平面的定义:立了直角坐标系表示复数的平面,叫做复平面.
复数可用点 来表示.其中x轴叫实轴,y轴 除去原点的部分叫虚轴,表示实数的点都在实轴上,表示纯虚数的点都在虚轴上。原点只在实轴x上,不在虚轴上. 4.复数的几何意义:
复数集c和复平面所有的点的集合是一一对应的. 5.共轭复数
(1)复数实部相等,虚部互为相反数时,这两个复数叫做互为共轭复数。(虚部不为零也叫做互为共轭复数)(2)a的共轭复数仍是a本身,纯虚数的共轭复数是它的相反数.(3复平面内表示两个共轭复数的点z与 关于实轴对称. 6.复数的四则运算:加减乘除的运算法则。小结:
1.在理解复数的有关概念时应注意:
(1)明确什么是复数的实部与虚部;
(2)弄清实数、虚数、纯虚数分别对实部与虚部的要求;
(3)弄清复平面与复数的几何意义;
(4)两个复数不全是实数就不能比较大小。
2.复数集与复平面上的点注意事项:
(1)复数 中的z,书写时小写,复平面内点Z(a,b)中的Z,书写时大写。
(2)复平面内的点Z的坐标是(a,b),而不是(a,bi),也就是说,复平面内的纵坐标轴上的单位长度是1,而不是i。
(3)表示实数的点都在实轴上,表示纯虚数的点都在虚轴上。
(4)复数集C和复平面内所有的点组成的集合一一对应: 3复数的四则运算的规律和方法。
第四篇:名词变复数教案
名词变复数 教 案
年级 六年级 授课教师 赵新存
教学 目标:正确进行可数名词的复数变形 教学重难点:掌握名词复数的变形 教学方法:问答法、讲授法 教学用具:多媒体,课件 教学过程: Step1.Warming-up: 1. T:How are you today? S :略 Step2.Lead-in: 一般来说,可数名词有单数、复数之分,表示“一个”时用单数,表示“多个”时用复数。其变化方式分为规则变化和不规则变化。一.名词变复数规则变化:
1、绝大多数的可数名词在词尾加上s ;
eg:book→books;desk→desks;pen→pens;car→cars
2.、以s、x、ch、sh结尾的单词,在该词末尾加上-es;
eg:bus→buses;box→boxes;watch→watchches;dish→dishes
3、以辅音字母+y结尾的名词,要把y变为i,再加-es;
eg:fly→flies;baby→babies;元音字母加y结尾的单词直接加s; eg:toy→toys;boy→boys;
4、以-f或-fe结尾的名词,要将-f或-fe变为-v,再加es;
eg:knife→knives;leaf→leaves;
5、以-o结尾的名词,初级阶段只有三个单词要加-es,其余都加-s;
eg:tomato→tomatoes西红柿;potato→potatoes土豆;hero→heroes 英雄;Negro—Negroes
口诀:“黑人英雄喜欢吃土豆和西红柿”
其余eg:zoo→zoos;piano→pianos; 二.名词变复数不规则变化:
1.单词内部发生变化:口诀―oo常常变ee,男人女人a变e‖ eg:foot→feet脚;tooth→teeth牙齿;man→men男人;woman→women女人;
2.单复数相同:―羊鱼小鹿无变化,单数复数是一家‖ eg:sheep→sheep绵羊;fish→fish鱼;deer→deer鹿;
3.不规则变化:child→children孩子;mouse→mice老鼠;German→Germans德国人;
4―某国人‖的复数有三种类型: 口诀“中日不变,英法变,其它S加后边”
(1)Chinese, Japanese单数复数同形,不需加s;
(2)Englishman, Frenchman, Dutchman(荷兰人)复数要把 man 变为men;
(3)其他各国人以–an,-ian收尾的均直接加s。如:Americans, Australians.Step3:Practise: 写出下列名词的复数形式
1、orange
2、class
3、text
4、monkey
5、piano
6、child
7、shelf
8、bed
9、country
10、family
11、toy
12、foot
13、Japanese
14、radio
15、photo
16、army
17、tomato
18、fox
19、woman
20、knife
22、sheep Step4:summary 名词单数变复数口诀(一)规则变化
名词单数变复数,直接加-s 占多数;
s, x, ch, sh 来结尾,直接加上-es;
词尾是 f 或 fe,加-s 之前先变 ve;
辅母 + y 在词尾,把 y 变 i 再加-es;
词尾字母若是 o,常用三个已足够,要加-es 请记好,hero, tomato, potato。(二)不规则变化
男人女人 a 变 e,鹅足牙 oo 变 ee;
老鼠虱婆也好记,ous 变 ic;
孩子加上 ren,鱼鹿绵羊不用变。
第五篇:复数 复数与方程 教案
复数·复数与方程·教案
教学目标
1.掌握在复数集内解一元二次方程的方法;使学生掌握含有未知数 的解法.
2.教学过程中,渗透数学转化思想及方程的思想,提高学生灵活运用数学知识解题的能力;培养学生严谨的逻辑思维.
3.通过对实系数一元二次方程在实数范围内求解和在复数范围内求解的比较,认识到任何事物都是相对的,而不是绝对的这一辩证唯物主义的观点.
教学重点与难点
个复数相等的充分必要条件的运用. 教学过程设计
师:方程x2+1=0在复数范围内有没有解,解集是什么? 生:因为-1=i2,则原方程化为x2-i2=0,即(x+i)(x-i)=0.所以原方程解集为{i,-i}. 师:对.那么方程ax2+bx+c=0(a,b,c是实数)在复数范围内解集是什么? 生1:当Δ=b2-4ac>0时,方程有两个不相等的实根,解集为
师:方程x2+1=0中,Δ=-4<0,上述结论对吗?
生3:无意义.此时方程的解集为
师:对.实系数一元二次方程ax2+bx+c=0在复数范围内解的情况为:当Δ≥0时有实根;当Δ<0时,有一对共轭的虚根.
例1 若关于x的方程x2+5x+m=0的两个虚数根x1,x2满足|x1-x2|=3,求实数m的值.
生2:因为|x1-x2|=3,|(x1-x2)2|=9;则|(x1+x2)2-4x1x2|=9,即|25-4m|=9.
例2 已知实系数一元二次方程2x2+rx+s=0的一个根为2i-3,求r,s的值. 生:2x2+rx+s=0一根为2i-3,另一根为-3-2i.由韦达定理知: s=(2i-3)(-2i-3)=9+16=25,r=2i-3+(-2i-3)=-6.
师:我们上面解决了实系数一元二次方程求解问题.对于至少有一个系数是虚数的一元二次方程应该如何解?
例3 求方程x2-2ix-5=0的解.
生1:将方程左端配方,得(x-i)2-4=0,即(x-i)2=4.解得x-i=±2,即x1=2+i,x2=-2+i.
师:通过这个例子大家想一想对于方程ax2+bx+c=0(a≠0,a,b,c至少有一个虚数)解是什么? 生1:对原方程左端配方,得
师:b2-4ac一定是解负实数吗?
生2:不一定.a,b,c中至少有一个是虚数,所以b2-4ac∈C. 师:那么这个方程的解应该怎样表示.
生3:先求b2-4ac的平方根.设b2-4ac的平方根为z1,z2∈C.那么
师:对.一元二次方程的求根公式此时仍然适用.再提一个问题,当b2-4ac≥0时,方程的解都是实数吗? 生1:是.
师:请问由此得出怎样的结论.
生3:当一元二次方程的系数中至少有一个虚数时,求根公式仍然适用,但判别式不再适用. 师:还有吗?
生4:韦达定理仍然适用. 师:系数不全为实数的一元二次方程中,判别式不再适用,说明“世界上的任何事物都是相对的而不是绝对的”这一辩证唯物主义观点.求解系数不全为实数的一元二次方程的步骤:
(1)求出Δ=b2-4ac的平方根z1,z2;
练习解方程:x2+(1+i)x+5i=0. 生:Δ=[-(1+i)]2-4×5i=-18i,因为-18i=(3-3i)2,则-18i的平方根为3-3i,-3+3i. 所以 x1=1-2i,x2=2+i为原方程解. 例4 解方程|z|+2z=2+4i.
师:解这个方程能用求根公式吗?
生1:不可以.此方程不是一元二次方程. 师:这类方程如何解呢? 生:……
师:观察方程等号左端和左端.左端是一个虚数,实部、虚部都是已知的,右端是复数.两个复数相等的充要条件是什么?
生2:两个复数相等的充要条件是:实部与实部相等,虚部与虚部相等. 师:这个方程左端能分离实部虚部吗?
师:怎样求z?
生4:求出a,b即可.
众生:不对!师:为什么?
师:含有|z|的复数方程,转化为无理方程组时,所求出方程组的解一定要代回原方程组验根. 例5 方程x2+(m+2i)x+2+mi=0至少有一实根,求实数m的值和这方程的解. 生1:方程有实根,判别式Δ≥0,从而解出m.
生2:这是一个系数不全为实数的一元二次方程,根的判别式已不再适用. 师:对.那么方程有实根这一条件应如何用呢? 生:……
师:设实根为x0,想到什么呢? 生:分离复数的实部和虚部.
综上所述:
生1:设x=a+bi.原方程转化为: a2+b2+2a+2bi=4+2i.
所以 原方程的解为:x1=-3+i或x2=1-i. 师:这位同学解题过程有问题吗? 生2:设x=a+bi(a,b∈R).没有“a,b∈R”这一条件,上面的解法就无依据了. 师:我们一定要注意思维的严谨性.
师:形如anxn+a0=0(a0,an∈C且an≠0,n∈N+,n≥3)的方程叫做二项方程.任何一个二项高次方程都可以化成xn=a(a∈C)的形式.因此都可以通过复数开方求根,在复数集内有且仅有n个复数根.
例6 在复数集内解方程: x4+x2+x2+x+1=0.
师:这个方程与二项方程有关系吗?
生:方程左端是等比数列.由等比数列前n项和公式得到x4+x3+
师:现在把原方程的求解问题转化为x5=1的求解问题,这就是数学中转化的思想.把未知问题向已知问题转化,从而使未知问题得到解决.
师:这个方程能转化为二项方程吗? 生:……
师:|z|能计算出来吗?
生:由z5=|z|2,知|z|=0或|z|=1. 当|z|=0时,z4=z.解为z=0.
师:这节课我们研究了几类方程的解法?
生:这节课是研究在复数范围内解方程.主要类型有:(1)实系数一元二次方程;(2)系数不全为实数的一元二次方程;(3)含有|z|,师:解这几类方程应注意些什么?
生1:对于实系数一元二次方程:当Δ>0时,方程有两个相异的实根;当Δ=0时,方程有两个相等的实根;当Δ<0时,方程有两个共
生2:对于系数不全为实数的一元二次方程,根的判别式不再适用,但求根公式,韦达定理仍然适用.在使用求根公式时,需先计算出Δ=b2-4ac的平方根.
法,根据复数相等的充要条件,转化为方程组,从而求出z.特别注意,在解无理方程时,一定要验根.另外,若方程有实根时,解决问题的方法类似.
生4:对于高次方程的解法,通常要转化为二项方程.在复数范围内解方程时,n次方程一定有n个根. 师:这节课通过复数范围内方程的求解过程,我们要进一步体会数学转化的思想、方程的思想的运用. 作业
1.P214:2,4;P217:16(1),(3),(5);P218:20(2),(4). 2.补充题:
(2)解方程:x2-4ix+5=0;
(3)已知方程x2+mx+1+2i=0(m∈C)有实根,求|m|的最小值. 补充题答案
(1)设z=a+bi,a,b∈R.a2+b2-3ai-3b=1+3i,则
(2)Δ=(-4i)2-4×5=-16-20=-36.-36的平方根为6i,-6i.
课堂教学设计说明
法.为了保持本教案的完整性将可化为二项方程的高次方程的解法也列入本教案,教学中可根据情况酌情处理.
本教案中学生答错的地方,带有一定的普遍性,应给予足够的重视.
本教案特别强调展示学生的思维过程,在教师的逐步引导下,诱导学生得出正确的结论,使学生有水到渠成的感觉.