专题:不等式恒成立问题解法
-
函数、不等式恒成立问题解法(教案)
函数、不等式恒成立问题解题策略教学目标:1. 通过对不同问题的解题探讨归纳该类问题的一般解法2. 培养学生的分析问题和灵活应用知识解决问题的能力3. 培养学生的数形结合能
-
精题精选函数、不等式恒成立问题解法
函数、不等式恒成立问题解法(源自于网络)恒成立问题的基本类型:类型1:设f(x)ax2bxc(a0),(1)f(x)0在xR上恒成立a0且0;(2)f(x)0在xR上恒成立a0且0注:这里一定要小心,如果没有说a不等于0的
-
构造直线巧破不等式恒成立问题
龙源期刊网 http://.cn
构造直线巧破不等式恒成立问题
作者:苏文云
来源:《学习与研究》2013年第05期
不等式恒成立,求解参变量取值范围的问题,由于集不等式、方程、函数知识于 -
含参不等式恒成立问题的求解策略
含参不等式恒成立问题的求解策略 授课人:李毅军 “含参不等式恒成立问题”把不等式、函数、三角、几何等内容有机地结合起来,其以覆盖知识点多,综合性强,解法灵活等特点而倍受高
-
高中含参不等式的恒成立问题整理版
高中数学不等式的恒成立问题一、用一元二次方程根的判别式有关含有参数的一元二次不等式问题,若能把不等式转化成二次函数或二次方程,通过根的判别式或数形结合思想,可使问题得
-
高一数学函数和不等式中恒成立问题的教案[★]
函数和不等式结的恒成立问题的解法 “含参不等式恒成立问题”把不等式、函数、三角、几何等内容有机地结合起来,其以覆盖知识点多,综合性强,解法灵活等特点而倍受高考、竞赛命
-
不等式的解法练习题
职三数学课堂练习题(4)
不等式的解法练习题
1、已知a∈R,则“a>2”是“a2>2a”成立的
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件
2、不等式3x10的解集 -
不等式解法知识要点
知识要点 1.考试说明规定“不等式”考试内容包括不等式、不等式的性质、不等式的证明、不等式解法、含有绝对值符号的不等式. 上述性质中,条件与结论的逻辑关系有两种:推出关系
-
含绝对值不等式的解法习题课
第十一教时
三、补充:
例七、已知函数f (x), g (x)在 R上是增函数,求证:f [g (x)]在 R上也是增函数。例八、函数 f (x)在 [0, 上单调递减,求f(x2)的递减区间。例九、已知函数 f -
无理不等式的解法教案
无理不等式 目的:通过分析典型类型例题,讨论它们的解法,要求学生能正确地解答无理不等式。 过程: 一、提出课题:无理不等式 — 关键是把它同解变形为有理不等式组 二、f(x)0定义
-
含绝对值的不等式解法(总结归纳)
含绝对值的不等式解法、一元二次不等式解法 [教材分析] |x|的几何意义是实数x在数轴上对应的点离开原点O的距离,所以|x|0)的解集是 {x|-a0)的解集是{x|x>a或x0)中的x替换成ax
-
《含绝对值不等式的解法》教案
《含绝对值不等式的解法》教案
本课件依据我校高三数学第一轮复习用书《步步高高考总复习—数学》及另选部分题目制作而成,全部内容都经过了课堂教学的检验,为教学过程的实录 -
一元一次不等式解法反思(精选5篇)
一元一次不等式的解法反思
由于本节课是一节微课,时间简短,基于微课的要求以及微课所面对的是一些个体,因此整个教学活动教师的讲解比较重要。在教学过程中不能急于求成,适时给 -
绝对值不等式解法的说课稿公开课
包铁一中选修4-5绝对值不等式的解法说课稿讲课人:杜玉荣 各位领导和老师们大家好,我将从教材分析,学情分析,教学教法分析,教学过程,教学设计说明,板书设计几个方面对本节进行阐述。
-
一元一次不等式解法教学设计
一元一次不等式及解法教学设计 教学目标 1.知识与技能:掌握一元一次不等式的相关概念及其解法,能熟练的解一元一次不等式。 2.过程与方法:学生亲身经历探究一元一次不等式及其
-
一元二次不等式及其解法教学设计
《一元二次不等式及其解法》 教 学 设 计 说 明 《一元二次不等式及其解法》教学设计说明 一.教学内容分析: 1.本节课内容在整个教材中的地位和作用. 必修五第三章不等式第二节
-
数学归纳法中不等式类解法
数学归纳法中不等式类解法 数学归纳法的思想比较特殊,原理是用类似于“多骨诺米牌效应”的方法,从n=1,n=2推到所可以达到的终点,从而推出式子的正确性。也正是如此,数学归纳法在
-
一元二次不等式及其解法 教学设计
《一元二次不等式及其解法(第1课时)》教学设计 Eric 一 内容分析 本节课内容的地位体现在它的基础性,作用体现在它的工具性。一元二次不等式的解法是初中一元一次不等式或一元