专题:高数知识总结
-
考研高数知识总结1
考研数学讲座(17)论证不能凭感觉 一元微分学概念众多,非常讲究条件。讨论问题时,要努力从概念出发,积极运用规范的算法与烂熟的基本素材。绝不能凭感觉凭想象就下结论。 1. x趋于
-
高数总结
高数总结 公式总结: 1.函数定义域 值域 Y=arcsinx [-1,1] [-π/2, π/2] Y=arccosx [-1,1] [0, π] Y=arctanx (-∞,+∞) (-π/2, π/2) Y=arccotx (-∞,+∞) (0, π) Y=shx
-
高数下册总结
篇一:高数下册总结 高数(下)小结 一、微分方程复习要点 解微分方程时,先要判断一下方程是属于什么类型,然后按所属类型的相应解法 求出其通解. 一阶微分方程的解法小结: 二阶
-
高数积分总结
高数积分总结 一、不定积分 1、不定积分的概念也性质 定义1:如果在区间I上,可导函数F(x)的导函数为f(x),即对任一xI,都有 F`(x)=f(x)或dF(x)=f(x)dx, 那么函数F(x)就称为f(x)(或f
-
高数下册总结
第四讲 向量代数、多元函数微分与空间解析几何 一、理论要求 1.向量代数 理解向量的概念(单位向量、方向余弦、模) 了解两个向量平行、垂直的条件 向量计算的几何意义与坐标表
-
高数符号总结(合集)
数量符号 如:i,2+i,a,x,自然对数底e,圆周率π。运算符号 除号(÷或/) 两个集合的并集(∪) 交集(∩) 根号(↗) 对数(log,lg,ln),比(:) 微分(dx) 积分(∫) 曲线积分(∬)等。结合符号 如小括号“”中括号“[]”
-
高数积分总结
高数积分总结 一、不定积分 1、不定积分的概念也性质 定义1:如果在区间I上,可导函数F(x)的导函数为f(x),即对任一xI,都有 F`(x)=f(x)或dF(x)=f(x)dx, 那么函数F(x)就称为f(x)(或f
-
高数知识点总结
高数重点知识总结 1、基本初等函数:反函数(y=arctanx),对数函数(y=lnx),幂函数(y=x),指数函数(yax),三角函数(y=sinx),常数函数(y=c) 2、分段函数不是初等函数。 x2xxlim1 3、无穷
-
高数积分总结
第四章 一元函数的积分及其应用 第一节 不定积分 一、原函数与不定积分的概念 定义1.设f(x)是定义在某区间的已知函数,若存在函数F(x),使得F(x)或dFf(x)(x)f(x)dx,则称F(x)
-
高数(上)总结 ver1.0
高等数学(上)总结二、单元函数积分。1. 不定积分。 ① 原函数:在一个区间上若F’(x)=f(x),则称F(x)为f(x)的一个原函数。 ② 不定积分:已知被积函数f(X)求原函数F(x)。∫f(x)dx=F(
-
高数极限求法总结
首先说下我的感觉, 假如高等数学是棵树木得话,那么 极限就是他的根, 函数就是他的皮。树没有跟,活不下去,没有皮,只能枯萎, 可见这一章的重要性。 为什么第一章如此重要? 各个章节
-
高数下公式总结(汇编)
高等数学下册公式总结 1、N维空间中两点之间的距离公式:p(x1,x2,...,xn),Q(y1,y2,...,yn)的距离 PQ(x1y1)2(x2y2)2...(xnyn)2 2、多元函数zf(x,y)求偏导时,对谁求偏导,就意味着
-
高数知识点总结(上册)
高数知识点总结(上册) 函数: 绝对值得性质: |a+b||a|+|b| |a-b||a|-|b| |ab|=|a||b| a|a|(b0)|b|=|b| 函数的表示方法: (1)表格法 (2)图示法函数的几种性质:(1)函数的有
-
高数期末复习总结
高数期末复习定积分 1、 变上限定积分求导数dxf(t)dtdxa, 2、 定积分的计算牛顿—莱布尼兹公式(用到不定积分主要公式tdt、1dt、edt、tt, sintdt、costdt,凑微分法)3、 对称区间
-
大学高数学习方法总结
2014年大学高数学习方法总结 一提起“数学”课,大家都会觉得再熟悉不过了,从小学一直到高中,它几乎就是一门陪伴着我们成长的学科。然而即使有着大学之前近xx年的数学学习生涯
-
高数二下知识点总结
考试之前我们及时的总结,罗列,能够帮助我们梳理知识点,有效应对考试,小编为大家整理了高二语文下册期末知识点总结,欢迎大家阅读。第一版块:古诗文阅读与鉴赏(7题33分)1。名句名篇默
-
高数下知识点总结大全
总结是社会团体、企业单位和个人在自身的某一时期、某一项目或某些工作告一段落或者全部完成后进行回顾检查、分析评价,从而肯定成绩,得到经验,找出差距,得出教训和一些规律性认
-
高数论文
高数求极限方法小结 高等数学是近代数学的基础,是现代科学技术中应用最广泛的一门学科。在从初等数学这种静态的数量关系的分析到高等数学这种对动态数量关系的研究这一发