专题:初中数学几何练习题
-
初中数学竞赛几何练习题(合集五篇)
初二数学竞赛基本几何题 1、如图1,在△ABC中,AD⊥BC 于D,AB+BD=CD。证明∠B=2∠C。 ACDB 2、如图2,在△ABC中,AB=AC。D,E分别是BC,AC 上的点。问∠BAD与∠CDE满足什么条件时,AD=AE。
-
初中几何证明练习题
初中几何证明练习题1.如图,在△ABC中,BF⊥AC,CG⊥AD,F、G是垂足,D、E分别是BC、FG的中点,求证:DE⊥FG2.如图,AE∥BC,D是BC的中点,ED交AC于Q,ED的延长线交AB的延长线于P,求证:PD·QE=PE
-
初中数学几何证明题
初中数学几何证明题分析已知、求证与图形,探索证明的思路。对于证明题,有三种思考方式:正向思维。对于一般简单的题目,我们正向思考,轻而易举可以做出,这里就不详细讲述了。
-
初中数学几何模型
初中数学几何模型大全+经典题型(含答案)全等变换平移:平行等线段(平行四边形)对称:角平分线或垂直或半角旋转:相邻等线段绕公共顶点旋转对称全等模型说明:以角平分线为轴在角两边进
-
初中数学几何怎么样学
初中数学几何怎么样学?
怎样学好初中数学
怎样学好数学,是刚步入初中的同学面临的共同问题。大家在小学学习数学时,往往偏重于模仿,依赖性较强,独立思考和自学的能力不够,很少去探 -
初中数学知识点归纳:几何
学冠教育-初中数学知识点归纳:几何初中数学几何公式大全——初中几何公式包括:线、角、圆、正方形、矩形等数学学几何的公式,以供同学们学习和理解!初中几何公式:线1同角或等角
-
初中数学几何定理集锦
初中数学几何定理集锦
1。同角(或等角)的余角相等。
3。对顶角相等。
5。三角形的一个外角等于和它不相邻的两个内角之和。
6。在同一平面内垂直于同一条直线的两条直线是平行 -
初中数学几何证明题
平面几何大题 几何是丰富的变换 多边形平面几何有两种基本入手方式:从边入手、从角入手 注意哪些角相等哪些边相等,用标记。进而看出哪些三角形全等。平行四边形所有的判断方
-
初中数学总复习提纲几何
第一章 线段、直线和相交线、平行线1.1线段、直线和角 知识要点线段的中点:将一条线段分成两条相等的线段的点。 二、角①定义:有公共端点的两条射线组成的图形叫做角,这个公共
-
几何证明方法(初中数学)
初中数学几何证明题技巧,归类
一、证明两线段相等
1.两全等三角形中对应边相等。
2.同一三角形中等角对等边。
3.等腰三角形顶角的平分线或底边的高平分底边。(三线合一)
4.平 -
初中数学几何复习指导(范文)
初中数学几何复习指导
本文将对初中数学几何复习进行指导,中考几何的复习是个难题,关键在于怎样提高复习的有效性。那么中考几何如何进行复习才能高效呢?下面结合参加广州市初 -
初中数学几何知识点提纲(大全)
数学是很多学生非常恐惧的一科,同时也是学生们比较犯难的一科,初中数学虽然没有高中数学那么多的难题,但是相对来说也是考验学生们思维的,以下是小编给大家整理的初中数学几
-
初中数学几何题训练题
1.如图,已知:点B、F、C、E在一条直线上,FB=CE,AC=DF.能否由上面的已知条件证明AB∥ED?如果能,请给出证明;如果不能,请从下列三个条件中选择一个合适的条件,添加到已知条件中,使AB∥ED成
-
初中数学几何综合测试题
初中几何综合测试题及答案(时间120分 满分100分)一.填空题(本题共22分,每空2分)1.一个三角形的两条边长分别为9和2,第三边长为奇数,则第三边长为 .2.△ABC三边长分别为3、4、5,与其
-
几何证明练习题
几何证明1、 已知:在⊿ABC中,AB=AC,延长AB到D,使AB=BD,E是AB的中点。求证:CD=2CE。C2、 已知:在⊿ABC中,作∠FBC=∠ECB=2∠A。求证:BE=CF。BC3、 已知:在⊿ABC中,∠A=900,AB=AC,在BC上任
-
初中数学因式分解练习题
1.(2014•黔南州)下列计算错误的是 A.a•a2=a3 C.2m+3n=5mn
A.a2+4a-21=a(a+4)-21 C.(a-3)(a+7)=a2+4a-21 A.a2+1 A.-3
B.a2-6a+9 B.-1
B.a2b-ab2=ab(a-b) D.(x2)3=x6
B.a2+4a-21=(a-3)(a+7) D.a2+4a-21=(a -
初中数学因式分解(练习题)
初中因式分解的常用方法例1、分解因式:amanbmbn
例2、分解因式:2ax10ay5bybx
练习:分解因式1、a2abacbc2、xyxy1例3、分解因式:x2y2axay
例4、分解因式:a22abb2c2
练习:分解因式3 -
数学几何
已知△ABC,分别以AB ,AC为边在△ABC外侧作△ABD和△ACE,使AB=AD,AC=AE,且∠BAD=∠EAC,BE,CD交于点P。当∠BAD=90时,若∠BAC=45,∠BAP=30,BD=2,求CD的长。、∵ AD=AB, AC=AE, ∠DAC=90