专题:立体几何证明分析法

  • 立体几何证明

    时间:2019-05-12 17:22:38 作者:会员上传

    立体几何证明高中立体几何的证明主要是平行关系与垂直关系的证明。方法如下(难以建立坐标系时再考虑):Ⅰ.平行关系:线线平行:1.在同一平面内无公共点的两条直线平行。2.公理4(

  • 立体几何证明

    时间:2019-05-12 17:22:40 作者:会员上传

    1、(14分)如图,在正方体ABCD-A1B1C1D1中,E、F为棱AD、AB的中点. (1)求证:EF∥平面CB1D1;(2)求证:平面CAA1C1⊥平面CB1D1.A2.如图,已知正四棱柱ABCD—A1B1C1D1中,底面边长AB=2,侧棱交B1C于点F,BB

  • 分析法在立体几何问题中应用[本站推荐]

    时间:2019-05-12 17:22:39 作者:会员上传

    分析法在立体几何问题中应用立体几何在高中是一个难点,特别是添辅助线,让很多同学无从下手.虽然证明题的思路是非常明确的,比如要证明线面平行,只要在平面中找到一条直线与已知

  • 立体几何证明方法

    时间:2019-05-12 17:22:21 作者:会员上传

    立体几何证明方法 一、线线平行的证明方法:
    1、利用平行四边形。2、利用三角形或梯形的中位线
    3、如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线

  • 立体几何垂直证明范文

    时间:2019-05-12 17:22:31 作者:会员上传

    立体几何专题----垂直证明学习内容:线面垂直面面垂直立体几何中证明线面垂直或面面垂直都可转化为 线线垂直,而证明线线垂直一般有以下的一些方法: (1) 通过“平移”。 (2) 利用等

  • 文科立体几何证明

    时间:2019-05-12 17:22:31 作者:会员上传

    立体几何证明题常见题型1、如图,在四棱锥PABCD中,底面ABCD是正方形,侧棱PD底面ABCD,PDDC1,E是PC的中点,作EFPB交PB于点F.(I) 证明: PA∥平面EDB;(II) 证明:PB⊥平面EFD; (III) 求三棱锥

  • 立体几何证明已经修改

    时间:2019-05-12 17:22:32 作者:会员上传

    F 1、如图,在五面体ABCDEF中,FA平面D ABC,DA//DB//CAFABBCFEF,EAB为,ECAD的M中点, 1AD 2(1)求异面直线BF与DE所成的角的大小;(2)证明:平面AMD平面CDE2、如图, 在直三棱柱ABC-A1B1C

  • 立体几何证明大题

    时间:2019-05-12 17:22:33 作者:会员上传

    立体几何证明大题1.如图,四面体ABCD中,AD平面BCD, E、F分别为AD、AC的中点,BCCD. 求证:(1)EF//平面BCD(2)BC平面ACD.2、如图,棱长为1的正方体ABCD-A1B1C1D1中,(1)求证:AC⊥平面B1D1DB;(2)求证:BD

  • 立体几何证明格式示范

    时间:2019-05-12 02:49:56 作者:会员上传

    教材P58练习2答案:(注意规范格式)证明:连接B1D1M,N分别是A1B1和A1D1中点MN是A1B1D1中位线MN//B1D1MN//EFE,F分别是B1C1和C1D1中点EF是B1C1D1中位线EF//B1D1MN面EFDBMN//面EFDBEF

  • 立体几何规范性证明

    时间:2019-05-15 14:10:36 作者:会员上传

    立体几何证明规范性训练(1)1、如图,M,N,K分别是正方体ABCDA1B1C1D1的棱AB,CD,C1D1的中点. (1)求证:AN//平面A1MK;(2)求证:MKA1B1 立体几何证明规范性训练(2)1、 如图,直三棱柱ABC-A1B1C1中

  • 立体几何证明问题

    时间:2019-05-15 14:10:37 作者:会员上传

    证明问题例1. 如图,E、F分别是长方体边形. -的棱A、C的中点,求证:四边形是平行四例2. 如图所示,ABCD为正方形,SA⊥平面ABCD,过点A且垂直于SC的平面分别交SB、SC、SD与E、F、G.求证

  • 分析法证明不等式专题

    时间:2019-05-13 21:42:27 作者:会员上传

    分析法证明不等式已知非零向量a,b,a⊥b,求证|a|+|b|/|a+b|0【2】显然,由|a+b|>0可知原不等式等价于不等式:|a|+|b|≤(√2)|a+b|该不等式等价于不等式:(|a|+|b|)²≤².整理即是:a

  • 分析法证明5则范文

    时间:2019-05-12 00:06:54 作者:会员上传

    分析法证明a²-b²=tan²α+2tanαsinα+sin²α-tan²α+2tanαsinα-sin²α=4tanαsinα左边=16tan²αsin²α=16tan²α(1-cos²α)=16tan²α-16tan²αcos²α=16tan

  • 分析法 证明辨析

    时间:2019-05-14 21:42:42 作者:会员上传

    分析法证明辨析师:我们已经学习了综合法证明不等式.综合法是从已知条件入手去探明解题途径,概括地说,就是"从已知,看已知,逐步推向未知".综合法的思路如下:(从上往下看)(用投影片)

  • 用分析法证明

    时间:2019-05-15 09:36:56 作者:会员上传

    用分析法证明证明:分析法要证明1/(√2+√3)>√5-2成立即证√3-√2>√5-2也就是√3+2>√5+√2(√3+2)²>(√5+√2)²7+4√3>7+2√10即证4√3>2√102√3>√10√12>√10由于12>1

  • 立体几何的证明策略

    时间:2019-05-12 17:21:33 作者:会员上传

    立体几何的证明策略:
    几何法证明
    证明平行:3,2,1
    1、 线线平行:公理四,10页
    线面平行的性质定理,课本20页面面平行的性质定理,36页 2、 线面平行:线面平行的判定定理,19页面面平行的性

  • 立体几何的证明方法

    时间:2019-05-12 17:21:33 作者:会员上传

    立体几何的证明方法1.线面平行的证明方法2.两线平行的证明方法5.面面垂直的证明方法6.线线垂直的证明方法7、空间平行、垂直之间的转化与联系:应用判定定理时,注意由“低维”到

  • 立体几何证明中常用知识点范文合集

    时间:2019-05-12 17:21:35 作者:会员上传

    立体几何证明中常用知识点一、判定两线平行的方法1、平行四边形
    2、中位线定理
    3、如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线就和交线平行(