专题:高中数列经典题型总结
-
数列综合题型总结
数列求和
1.(分组求和)
(x-2)+(x2-2)+…+(xn-2)
2.(裂相求和)
111 1447(3n2)(3n1)
3.(错位相减)
135232222n12n
12222323n2n
4.(倒写相加)
1219984x
)f()f() x 求值设f(x),求f(1999199 -
数列典型题型
数列典型题型
1、已知数列an中,Sn是其前n项和,并且Sn14an2(n1,2,),a11,
⑴设数列bnan12an(n1,2,),求证:数列bn是等比数列; a,(n1,2,),求证:数列cn是等差数列; ⑵设数列cnn
2n
⑶求数 -
数列题型及解题方法归纳总结
文德教育 知识框架 列数列的分类数数列的通项公式函数的概念角度理解数列的递推关系等差数列的定义anan1d(n2)等差数列的通项公式ana1(n1)d等差数列n等差数列的求和公式Sn2(
-
新课程高中数学数列题型总结
高中数学数列复习题型总结1.等差等比数列 (n1)S12.Sn与an的关系:an ,已知Sn求an,应分n1时a1n2SnSn1(n1)时,an=两步,最后考虑a1是否满足后面的an.基础题型题型一:求值类的计算题(多关
-
高考数列题型总结(优秀范文五篇)
数列 1. 2. 3. 4. 5. 6. 坐标系与参数方程 1. 2. 3 4. . 5. 6.
-
数列求和经典题型分析
数列求和的常用方法数列求和是数列的重要内容之一,也是高考数学的重点考查对象。数列求和的基本思路是,抓通项,找规律,套方法。下面介绍数列求和的几种常用方法:一、直接(或转化)由
-
高中经典数列习题
4.在等比数列{an}中,已知Sn=3n+b,则b的值为_______.6.数列{an}中,a1,a2-a1,a3-a2,…,an-an-1…是首项为1、公比为1的等比数列,3则an等于。
3.在等比数列{an}中,已知n∈N*,且a1+a2+…+an=2n-1 -
高中《数列》专题复习题
《数列》专题复习题1.等差数列{an}中,a1=1,a3+a5=14,其前n项和Sn=100,则n=(A)9(B)10(C)11(D)122.等差数列{an}的前n项和为Sn,若S22,S410,则S6等于(A)12(B)18(C)24(D)423.已知数列的通项an5n2
-
高中数列精选(二)
高中数列精练(二)
例1在数列{an}中,a1=2,an+1=an+ln (1 ),则an=
A.2+lnnB.2+(n-1) lnnC.2+nlnnD.1+n+lnn 例2在数列{an}中,a1=1,an+1= (1n n )a
(1)设bn1nan,求数列{an}的通项公式; n1n -
高中《数列》专题复习题(大全)
《数列》专题复习题
1.等差数列{an}中,a1=1,a3+a5=14,其前n项和Sn=100,则n=
(A)9(B)10(C)11(D)12
2.等差数列{an}的前n项和为Sn,若S22,S410,则S6等于
(A)12(B)18(C)24(D)42
3.已知数列的通项 -
高中数列总训练
数列练习2
,2,3,)1.数列an中,a12,an1ancn(c是常数,n1,且a1,a2,a3成公比不为1的等比数列.
(I)求c的值;(II)求an的通项公式.
2.已知等差数列an的前n项和为Snpn22aq(p,qR),nN
(Ⅰ)求q的值;(Ⅱ)若a1与a5的 -
高中数列解题方法
数1. 公式法:等差数列求和公式:Snn(a1an)n(n-1)na1d 22Snna1(q1)等比数列求和公式:a1(1-qn)(a1-anq)Sn(q1)1q1q等差数列通项公式:ana1(n1)d等比数列通项公式:ana1qn12.错位相减
-
高中数列经典例集五篇
一、 经典例题剖析
考点一:等差、等比数列的概念与性质
例题1.(1)数列{an}和{bn}满足an1(b1b2bn) (n=1,2,3…), n
(1)求证{bn}为等差数列的充要条件是{an}为等差数列。
(2)数列{an}和{cn -
2012年的高中数列分类
1.(2012•重庆)已知{an}为等差数列,且a1+a3=8,a2+a4=12.
(Ⅰ)求{an}的通项公式
(Ⅱ)记{an}的前n项和为Sn,若a1,ak,Sk+2成等比数列,求正整数k的值.
3.(2012•重庆)设数列{an}的前n项和Sn满足Sn+ -
高中数列求和方法及巩固[大全]
数列求和的方法1、公式法:如果一个数列是等差、等比数列或者是可以转化为等差、等比数列的数列,我们可以运用等差、等比数列的前n项和的公式来求.①等差数列求和公式:Snna1annn
-
高考中的数列热点题型研究
龙源期刊网 http://.cn
高考中的数列热点题型研究
作者:朱晶
来源:《高考进行时·高三数学》2013年第03期
【例6】 (2012·高考(湖南文))某公司一下属企业从事某种高科技产品的生 -
数列解题技巧归纳总结
知识框架 数列的分类数列的概念数列的通项公式函数角度理解数列的递推关系等差数列的定义anan1d(n2)等差数列的通项公式ana1(n1)d等差数列nn(n1)等差数列的求和公式S(aa)nad
-
公务员数列归纳整理总结
数列归纳整理总结1、 带有负数的数列; 2、 带有零的数列 ;
3、 带有分数的数列; 4、带有相同数字的数列 ;
5、带有“1”的数列; 6、 数列中带有“忽然变大的数字”的数列
一、带