九年级数学上册知识点
(为重中之重)
第一章
二次根式
二次根式:形如()的式子为二次根式;
性质:()是一个非负数;
。
二次根式的乘除:
。
二次根式的加减:二次根式加减时,先将二次根式华为最简二次根式,再将被开方数相同的二次根式进行合并。
二次根式的混合运算
第二章
一元二次方程
一元二次方程:等号两边都是整式,且只有一个未知数,未知数的最高次是2的方程。
一元二次方程的解法
①
配方法:将方程的一边配成完全平方式,然后两边开方;
②
公式法:(其中当△=>0时,方程有两个不同的实数根:;当△==0时方程有两个相等的实数根:;当△=<0时,方程无实数根)
③
因式分解法:左边是两个因式的乘积,右边为零。
一元二次方程在实际问题中的应用
韦达定理:设是方程的两个根,那么有
第三章
旋转
图形的旋转
旋转:把一个平面图形绕着平面内某一点O转动一个角度,就叫做图形的旋转。
性质:①对应点到旋转中心的距离相等;
②对应点与旋转中心所连的线段的夹角等于旋转角
③旋转前后的图形全等。
会画出一个图形顺时针或逆时针旋转30°、60°、90°后的图形。
中心对称:把一个图形绕着某一点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形中心对称。
中心对称图形:把一个图形绕着某个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形。
会画出一个图形关于原点对称得图形,也就是中心对称图形。
关于原点对称的点的坐标
已知点P的坐标是(x,y):关于原点对称的点的坐标是(-x,-y)
关于x轴对称的点的坐标是(x,-y)
关于y轴对称的点的坐标是(-x,y)
第四章
圆
圆、圆心、半径、直径、圆弧、弦、半圆的定义
垂直于弦的直径
圆是轴对称图形,任何一条直径所在的直线都是它的对称轴;
垂直于弦的直径平分弦,并且平方弦所对的两条弧;
平分弦的直径垂直弦,并且平分弦所对的两条弧。
弧、弦、圆心角
在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等。
圆周角
在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半;
半圆(或直径)所对的圆周角是直角,90度的圆周角所对的弦是直径。
点和圆的位置关系
点在圆外
点在圆上
d=r
点在圆内
d 定理:不在同一条直线上的三个点确定一个圆。 三角形的外接圆:经过三角形的三个顶点的圆,外接圆的圆心是三角形的三条边的垂直平分线的交点,叫做三角形的外心。 6直线和圆的位置关系 相交 d 相切 d=r 相离 d>r 切线的性质定理:圆的切线垂直于过切点的半径; 切线的判定定理:经过圆的外端并且垂直于这条半径的直线是圆的切线; 切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角。 三角形的内切圆:和三角形各边都相切的圆为它的内切圆,圆心是三角形的三条角平分线的交点,为三角形的内心。 圆和圆的位置关系 外离 d>R+r 外切 d=R+r 相交 R-r 内切 d=R-r 内含 d 正多边形和圆 正多边形的中心:外接圆的圆心 正多边形的半径:外接圆的半径 正多边形的中心角:没边所对的圆心角 正多边形的边心距:中心到一边的距离 弧长和扇形面积 弧长 扇形面积: 圆锥的侧面积和全面积 侧面积: 全面积 (附加)相交弦定理、切割线定理 第五章 概率初步 概率意义:在大量重复试验中,事件A发生的频率稳定在某个常数p附近,则常数p叫做事件A的概率。 用列举法求概率 一般的,在一次试验中,有n中可能的结果,并且它们发生的概率相等,事件A包含其中的m中结果,那么事件A发生的概率就是p(A)= 用频率去估计概率