专题:中考反比函数压轴题
-
2018年中考二次函数压轴题
2018年中考二次函数压轴题汇编 2.如图1,已知抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于C点,点P是抛物线上在第一象限内的一个动点,且点P的横坐标为t. (1)求抛物线的表达式; (2)设抛
-
2017年中考数学二次函数压轴题(含答案)
2017年中考数学冲刺复习资料:二次函数压轴题 面积类 1.如图,已知抛物线经过点A(﹣1,0)、B(3,0)、C(0,3)三点. (1)求抛物线的解析式. (2)点M是线段BC上的点(不与B,C重合),过M作MN∥y轴交抛物线于N,若
-
中考数学压轴题整理
【运用相似三角形特性解题,注意分清不同情况下的函数会发生变法,要懂得分情况讨论问题】【分情况讨论,抓住特殊图形的面积,多运用勾股定理求高,构造梯形求解】【出现边与边的比,构
-
2018年中考菱形压轴题大全
2018年中考菱形 压轴题 一.解答题(共19小题) 1.如图,两个全等的△ABC和△DFE重叠在一起,固定△ABC,将△DEF进行如下变换: (1)如图1,△DEF沿直线CB向右平移(即点F在线段CB上移动),连接AF、A
-
如何应对中考数学压轴题
龙源期刊网 http://.cn
如何应对中考数学压轴题
作者:玉孔总
来源:《中学教学参考·理科版》2013年第07期
近几年的中考试题,一些题型灵活、设计新颖、富有创意的压轴题涌现出 -
中考数学压轴题:二次函数分类综合专题复习练习
2021年中考数学压轴题:二次函数分类综合专题复习练习1、如图,抛物线交轴于,两点,交轴于点,直线与抛物线交于点,,与轴交于点,连接,.(1)求抛物线的解析式和直线的解析式.(2)点是直线上方抛物
-
中考数学压轴题专题-二次函数的存在性问题(解析版)
决胜2021中考数学压轴题全揭秘精品专题16二次函数的存在性问题【考点1】二次函数与相似三角形问题【例1】(2020·湖北随州·中考真题)如图,在平面直角坐标系中,抛物线的对称轴为
-
中考数学压轴题专题-二次函数的面积问题(解析版)
决胜2021中考数学压轴题全揭秘精品专题17二次函数的面积问题【考点1】二次函数的线段最值问题【例1】(2020·湖北荆门·中考真题)如图,抛物线与x轴正半轴交于点A,与y轴交于点B.(1)
-
宁波中考压轴题四个解题技巧
宁波中考压轴题四个解题技巧,力争140以上各类题型的中考数学压轴题在近几年的中考中慢慢涌现出来,比如设计新颖、富有创意的,还有以平移、旋转、翻折等图形变换为解题思路的。
-
2013中考数学压轴题四个解题技巧
2013中考数学压轴题四个解题技巧
各类题型的中考数学压轴题在近几年的中考中慢慢涌现出来,比如设计新颖、富有创意的,还有以平移、旋转、翻折等图形变换为解题思路的。中考数 -
中考数学压轴题破解方法
中考数学压轴题破解方法
近几年的中考,一些题型灵活、设计新颖、富有创意的压轴试题涌现出来,其中一类以平移、旋转、翻折等图形变换为解题思路的题目更是成为中考压轴大戏的 -
中考数学压轴题四个解题技巧
中考数学压轴题四个解题技巧
各类题型的中考数学压轴题在近几年的中考中慢慢涌现出来,比如设计新颖、富有创意的,还有以平移、旋转、翻折等图形变换为解题思路的。中考数学压 -
中考化学压轴题 实验探究题
中考化学压轴题-实验探究题[提出问题]该淡黄色固体的化学成分是什么?[查阅资料](1)硫单质是一种淡黄色固体,难溶于水,在空气中点燃硫单质,生成一种无色、有刺激性气味的气体。(2)过
-
中考数学几何证明压轴题
AB1、如图,在梯形ABCD中,AB∥CD,∠BCD=90°,且AB=1,BC=2,tan∠ADC=2. 求证:DC=BC; E是梯形内一点,F是梯形外一点,且∠EDC=∠FBC,DE=BF,试判断△ECF的形状,并证明你的结论; 在(2)
-
中考压轴题的教学策略论文
每年初中数学中考,一般都把试题分为基础题,中档题以及难题。近年初中数学中考中,填空题,选择题,解答题的最后一题都是拉分题,难题不突破学生是很难取得中考好成绩的。初中数学中考
-
初三数学知识点总结:反比列函数
初三数学知识点总结:反比列函数 反比例函数的定义 定义:形如函数y=k/x(k为常数且kne;0)叫做反比例函数,其中k叫做比例系数,x是自变量,y是自变量x的函数,x的取值范围是不等于0的一
-
第三轮专题复习中考数学压轴题:二次函数常考类型题练习
2021年中考数学压轴题第三轮专题复习:二次函数常考类型题练习1、如图,已知二次函数y=x2+bx+c的图象与x轴交于点A(1,0)、B(3,0),与y轴交于点C.(1)求二次函数的解析式;(2)若点P为抛物线上的一
-
中考数学复习几何证明压轴题
中考数学专题几何证明压轴题1、如图,在梯形ABCD中,AB∥CD,∠BCD=90°,且AB=1,BC=2,tan∠ADC=2.求证:DC=BC;E是梯形内一点,F是梯形外一点,且∠EDC=∠FBC,DE=BF,试判断△ECF的形状