专题:高中数学数列不动点法
-
不动点法求数列通项的证明
对于an1AanB的递推式,两端减x后得到 anC
(Ax)an(BCx)AxBCx(an) anCanCAx
BCx,这个方程与在递推式中令an1an得的方程是Axan1x为了能构成等比数列,则令x
一样的,有点类似于令f(x)= -
(no.1)2013年高中数学教学论文 用不动点法求数列的通项
知识改变命运百度提升自我 本文为自本人珍藏 版权所有仅供参考 用不动点法求数列的通项 定义:方程f(x)x的根称为函数f(x)的不动点. 利用递推数列f(x)的不动点,可将某些递推关
-
河南省2021年高三专题复习用不动点法求数列通项
用不动点法求数列的通项定义:方程的根称为函数的不动点.利用递推数列的不动点,可将某些递推关系所确定的数列化为等比数列或较易求通项的数列,这种方法称为不动点法.定理1:若是
-
不动点法,特征根法总结
不动点法 aanbaxb2an1xcx 设 有candcxd此方程的两个根为(da)xb0 x1,x2, 2c11p (其中p,则有an1x1anx1adan1x1anx1q,则有an1x2anx2) (1)若x1x2(2)若x1x2acx1q (其中acx2) 特征根
-
高中数学-公式-数列
数列
1、等差数列的通项公式是ana1(n1)d,前n项和公式是:Snn(a1an)1=na1n(n1)d。 22.等差数列 {an} anan1d(d为常数)2anan1an1(n2,nN*)ananbSnAn2Bn。
na1(q1)nn12、等比数列的通 -
高中数学数列知识点(5篇)
数列是以正整数集为定义域的函数,是一列有序的数。数列中的每一个数都叫做这个数列的项。下面小编给大家分享一些数学数列知识点,希望能够帮助大家,欢迎阅读!数学数列知识点1等
-
高中数学数列递推定理
定理(二阶线性递推数列)
已知数列{an}的项满足an2pan1qan,a1=a,a2=b,nN+,称方程x2pxq0为数列an的特征方程。若x1,x2是特征方程的两个根,则
n1n1
(1)当x1x2时,数列an的通项为anAx1Bx2, -
普通高中数学关于数列试题
等差数列、等比数列同步练习题 等差数列黎岗 一、选择题 1、等差数列-6,-1,4,9,„„中的第20项为( ) A、89 B、 -101 C、101 D、-89 2. 等差数列{an}中,a15=33, a45=153,则217是这个数
-
高中数学三角函数及数列练习题
一、选择题(每题5分,共35分) 1.若sin θcos θ>0,则θ在. A.第一、二象限 C.第一、四象限 B.第一、三象限 D.第二、四象限 2、已知函数f(x)(1cos2x)sin2x,xR,则f(x)是( ) A、奇函数
-
高中数学数列公式及结论总结(★)
高中数学数列公式及结论总结一、高中数列基本公式:
1、一般数列的通项an与前n项和Sn的关系:an=
2、等差数列的通项公式:an=a1+(n-1)dan=ak+(n-k)d(其中a1为首项、ak为已知的第k -
上海高中数学数列的极限
7.6 数列的极限 课标解读: 1、理解数列极限的意义; 2、掌握数列极限的四则运算法则。 目标分解: 1、数列极限的定义:一般地,如果当项数n无限增大时,无穷数列限地趋近于某个常数
-
新课程高中数学数列题型总结
高中数学数列复习题型总结1.等差等比数列 (n1)S12.Sn与an的关系:an ,已知Sn求an,应分n1时a1n2SnSn1(n1)时,an=两步,最后考虑a1是否满足后面的an.基础题型题型一:求值类的计算题(多关
-
高中数学“数列的基本问题”教学研究
高中数学“数列的基本问题”教学研究 郭洁 北京市东城区教师研修中心 一、对“数列的基本问题”中数学知识的深层次理解 (一)数列内容的知识结构 数列作为一种特殊的函数,是反
-
高中数学《数列的极限》教学设计
高中数学《数列的极限》教学设计 一、教学目标1.知识与能力目标 ①使学生理解数列极限的概念和描述性定义。②使学生会判断一些简单数列的极限,了解数列极限的“e-N"定义,能
-
高中数学数列教学设计中的实践探讨
高中数学数列教学设计中的实践探讨_中等教育论文_教育学论文_ 引言 在高中数学课程内容中,数列作为离散函数的典型代表之一,不仅在高中数学中具有重要位置,而且,在现实生活中有
-
高中数学数列求通项公式习题
补课习题(四)的一个通项公式是 ,A、anB、anC、anD、an2.已知等差数列an的通项公式为an32n , 则它的公差为A 、2B 、3C、 2D、33.在等比数列{an}中, a116,a48,则a7A、4B、4C、2D、
-
高中数学_利用定积分证明数列和型不等式(定稿)
利用定积分证明数列和型不等式湖北省阳新县高级中学 邹生书我们把形如(为常数)或的不等式称之为数列和型不等式,这类不等式常见于高中数学竞赛和高考压轴题中,由于证明难度较
-
3高中数学基础知识与典型例题复习--数列
数学基础知识与典型例题数学基础知识与典型例题(第三章数列)答案例1. 当n1时,a1S11,当n≥2时,an2n2n2(n1)2(n1)4n3,经检验 n1时 a11 也适合an4n3,∴an4n3(nN) 例2. 解:∵aSn1nS