专题:初一几何证明典型例题
-
初一(下)几何证明
初一几何证明1.如图,点D、E、F分别在AB、BC、AC上,且DE∥AC,EF∥AB,下面写出了说明“∠A+∠B+∠C=180°”的过程,请填空:因为DE∥AC,AB∥EF,所以∠1=∠,∠3=∠.因为AB∥EF,所以∠2=∠___.因
-
八年级命题与证明(知识点典型例题,动态几何问题)
第四章命题与证明知识回顾:1一般地,能明确指出概念含义或特征的句子,称为定义。(定义必须是严密的,诸如“一些”,“大概”,“差不多”等不能在定义中出现)2. 判断一件事情的句子,叫做
-
双曲线的简单几何性质 典型例题解析
典例剖析 x2y2[例1]已知双曲线22=1(a>0,b>0)的焦点坐标是F1(-c,0)和F2(c,0),P(x0,y0)ab是双曲线上的任一点,求证|PF1|=|a+ex0|,|PF2|=|a-ex0|,其中e是双曲线的离心率. x2y2【证明】 双曲线22=1
-
初一常用几何证明的定理
初一常用几何证明的定理总结平面直角坐标系各个象限内和坐标轴的点的坐标的符号规律:(1)x轴将坐标平面分为两部分,x轴上方的纵坐标为正数;x轴下方的点纵坐标为负数。即第一、二象
-
典型例题[最终定稿]
【典型例题】She had a great ___ for the town where she grew up. A. affection B. affectation C. infection D. affectionate 【试题详解】答案 A 她热爱她长大的那座
-
典型例题
典型例题
一、填空题
1.教育是社会主义现代化建设的基础,国家保障教育事业优先发展。全社会应当关心和支持教育事业的发展。全社会应当尊重教师。
2.新课程的三维目标是 知识 -
双曲线的简单几何性质 典型例题解析[推荐阅读]
典例剖析 [例1]已知双曲线的方程by-ax=ab(a>0,b>0),求双曲线的实半轴长和虚半轴长、焦点坐标、渐近线方程. 【解】 把方程化为标准方程ya22222222xb22=1, 由此可知,实半轴长为a,虚半
-
不等式的证明典型例题分析
不等式的证明典型例题分析例1 已知,求证:.证明 ∵∴,当且仅当时等号成立.点评 在利用差值比较法证明不等式时,常采用配方的恒等变形,以利用实数的性质例2 已知均为正数,求证. .分析
-
不等式的证明·典型例题2
不等式的证明·典型例题 【例1】 已知a,b,c∈R+,求证:a3+b3+c3≥3abc. 【分析】 用求差比较法证明. 证明:a3+b3+c3-3abc=[(a+b)3+c3]-3a2b-3ab2-3abc =(a+b+c)[(a+b)2-(a+b)c+c2]-3
-
初一常用几何证明的定理总结
初一常用几何证明的定理总结平面直角坐标系各个象限内和坐标轴的点的坐标的符号规律:(1)x轴将坐标平面分为两部分,x轴上方的纵坐标为正数;x轴下方的点纵坐标为负数。即第一、二象
-
初一下专题6-几何推理-几何证明
专题6:几何推理-几何证明1、已知:如图,CD⊥AD,DA⊥AB,∠1=∠2.求证:DF∥AE.CDEAFB2、已知:BF⊥AC于F,GD⊥AC于D,∠1=∠2.求证:EF∥BD.AFEBDCG3、已知:如图,AE平分∠BAC,CE平分∠ACD,且∠1+
-
几何证明
龙文教育浦东分校学生个性化教案学生:钱寒松教师:周亚新时间:2010-11-27
学生评价◇特别满意◇满意◇一般◇不满意
【教材研学】
一、命题
1.概念:对事情进行判断的句子叫做命题. -
几何证明
1.平行线等分线段定理:如果一组平行线在一条直线上截得的线段相等,那么在
其他直线上截得的线段_________.
推论1: 经过三角形一边的中点与另一边平行的直线必_____________ -
浅谈几何证明
西华师范大学文献信息检索课综合实习报告检索课题(中英文):浅谈几何证明 On the geometric proof
一、课题分析
几何是研究空间结构及性质的一门学学科。它是数学中最基本的研 -
几何证明
几何证明1.如图,AD是∠EAC的平分线,AD∥BC,∠B=30 o,求∠EAD、∠DAC、∠C的度数2.已知∠BED=∠B+∠D,试说明AB与CD的位置关系3.如图,EB∥DC,∠C=∠E,请你说出∠A=∠ADE的理由。4.如
-
2013几何证明
2013几何证明1.(2013年普通高等学校招生统一考试重庆数学(理)试题(含答案))如图,在ABC中,C900,A600,AB20,过C作ABC的外接圆的切线CD,BDCD,BD与外接圆交于点E,则DE的长为__________
-
机械能守恒定律典型例题
机械能守恒定律典型例题 题型一:单个物体机械能守恒问题 1、一个物体从光滑斜面顶端由静止开始滑下,斜面高1 m,长2 m,不计空气阻力,物体滑到斜面底端的速度是多大?拓展:若光滑的斜
-
典型面试例题
1、假如你的一位经常需要合作的同事,和你的工作常常有较大的分歧,影响了工作效率,你怎么与他合作共事?答:首先要认识到,和同事之间,尤其是经常需要合作的同事间,和睦相处形成一