专题:利用微积分证明不等式
-
利用导数证明不等式
利用导数证明不等式 例1.已知x>0,求证:x>ln(1+x) 分析:设f(x)=x-lnx。x[0,+。考虑到f(0)=0, 要证不等式变为:x>0时,f(x)>f(0), 这只要证明: f(x)在区间[0,)是增函数。 证明:令:f(x)=x
-
利用二重积分证明不等式
利用二重积分证明不等式.
设 f(x),g(x)是[a,b]单调增加的连续函数. 证明
b
af(x)dxg(x)dx(ba)f(x)g(x)dx aabb
证明 由于f(x),g(x)是[a,b]单调增加的函数,于是
(f(x)f(y))(g -
利用导数证明不等式
利用导数证明不等式没分都没人答埃。。觉得可以就给个好评!最基本的方法就是将不等式的的一边移到另一边,然后将这个式子令为一个函数f(x).对这个函数求导,判断这个函数这各个
-
谈利用导数证明不等式.
谈利用导数证明不等式 数学组邹黎华 在高考试题中,不等式的证明往往与函数、导数、数列的内容综合,属于在知识网络的交汇处设计的试题,有一定的综合性和难度,突出体现对理性思维
-
利用导数证明不等式(全文5篇)
克维教育(82974566)中考、高考培训专家铸就孩子辉煌的未来函数与导数(三)核心考点五、利用导数证明不等式一、函数类不等式证明函数类不等式证明的通法可概括为:证明不等式f(x)g(
-
利用柯西不等式证明不等式[范文模版]
最值
1.求函数yx24
x
,(xR)的最小值。2.求函数yx4x
2,(xR
)的最小值。
xR且x2y3.设2
1,求xy2的最大值
4.设x,y,z为正实数,且x+y+z=10,求4x19
yz
的最小值。
已知:x2
5.4
y21 -
数列----利用函数证明数列不等式
数列
1 已知数列{an}的前n项和为Sn,且a2anS2Sn对一切正整数n都成立。 (Ⅰ)求a1,a2的值; (Ⅱ)设a10,数列{lg大值。2已知数列{an}的前n项和Sn
(1)确定常数k,求an;
(2)求数列{3在等差数列an中 -
利用函数凹凸性质证明不等式
利用函数的凹凸性质证明不等式内蒙古包头市第一中学张巧霞摘要:本文主要利用函数的凹凸性来推导和证明几个不等式.首先介绍了凹凸函数的定义,描述了判定一个函数具有凹凸性质
-
利用概率方法巧妙证明不等式
龙源期刊网 http://.cn
利用概率方法巧妙证明不等式
作者:成春华
来源:《考试周刊》2013年第64期
摘 要: 本文利用概率方法的简单性质证明某些不等式,旨在把概率知识与其他数学 -
利用放缩法证明不等式举例
利用放缩法证明不等式举例高考中利用放缩方法证明不等式,文科涉及较少,但理科却常常出现,且多是在压轴题中出现。放缩法证明不等式有法可依,但具体到题,又常常没有定法,它综合性强
-
第五讲 利用导数证明不等式
利用导数证明不等式的两种通法 利用导数证明不等式是高考中的一个热点问题,利用导数证明不等式主要有两种通法,即函数类不等式证明和常数类不等式证明。下面就有关的两种通法
-
构造函数,利用导数证明不等式
构造函数,利用导数证明不等式湖北省天门中学薛德斌2010年10月例1、设当xa,b时,f/(x)g/(x),求证:当xa,b时,f(x)f(a)g(x)g(a).例2、设f(x)是R上的可导函数,且当x1时(x1)f/(x)0.求证:(1)f(
-
导数的应用——利用导数证明不等式15则范文
导 数 的 应 用
--------利用导数证明不等式
教学目标:1、进一步熟练并加深导数在函数中的应用并学会利用导数证明不等式
2、培养学生的分析问题、解决问题及知识的综合运用 -
利用定积分证明数列和型不等式
利用定积分证明数列和型不等式我们把形如(为常数)或的不等式称之为数列和型不等式,这类不等式常见于高中数学竞赛和高考压轴题中,由于证明难度较大往往令人望而生畏.其中有些
-
利用函数的单调性证明不等式
龙源期刊网 http://.cn
利用函数的单调性证明不等式
作者:胡锦秀
来源:《数理化学习·高一二版》2013年第04期
函数的单调性是函数的重要性质之一,在不等式证明中扮演着重要角 -
利用定积分证明数列和型不等式
利用定积分证明数列和型不等式 我们把形如(为常数)或的不等式称之为数列和型不等式,这类不等式常见于高中数学竞赛和高考压轴题中,由于证明难度较大往往令人望而生畏.其中有些
-
利用导数证明不等式的四种常用方法
利用导数证明不等式的四种常用方法 杨玉新 (绍兴文理学院 数学系, 浙江 绍兴 312000) 摘要: 通过举例阐述了用导数证明不等式的四种方法,由此说明了导数在不等式证明中的重
-
利用导数证明不等式的常见题型经典[★]
利用导数证明不等式的常见题型及解题技巧技巧精髓1、利用导数研究函数的单调性,再由单调性来证明不等式是函数、导数、不等式综合中的一个难点,也是近几年高考的热点。2、解题