专题:零点存在定理的证明

  • 根的存在性证明(零点定理)(精选合集)

    时间:2019-05-12 23:52:34 作者:会员上传

    根的存在性定理:如果f(x)在闭区间[a,b]上连续
    f(a)f(b)0,则存在(a,b)使得f()0。
    证明利用构造法的思想,将f(x)的零点范围逐步缩小。先将[a,b]二ababab],[,b],如果f0。则定理获

  • 零点存在定理的教案

    时间:2019-05-12 22:17:44 作者:会员上传

    教案 课题:零点存在定理 授课人: 一、内容及内容解析: 本章位于全书的第3章,零点主要是解决方程求解的问题,应用函数思想的方法,把方程与函数相结合,它在较难方程的求根方面有巨

  • 存在与唯一性定理的证明

    时间:2019-05-12 23:52:35 作者:会员上传

    Picard存在与唯一性定理的证明
    定义:设函数f(x,y)在闭区域上有定义,如果存在常数L0,使对任何(x,y1),(x,y2)均满足不等式f(x,y1)f(x,y2)Ly1y2,则称f(x,y)在上关于y满足Lipschitz

  • 案例 零点定理的教学设计

    时间:2019-05-12 17:48:19 作者:会员上传

    过程与方法是这样体现的! 一、开放的情境更易于引导学生做数学 根据高中学生的认知水平,开发利用教材的探索性内涵,创造性地使用教材,设计了能启发学生思维的“温度连续变化”情

  • 正弦定理证明

    时间:2019-05-15 07:59:13 作者:会员上传

    新课标必修数学5“解三角形”内容分析及教学建议江苏省锡山高级中学杨志文新课程必修数学5的内容主要包括解三角形、数列、不等式。这些内容都是高中数学中的传统内容。其中

  • 原创正弦定理证明

    时间:2019-05-13 23:23:50 作者:会员上传

    1.直角三角形中:sinA= ,sinB=, sinC=1即c=∴abc, c= ,c=.sinAsinBsinCacbcabc== sinAsinBsinC2.斜三角形中证明一:(等积法)在任意斜△ABC当中S△ABC=absinCacsinBbcsinA两边同除以abc即

  • 数学定理证明

    时间:2019-05-12 20:34:25 作者:会员上传

    一.基本定理: 1.(极限或连续)局部保号性定理(进而证明保序性定理) 2.局部有界性定理. 3.拉格朗日中值定理.
    4.可微的一元函数取得极值的必要条件. 5.可积函数的变上限积分函数的连续性. 6.牛

  • 几何证明定理

    时间:2019-05-12 17:22:26 作者:会员上传

    几何证明定理一.直线与平面平行的(判定)1.判定定理.平面外一条直线如果平行于平面内的一条直线,那么这条直线与这个平面平行.2.应用:反证法(证明直线不平行于平面)二.平面与

  • 正弦定理证明

    时间:2019-05-14 15:55:17 作者:会员上传

    正弦定理证明1.三角形的正弦定理证明: 步骤1. 在锐角△ABC中,设三边为a,b,c。作CH⊥AB垂足为点H CH=a·sinB CH=b·sinA ∴a·sinB=b·sinA 得到 a/sinA=b/sinB 同理,在△ABC中,

  • 正弦定理证明范文合集

    时间:2019-05-12 05:27:19 作者:会员上传

    正弦定理证明1.三角形的正弦定理证明:步骤1.在锐角△ABC中,设三边为a,b,c。作CH⊥AB垂足为点HCH=a·sinBCH=b·sinA∴a·sinB=b·sinA得到a/sinA=b/sinB同理,在△ABC中,b/sinB=c/s

  • 定理与证明

    时间:2019-05-15 09:34:59 作者:会员上传

    定理与证明(一)教学建议(一)教材分析1、知识结构2、重点、难点分析重点:真命题的证明步骤与格式.命题的证明步骤与格式是本节的主要内容,是学习数学必具备的能力,在今后的学习中将

  • 正弦定理证明

    时间:2019-05-14 15:40:52 作者:会员上传

    正弦定理 1.在一个三角形中,各边和它所对角的正弦的比相等,且等于其外接圆半径的两倍, 即abc2R sinAsinBsinC 证明:如图所示,过B点作圆的直径BD交圆于D点,连结AD BD=2R, 则 D=C,DAB

  • 大数定理及其证明[大全]

    时间:2019-05-15 14:40:16 作者:会员上传

    大数定理及其证明
    大数定理是说,在n个相同(指数学抽象上的相同,即独立和同分布)实验中,如果n足够大,那么结论的均值趋近于理论上的均值。
    这其实是说,如果我们从学校抽取n个学生算

  • 圆幂定理及其证明

    时间:2019-05-14 11:37:50 作者:会员上传

    圆幂定理 圆幂的定义:一点P对半径R的圆O的幂定义如下:OPR所以圆内的点的幂为负数,圆外的点的幂为正数,圆上的点的幂为零。 圆幂定理是相交弦定理、切割线定理及割线定理(切割线

  • 圆的有关证明相关定理

    时间:2019-05-15 07:59:10 作者:会员上传

    平面几何证明相关定理、题型及条件的联想一、平面几何证明相关定理1、平行线等分线段定理:如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段相等.推论

  • 正弦定理的证明

    时间:2019-05-15 07:58:42 作者:会员上传

    正弦定理的证明用余弦定理:a^2+b^2-2abCOSc=c^2COSc=(a^2+b^2-c^2)/2abSINc^2=1-COSc^2SINc^2/c^2=4a^2*b^2-(a^2+b^2-c^2)^2/4a^2*b^2*c^2=/4a^2*b^2*c^2同理可推倒得SINa^2

  • 著名定理证明(初中)

    时间:2019-05-15 08:00:01 作者:会员上传

    24.著名定理证明(14分)(该题有六个小题,须选做两个,全对才给分,每个七分,多做满分也是14分)(1)试证明海伦公式:S三角形=√p(p-a)(p-b)(p-c),(p=三角形周长的一半)试证明角平分线定理

  • 正弦定理证明方法

    时间:2019-05-15 07:58:42 作者:会员上传

    正弦定理证明方法方法1:用三角形外接圆证明:任意三角形ABC,作ABC的外接圆O.作直径BD交⊙O于D.连接DA.因为直径所对的圆周角是直角,所以∠DAB=90度因为同弧所对的圆周角相等,