专题:初中四边形经典证明题
-
四边形证明题
四边形证明题已知E.F分别为平行四边形ABCD一组对边ADBC的中点,BE与AF交于点G,CE与DF交于点H求证四边形EGFH是平行四边形解:在三角形ABF和三角形EDC中因为:AB=CD角DAB=角DCBAE=F
-
四边形证明题范文合集
1.如图,BD是□ABCD的对角线,∠ABD的平分线BE交AD于点E,∠CDB的平分线DF交BC于点F.求证:△ABE≌△CDF.EABFC2.如图已知E、F分别是□ABCD的边BC、AD上的点,且BE=DF.(1) 求证:四边形AECF
-
四边形的证明题
四边形的证明题1.如图,在矩形ABCD中,点O是边AD上的中点,点E是边BC上的一个动点,延长EO到F,使得OE=OF. FADBEC(1)当点E运动到什么位置时,四边形AEDF是菱形?(直接写出答案)(2)若矩形AB
-
四边形证明题(完)
1、如图,△ABC为等边三角形,D、F分别为BC、AB上的点,且CD=BF,以AD为边作等边△ADE. 求证:△ACD≌△CBF.点D在线段BC上何处时,四边形CDEF是平行四边形且∠DEF=30°.2、如图,AC
-
四边形几何拓展证明题
39.如图19-12,已知四边形ABCD是等腰梯形, CD//BA,四边形AEBC是平行四边形.请说明:∠ABD=∠ABE.C ACB MF图19-12 CB 图19-14 图19-1541.如图19-14,AD是△ABC的角平分线,DE∥AC交AB于点E
-
四边形证明题复习(精选五篇)
1.已知:如图,在□ABCD中,E,F分别是边AD,BC上的点,且AECF,直线EF分别交BA的延长线、DC的延长线于点G,H,交BD于点O. (1)求证:△ABE≌△CDF; (2)连接DG,若DG=BG,则四边形BEDF是什么特殊四边形?请说
-
特殊四边形的证明题
题型一:矩形1.如图,在△ABC中,D是BC边上的一点,E是AD的中点,过A点作BC的平行线交CE的延长线于点F,且AF=BD,连结BF。(1)求证:BD=CD;(2)如果AB=AC,试判断四边形AFBD的形状,并证明你的结论。2.
-
特殊四边形证明题(正方形)
特殊四边形证明题(正方形)1.如图,四边形ABCD是正方形, 点G是BC上任意一点,DE⊥AG于点E,BF⊥AG于点F.求证:DE-BF = EF.2.如图 ,ABCD是正方形.G是 BC 上的一点,DE⊥AG于 E,BF⊥AG于 F. A D(1)求
-
特殊四边形证明题习题
特殊四边形证明题1.(2009年湖北十堰市)如图①,四边形ABCD是正方形, 点G是BC上任意一点,DE⊥AG于点E,BF⊥AG于点F.求证:DE-BF = EF.2.(2009年山东青岛市)已知:如图,在ABCD中,AE是BC边上的高
-
2012中考数学四边形经典证明题含答案
1.如图,正方形ABCD和正方形A′OB′C′是全等图形,则当正方形A•′OB′C′绕正方形ABCD的中心O顺时针旋转的过程中.(1)四边形OECF的面积如何变化.(2)若正方形ABCD的面积是4,求四边形OEC
-
2013中考数学四边形经典证明题学生版
2013年中数学四边形经典证明题1.如图,正方形ABCD和正方形A′OB′C′是全等图形,则当正方形A•′OB′C′绕正方形ABCD的中心O顺时针旋转的过程中.(1)四边形OECF的面积如何变化.(2)若正
-
初中《四边形》知识点归纳
初中《四边形》知识点归纳 四边形性质探索 定义:若两条直线互相平行,则其中一条直线上任意两点到另一条直线的距离相等,这个距离称为平行线之间的距离。平行四边形:两组对边分
-
初中几何证明题
如图,在三角形ABC中,BD,CE是高,FG分别为ED,BC的中点,O是外心,求证AO∥FG 问题补充:证明:延长AO,交圆O于M,连接BM,则:∠ABM=90°,且∠M=∠ACB.∠AEC=∠ADB=90°,∠EAC=∠DAB,则
-
初中平面几何证明题
九年级数学练习题1.如图,分别以△ABC的边AB、AC为边,向外作正方形ABFG和ACDE,连接EG求证:S△ABCS△AEG2.如图,分别以△ABC的边AB、AC为边,向外作正方形ABFG和ACDE,连接EG。若O为EG的
-
初中数学证明题
1.如图1,△ABC中,AB=AC,∠BAC和∠ACB的平分线相交于点D,∠ADC=130°,求∠BAC的度数.2.如图,△ABC中,AD平分∠CAB,BD⊥AD,DE∥AC。求证:AE=BE。.3.如图,△ABC中,AD平分∠BAC,BP⊥AD于P,AB=5,BP
-
数学 中考A卷 四边形证明题(典型)5篇
中考A卷四边形证明题(1)1.如图,在四边形ABCD中,点E是线段AD上的任意一点(E 与A,D不重合),G,F,H分别是BE,BC,CE的中点.12BC, E H (1)证明四边形EGFH是平行四边形;(2)在(1)的条件下,若EFBC,且EF证明平
-
证明方法四边形必备初中
证明线段垂直 一.相交线、平行线: 1.相交直线邻补角相等。 2.a垂直b,c平行a,则c垂直b 二.三角形中: 1.等腰三角形三线合一。 2.勾股定理逆定理。 3.三角形三条边上的高所在直线交于同
-
初中四边形知识点总结
一、平行四边形定义:两组对边分别平行的四边形叫做平行四边形。平行四边形的性质:平行四边形是中心对称图形,对角线的交点是它的对称中心; 平行四边形的对边平行且相等;