专题:放缩法证明数列不等式
-
放缩法证明数列不等式
放缩法证明数列不等式 基础知识回顾: 放缩的技巧与方法: (1)常见的数列求和方法和通项公式特点: ① 等差数列求和公式:错误!未找到引用源。,错误!未找到引用源。(关于错误!未找到引用
-
放缩法证明数列不等式
放缩法证明不等式1、设数列an的前n项的和Sn43an132nn123(n1,2,3,)n(Ⅰ)求首项a1与通项an;(Ⅱ)设Tnan42nn2Sn(n1,2,3,),证明:Tii132解:易求SnTn(其中n为正整数)23nn432nann132n1434n23n
-
放缩法证明数列不等式经典例题
放缩法证明数列不等式主要放缩技能: 1.11111112 nn1n(n1)nn(n1)n1n1144112()22n4n1(2n1)(2n1)2n12n1n242. 2) 4.2n2n2n1115. n (21)2(2n1)(2n2)(2n1)(2n11)2n112n16.n22(n1
-
放缩法与数列不等式的证明
2017高三复习灵中黄老师的专题 放缩法证明数列不等式编号:001 引子:放缩法证明数列不等式历来是高中数学的难点,在高考数列试题中经常扮演压轴的角色。由于放缩法灵活多变,技巧
-
放缩法证明不等式
放缩法证明不等式不等式是数学的基本内容之一,它是研究许多数学分支的重要工具,在数学中有重要的地位,也是高中数学的重要组成部分,在高考和竞赛中都有举足轻重的地位。不等式的
-
放缩法证明不等式
主备人:审核:包科领导:年级组长:使用时间:放缩法证明不等式【教学目标】1.了解放缩法的概念;理解用放缩法证明不等式的方法和步骤。2.能够利用放缩法证明简单的不等式。【重点、难
-
放缩法证明不等式
放缩法证明不等式 在学习不等式时,放缩法是证明不等式的重要方法之一,在证明的过程如何合理放缩,是证明的关键所在。现例析如下,供大家讨论。 例1:设a、b、c是三角形的边长,求证ab
-
用放缩法证明与数列和有关的不等式
用放缩法证明与数列和有关的不等式湖北省天门中学薛德斌数列与不等式的综合问题常常出现在高考的压轴题中,是历年高考命题的热点,这类问题能有效地考查学生综合运用数列与不等
-
放缩法(不等式、数列综合应用)
“放缩法”证明不等式的基本策略近年来在高考解答题中,常渗透不等式证明的内容,而不等式的证明是高中数学中的一个难点,它可以考察学生逻辑思维能力以及分析问题和解决问题的能
-
2012高考专题----数列与不等式放缩法
高考专题——放缩法一、基本方法1.“添舍”放缩通过对不等式的一边进行添项或减项以达到解题目的,这是常规思路。 例1. 设a,b为不相等的两正数,且a3-b3=a2-b2,求证1<a+b<例2. 已知a、b
-
裂项放缩证明数列不等式
策略一、裂项放缩证明数列不等式若欲证不等式含有与自然数n有关的n项和,可采用数列中裂项求和等方法来解题。 例1-1、(全国I理-22压轴题)设数列an的前n项的和Sn项an;(Ⅱ)设Tn2n43a
-
放缩法证明不等式例证
例谈“放缩法”证明不等式的基本策略江苏省苏州市木渎第二高级中学母建军 215101近年来在高考解答题中,常渗透不等式证明的内容,而不等式的证明是高中数学中的一个难点,它可以
-
浅谈用放缩法证明不等式
淮南师范学院2012届本科毕业论文 1 目录引言„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„(2) 1. 放缩法的常用技巧„„„„„„„„„„„„„„„
-
用放缩法证明不等式
用放缩法证明不等式蒋文利飞翔的青蛙所谓放缩法就是利用不等式的传递性,对照证题目标进行合情合理的放大和缩小的过程,在使用放缩法证题时要注意放和缩的“度”,否则就不能同向
-
论文-放缩法证明数列不等式的基本策略
放缩法证明数列不等式的基本策略广外外校姜海涛放缩法证明数列不等式是高考数学命题的热点和难点。所谓放缩法就是利用不等式的传递性,对不等式的局部进行合理的放大和缩小从
-
利用放缩法证明数列不等式的技巧“揭秘”
龙源期刊网 http://.cn
利用放缩法证明数列不等式的技巧“揭秘” 作者:顾冬生
来源:《新高考·高三数学》2013年第06期
数列型不等式的证明题,常常需要用放缩的方法来解决,但放 -
放缩法证明“数列+不等式”问题的两条途径
放缩法证明“数列+不等式”问题的两条途径数列与不等式的综合问题常常出现在高考的压轴题中,是历年命题的热点,解决这类问题常常用到放缩法。用放缩法解决“数列+不等式”问题
-
用放缩法证明数列求和中的不等式
用放缩法证明数列求和中的不等式近几年,高考试题常把数列与不等式的综合题作为压轴题,而压轴题的最后一问又重点考查用放缩法证明不等式,这类试题技巧性强,难度大,做题时要把握放