第一篇:数学教学中创新思维培养的心得体会_
数学教学中创新思维培养的心得体会_ 新课程理念的核心是创新,创新既是时代发展的客观要求,又是实施数学教学改革的重要手段。初中数学教学正处于学生学习承上启下的关键时期,如何培养初中数学创新能力,开辟培养和发展学生创新能力的有效途径,对初中生的全面健康发展非常重要。数学教学的根本指导思想是提高学生的数学素质:包括数学观念、数学意识、数学思维、数学能力及基本的数学逻辑。而素质教育的核心也就在与学生创新能力的培养。如何把数学知识与生产,生活实际结合起来,注重学生应用与创新能力的培养,是每一位数学教师必须思考的课题。
新课程理念下的数学教学,强调数学来自于生活,又回归于生活,生活中的数学教学本质是培养学生的应用与创新能力。下面谈谈自己在数学教学实践中的一些做法。
一、联系生活现实,创设情境,理论联系实际进行教学,培养学生应用能力
在七年级下期,学生都将转入二元一次方程组的学习,在头天晚上备课时,我正愁眉不展的思考如何上明天的新课,忽然我想起了自己在小时候遇到的“警察与小偷”的故事:“有一位便衣警察根据线报明察暗访到一间小屋后,细听到屋内的小偷正在分赃:每人分300元,就多出200元;每人分400元,又还差300元„这位警察叔叔眼睛一转,就算出了有几位小偷,多少赃款。”当我把这道数学题一出给同学们,众说不一,却很少有同学能短时内算出正确答案。于是我便很自然地引入我要讲的新课内容,给同学们分析、讲解、计算、求解。同学们这节课听得特别认真,特别入神,知识也掌握得特别牢固。由于提出的问题源于生活现实,就缩短了教材内容与现实的差距,使学生兴趣陡增,让学生感到数学无处不在,有利于培养学生用数学眼光观察、分析实际问题的能力。
二、运用教学技巧,设置悬念,培养学生的思考力
在教学中,可以巧设悬念创设教学情境,悬念是一种学习心理的强刺激,使学生产生“欲罢不能”的期待情境,能引起学生学习的兴趣,调动学生的思维和引发求知动机。
案例1:讲授用“平方差公式分解因式”时,教师先在黑板上写出两个式子:85的平方-84的平方,54的平方-46的平方,并让学生在10秒内计算出结果。学生暂时是不可能完成计算任务的。然后放映一段有关的智力抢答录像,抢答中,主持人语言刚落,就立刻有一个学生抢答说是169和800,其速度之快,简直是不假思索。目睹这么快的速度算出结果,就会给学生造成一种悬念,为什么他能计算得这么快呢?莫非是天才?这时可板书下列形式让学生思考:
85+84= 54+46= 85的平方-84的平方=(85+84)(85-84)=169 85-84= 54-46= 54的平方-46的平方=(54+46)(54-46)=800 学生通过观察思考,看出了两个数的平方差恰好等于这两个数之和乘以这两
个数之差。于是学生知道了“天才”速算的其中奥妙,情绪高涨,思维活跃,在好奇心的刺激下,满怀乐趣地参与挑战智慧的教学活动,并且不自觉地把教学知识牢牢地记在大脑中。通过学生的认识冲突中提出问题导入新课,使学生产生欲知而后快的期待情境,以激起不断探求的兴趣,既唤起学生对知识的愉悦,又唤起学生参与的热情,培养了思维创造力。
三、结合数学内容,布置有个性发展的兴趣作业,培养学生的创新能力 在初二上期,同学们对乘方知识掌握比较牢固之时,我给学生留了一道作业: 观察下列等式: 13=12 13+23=32 13+23+33=62 13+23+33+43=102 „
猜想:当有n项立方和相加时的计算结果是_________。
第二天过去了,没人应答;第三天过去了,没人应答;第四天,有几位同学找到我,递给我答案:
当我点头示意时,他们竟高兴得欢呼起来,甚至有一个同学竟哽咽起来。是啊!同学要通过观察、思考,再通过猜想,探索规律,从而完成从特殊到一般的创新过程,而且跟应该注意到学生这方面的数学基础,很大程度都还不具备,但却能超出个人能力完成任务,实属不易。更难能可贵的是,学生的创新意识得到突破,创新能力得到了提高,这是何等的重要啊!
兴趣就是最好的老师。让学生通过自己钻研所得到的结果肯定是印象深刻的,以往的经验告诉我很多学生之所以害怕学习数学,就是因为他们经常体验不到成功的喜悦,没有成就感,只是在感受到学习数学的失败,无论家长、老师如何引导,学生都会产生强烈的自卑感,数学学习无法正常进行。我本人也欣赏成功教学模式,让每一个层次的学生都能够感受到学习的成就感,课堂上的一个小问题可能就会点燃学生思维的火炬。
四、培养学生问题意识,激发思维创造力
教育心理学的理论启示我们,在课堂上,要使学生的学习具有内驱力,将会
取得良好的学习效果。激起学生学习数学的内驱力的有效方法就是创设问题情境,引起学生的认知冲突,诱发质疑猜想,激发好奇心和发现欲,使学生置身于渴望得到问题解决的情境中。新课程理念下数学问题解决教学以数学问题为中心,为学生提供了一个探究、创新的环境和机会。问题解决的活动过程往往呈现螺旋发展的态势,原有问题的解决会产生新的问题情境,为进一步的学习又提供了契机。所谓“螺旋递进式”的问题模式,也就是根据问题解决活动的发展态势,由问题引入知识,再由知识产生问题,通过进一步解决问题再产生新的发现,或者引起对前面问题的质疑,倒回来重新思考,因此把它看成是一个螺旋式的逐渐递进的过程。可见,这种问题模式重视以问题驱动教学,不仅要在新课导入部分创设问题情境,而且把数学问题贯穿于课堂始终,通过不断引发新的数学问题,使解决问题与提出问题携手并进,这样有利于培养学生的问题意识和层层深入的探索精神。
案例2:在学习了等腰三角形以后,教师首先给出了一道常规题:已知等腰三角形的腰长为12,底边长为14,求周长。
学生很快说出了答案。接下来教师让学生自己编问题。
生1:已知等腰三角形一边长为3,另一边长为6,周长是多少? 生2:应该分两种情况讨论,如果腰长是3,则周长=3*2十6=12;如果腰长是6,则周长是6*2+3=15。
师:两种情况都成立吗?
生3:第一种情况不成立,因为三角形两边之和必须大于第三边,所以腰长不能取3。
师:回答的非常好。所以在分情况讨论的问题中,一定要注意数的取值范围。那么,大家现在可以思考,如果等腰三角形的腰长为x,底边长y最大不能超过多少?最小不能低于多少?
五、尊重学生个性,激发学生兴趣
教育要面向全体,促进学生主动、全面和谐的发展,重视学生个性的发展,培养其对数学的兴趣。面向不同类型的学生,设计多种教学方式,进行差异性教学,为此,要注重平时对学生的了解和沟通,经常在课上提问学生,课下与学生谈心,了解学生的个体差异,做到因材施教,激发学生的兴趣来提高教学水平。
案例3在讲这样一道题时,如图,从B处测的建筑物上旗杆EC顶点C的仰角是60度,再从B的正上方40米高层上A处测得C的仰角是45度,那么旗杆顶点C离地面的高度即CD的高度是()米。
按常规做法是过C向AB做垂线用山高公式求出AE和BD再解Rt△CBD即可,然后我让大家再思考有无其他方法,很快有一个同学就想出了在AE和BC相交处添上字母O、先解△ABO再解△COE就行了。我大力表扬了这位同学,这时同学们的积极性大大调动起来了,这节课上的非常圆满。
总之,在教学实践中,学生创新能力的培养是多方位的,既需要教师的主导,也需要学生的主体,只有师生共同的配合下,才能教学相长。培养学生的创新能力也不是一朝一夕就可以取得明显成效的,它是一个系统过程,在教学中必须循序渐进,长期坚持,需要教师在教学中不断总结经验教训,不断取长补短。只有这样才会取得预期的成果。
新安县铁门镇第四初级中学 许俊涛
第二篇:浅谈数学教学中的创新思维的培养
浅谈数学教学中的创新思维的培养
刘柱红
(遵义县虾子镇南坪中学563125)
【摘要】 初中数学教学中创新思维的培养首先要激发学生创造欲望,培养学生的创新意识。其次,在中学数学教学中要注意通过培养培养直觉思维、发散思维、收敛思维来培养学生的创新思维。
【关键词】 创新思维 培养策略 直觉思维 发散思维
实施素质教育的重点是培养学生的创新精神和实践能力。目前,实施素质教育在一定意义上说就是创新教育,培养学生的创新思维和能力比一般地传授知识更为重要。数学教学要标新立异,改变观念,注重能力培养。把创新教育渗透到课堂教学中,精心创设求异情境,把学生引入一个多思、多问、多变的广阔的思维空间,开发智能,提高数学素质。
创造性思维是一种有创见的思维,它是人类的高级思维活动。创造性思维的结果,往往会发现新的方法新的规律或新的科学。随着科学技术的迅猛发展和培养人才的需要,现代数学教育越来越重视对学生创造性思维能力的培养。而创新是教与学的灵魂,是实施素质教育的核心;数学教学蕴含着丰富的创新教育素材,数学教师要根据数学的规律和特点,认真研究,积极探索培养和训练学生创造性思维的原则、方法。
当前,数学教学改革和发展的总趋势就是发展思维,培养能力。要达到这一要求,教师的教学就必须从要优化学生的思维品质入手,注意激发和培养学生多种优良的思维品质,把创新教育渗透到课堂教学中,激发和培养学生的思维品质。
一、探索问题的非常规解法,培养思维的创造性
培养学生的想象力和创造精神是实施创新教育中最为重要的一步。教师要启迪学生创造性地“学”,标新立异,打破常规,克服思维定势的干扰,善于找出新规律,运用新方法。激发学生根据情境,大胆猜想,或由因索果,或执果寻因,或综合应用相关知识进行推理判断。总之,这类问题对数学思想方法的要求较高,对解决问题的能力较高。
例1.解方程(x-1)(x + 2)= 70 该题的一般解法是把方程化为标准的一元二次方程求解。除此之外应激发学生去思考有无更巧更妙的解法?诱导学生去发现x+2与x-1的关系:它们的差是3,且x+2>x-1,故可把70分解成差为3的两个因数,从而求解。
解:原方程化为(x-1)(x+2)=7×10 =-10×(-7)∵ x+2 >x–1 ∴ x+2 =10 或 x+2 =-7 ∴ x1 =8,x2 =-9。
题目的新颖解法来源于观察分析题目的特点,以及对隐含条件的挖掘。因此,教师应从开发智能、培养能力这一目标着眼,有意识地引导学生联想、拓展,平时教学中注意总结解题规律,逐步培养学生的创新意识。
二、开拓思路,诱发思维的发散性
徐利治教授曾指出:详细说来,任何一位科学家的创造能力,可用如下公式来估计:创造能力 = 知识量×发散思维能力。从这里可以看到培养学生的发散思维能力的重要性。思维的发散性,表现在思维过程中,不受一定解题模式的束缚,从问题个性中探求共性,寻求变异,多角度、多层次去猜想、延伸、开拓,是一种不定势的思维形式。发散思维具有多变性、开放性的特点,是创造性思维的核心。在数学教学中,一题多变,一题多串,一题多用,一题多解(证),一空多填,一图多画等训练,都能培养和锻炼学生思维的发散性。例1.如图,在△ABC中,∠ACB = 90°,CD⊥AB,由上述条件你能推出哪些结论?
此题求解的范围、想象的空间是广阔的,思维是开放的。让学生在求解过程中求新、求速度、求最佳,通过不断思考,互相启 发,多数学生能找出7~10个结论,然后
教师诱导学生从边、角、相似及三角函数关系等方面归纳出至少 15种结论:
⑴.∠BCD=∠A,∠ACD=∠B,∠ADC=∠BDC=∠ACB.⑵.AC2+BC2=AB2,AD2+CD2=AC2,BD2+CD2=BC2.(勾股定理)⑶.AC2=AD·AB,BC2=BD·AB,CD2=AD·DB.⑷.AC·BC=AB·CD,⑸.△ABC∽△ACD∽△CBD.⑹.SinA = cosB, tgA = ctgB, sin2A + cos2A = 1, tgA·ctgA = 1.这类题具有很强的严密性和发散性,通过训练把学生的思维引到一个广阔的空间,培养了学生思维的广度和深度。这类题的题设与结论不匹配,需要对问题进行多方位,多角度,多层次的思考和审视,恰当运用数学知识去发挥、探索、推断,从而得到多个结果。此类题往往称为“开放型”试题。开放型问题设计是数学教学的一种形式,一种教学观,又是一种创设问题情境的意识和做法,具有很好的导向性,是今后出题的一种趋势。
三.创新多变,探索思维的求异性 求异思维是指在同一问题中,敢于质疑,产生各种不同于一般的思维形式,它是一种创造性的思维活动。学起于思,思源于疑,疑则诱发创新。教师要创设求异的情境,鼓励学生多思、多问、多变,训练学生勇于质疑,在探索和求异中有所发现和创新。本人教授“§2.7平行线的性质”一节时深有感触,一道例题最初是这样设计的:
例.如图已知a // b , c // d , ∠1 = 115。⑴ 求∠2与∠3的度数。
⑵ 从计算你能得到∠1与∠2是什么关系? 学生很快得出答案,并得到∠1=∠2。我正要向下讲解,这时一位同学举手发 言:“老师,不用知道∠1=115°也能得 出∠1=∠2。”我当时非常高兴,因为他
回答了我正要讲而未讲的问题,我让他讲述了推理的过程,同学们报以热烈的掌声。我又借题发挥,随之改为:
已知:a//b , c//d 求证: ∠1=∠2
让学生写出证明,并回答各自不同的证法。随后又变化如下: 变式1:已知a//b , ∠1=∠2 , 求证:c//d。变式2:已知c//d,∠1=∠2 , 求证:a//b。变式3:已知a//b, 问∠1=∠2吗?(展开讨论)
这样,通过一题多证和一题多变,拓展了思维空间,培养学生的创造性思维。对初学几何者来说,有利于培养他们学习几何的浓厚兴趣和创新精神。
总之,我们在课堂教学设计中,要根据教学目标和教学内容,通过选择恰当的常规的和非常规的问题,作为施教的载体。教师除了根据教学内容广泛收集问题外,最好能创造自己的问题,这些问题不仅仅停留在把课本的题目在条件、结论在逻辑上互动,而是把课本题进行改造,成为情境题、开放题、应用题。并加以积累,不断完善,形成具有特色的校本问题。然后把这些问题通过启导等教学手段,在课堂中使学生产生明显的意识倾向和情感共鸣,从而培养学生的创新意识和能力。
参考文献:
[1] 湖炯涛。数学教学论。广西教育出版社。1996 [2] 毛永聪主编。中学数学创新教法。北京:学苑出版社,1996.6
第三篇:数学教学中创新思维的培养
数学教学中创新思维的培养
通过数学的教学培养学生的创新意识,就要在数学课堂教学中培养学生的创新精神和创新能力。只有不断创新,激发学生学习数学的兴趣,激励学生不断探索数学问题,培养学生获取数学知识的能力,尊重学生在数学学习上的个体差异,才能实现学生的数学创新思维的培养,才能真正落实素质教育的要求。因此,在数学课堂教学中,教师应当注意创新课堂教学的方法。
一、创设良好的学习情境,激发学生学习的主动性、积极性,培养学生的创新思维我们的课堂教学形式单调,内容陈旧,知识面窄,严重影响学生对数学的全面认识,难以激起学生的求知欲望、创造欲。新课标中指出:“数学教学应从学生实际出发,创设有助于学生自主学习的问题情境”。因此,教师必须精心创设教学情境,有效地调动学生主动参与教学活动,使其学习的内部动机从好奇逐步升华为兴趣、志趣、理想以及自我价值的实现。教师就教学内容设计出富有趣味性、探索性、适应性和开放性的情境性问题,并为学生提供适当的指导,通过精心设置支架,巧妙地将学习目标任务置于学生的最近发展区,让学生产生认知困惑,引起反思,形成必要的认知冲突,从而促成对新知识意义的建构。在创造性的数学教学中,师生双方都是教学的主体。
教师要善于结合实际出发,巧妙地设置悬念性问题,将学生置身于“问题解决”中去,就可以使学生产生好奇心,吸引学生,从而激发学生的学习动机,使学生积极主动参与知识的发现,这对培养学生的创新意识和创新能力有着十分重要的意义。
二、鼓励学生自主探索与合作交流
解决问题的关键是教育内容的革新,教育观念的更新和教学方法的创新,“数学教学是数学活动的教学,是师生之间、学生之间交往互助与共同发展的过程。”学生的学习只有通过自身的探索活动才可能是有效地,而有效的数学学习过程不能单纯地依赖模仿与记忆;创造性教学表现为教师不在于把知识的结构告诉学生,而在于引导学生探究结论,在于帮助学生在走向结论的过程中发现问题,探索规律,学习方法;教师应引导学生主动地从事观察、实验、猜测、验证、推理与合作交流等数学活动,从而使学生形成自己对数学知识的理解和有效的学习策略。因此,在课堂教学中应该让学生充分地经历探索事物的数量关系,变化规律的过程。
三、尊重学生个体差异,实施分层教学,开展积极评价
由于智力发展水平及个性特征的不同,认识主体对于同一事物理解的角度和深度必然存在明显差异,由此所建构的认知结构必然是多元化的、个性化的和不尽完善的。学生的个体差异表现为认识方式与思维策略的不同,以及认知水平和学习能力的差异。作为一名教师要及时了解并尊重学生的个体差异,积极评价学生的创新思维,从而建立一种平等、信任、理解和相互尊重的和谐师生关系,营造民主的课堂教学环境,学生才会在此环境中大胆发表自己的见解,展示自己的个性特征,对于有困难的学生,教师要给予及时的关照与帮助,要鼓励他们主动参与数学活动,尝试用自己的方式去解决问题,发表自己的看法;教师要及时地肯定他们的点滴进步,对出现的错误要耐心地引导他们分析其产生的原因,并鼓励他们自己去改正,从而增强学习数学的兴趣和信心。
创新是素质教育的核心,只有不断的培养学生的创新思维能力,才能促进学生的健康成长与进步,成为社会主义合格的接班人。
第四篇:浅谈初中数学教学中创新思维的培养
浅谈初中数学教学中创新思维的培养
数学教学大纲指出“数学教学中,发展思维能力是培养能力的核心。”这就是说数学的课堂教学不仅是数学知识的传授,更重要的是利用数学知识这个载体来发展学生的思维能力。数学思维的创新是思维品质的最高层次,只有多种品质协调一致发生作用才能有助于创新思维能力的培养。
(一)初中数学课程改革有哪些变化(1)注重知识来源,激发学生求知欲
在新的数学教材中,每一章节在引入新的知识时,都非常注重新的知识来源,让学生知道要学新的知识是由于要解决新的问题的缘故,例如在引入有理数时,课本从温度,海拔高度,表示相反方向等多个角度,立体化地说明引入负数的必要性,从而激发学生的求知欲望,培养学生的学习兴趣,也在有利于教学中的重结论轻过程向既重结论又重过程的方向发展。(2)创设问题情景,提高学生解决问题能力
同样在新的教材中,课本亦相当重视提高学生自己动手,解决实际问题的能力,例如在新的几何教材中,就有让学生自己动手,通过实际操作得出几何中立体图形的初步概念的实验课,不仅提高学生的学习兴趣,还促进学生动手解决问题的能力,在中考中亦有类似的题目,如,用两个相同的等腰直角三角形,可以拼出多少个不同的平行四边形?学生只要动手比划一下,就可以得出结论,这对促进学生动手解决实际问题能力有着重要作用。(二)近年中考的命题有哪些变化
(1)注重对学生运用数学知识解决实际问题的能力
从近年的中考试题可以看出,由于中考是高中阶段的学校招生考试,具有一定的选拔性,因此,在试卷上重视对“双基”考查的同时,进一步加强了对数学能力,就是思维能力,运算能力,空间概念和应用所学知识分析问题和解决问题能力的考查,试题强调应用性,开放性与创新意识,试题新颖,具有很强的时代气息。例如广东移动通讯公司开设了两种通讯业务,“全球通”使用者先缴50元月基础费,然后每通话一分钟,再付0.4元;“神州行”不用缴月基础费,每通话一分钟付话费0.6元。若一个月通话X分钟,两种通讯方式的费用分别为X和Y元。
①写出两种通讯方式的函数关系式。
②一个月内通话多少分钟,两种通讯方式的费用相同?
③若某人预计一个月内使用话费200元,则应选择哪种方式较合算?(2)注重对学生通过实际动手获得知识考查
近年的中考中,亦出现了不少的题目注重对学生通过实际动手解决问题的能力的考查。例如,①请同学们在已知三角形中截取一个三角形与已知三角形相似。②已知一条河流的同侧有A、B两村庄,如果要在河边建一供水站,应如何选址才最节省通水管?这些问题,都是对学生动手能力的考查,学生只有灵活地掌握数学知识,才能运用这门工具解决实际问题。
针对初中数学课程改革和中考命题的变化,我们在备考时就要有的放矢,从着实提高学生运用数学知识解决问题能力入手,为此,我们应该注重提问的设计问题,培养学生独立思维的习惯。著名的数学教育家波利亚认为:“高质量的提问,使学生不断产生‘是什么’、‘为什么’的定向反射。”高质量的提问在课堂教学中不仅可以长时间的维持学生的有意注意,而且还会很好地培养学生的思维习惯。另外还要充分发挥学生的主体作用,培养学生独立思维习惯。例如,在讲解平行四边形的判定时,可以如下进行:A、从学生已有的知识入手,要求学生说出平行四边形的性质,并利用学生已有的研究几何图形的经验得到课题,把学法指导有机地贯穿在教学过程中,引导学生从已有的知识和经验出发,通过交流讨论得出平行四边形的判定命题,最后得出“一组对边平行且相等的四边形是平行四边形”的判定方法。B、在证明命题时,首先引导学生对四个命题的证明顺序进行研究。尽管四个命题都可以运用定义去证明,但教材编排的证明顺序仍然值得教师在教学过程中引导学生去认识和体会生活中就近上车的道理。C、在辅助线引入上应把精力放在辅助线的产生过程上,使学生不仅知道添什么,更要明白为什么这样添。这样既可以使学生加深对知识间的联系和作用的理解,同时还可以消除学生在添辅助线问题上的心理压力,使学生更有信心地学好几何。D、定理证明研究之后应安排一定的时间让学生消化理解并整理学习过的知识和研究方法,使学生把新知识和方法纳入已有的知识结构和方法结构中去,接着进行应用研究、练习。最后引导学生对本课的学习和研究进行小结。尽管可能各人的收获、体会不完全相同,但通过讨论和交流总可以受到相互启发。
以上可以看出在设计上注重了结论的探求过程和方法的思考过程的研究,由于学生亲自参加于知识的产生过程,由此对知识产生有一种亲近感,由此而陶冶出来的基本态度和思维能力则可以长久地保持并对变化的情况有广泛的适应性。
第五篇:数学教学中如何培养学生的创新思维
数学教学中如何培养学生的创新思维
[]创新能力,是指人在顺利完成以原有知识、经验为基础的创建新事物的活动过程中表现出来的潜在的心理品质。而创新能力的作用就是教人如何进行创新实践,如何解决遇到的各种现实问题。
[]创新思维,创新意识,个性品质,数学思维能力,创新人才
创新思维的培养不仅是学数学的需要,更是时代的要求。作者根据自己多年的教学实践,就在教学中如何培养学生的创新思维作出了阐释。
一、深化理性思维,改善思维品质,培养创新意识 兴趣是培养学生创新意识的前提,是构成创新动机最现实、最活泼的心理成份,是创新的动力源泉。教学中应充分利用教材,恰当的引导,适时的启发,激发不同层次学生的学习动力、兴趣,调整学生学习心理的转变,有意识的培养学生有效的思维意识和思维习惯。
1.培养学生观察问题,发现问题,解决问题的思维习惯,激发创新意识
人们发现新问题的能力是与大脑的积极思维分不开的,培养学生发现问题的能力是培养创新意识的前提。数学知识的获得,主要是通过对实物和模型的观察和思考,抽象概括出它们的本质属性,并用自己的语言给出定义或命题;让学生发
第 1 页 现数学问题的解决过程,体验思维的形成过程。
例如,将边长为3的正方体的六个面涂上颜色,而后分割成大小均匀的边长为1的正方体,则所得小正方体中只有一个面有颜色的概率是(B)。A.827B.29C.127D.49 分析:“将边长为3的正方体的六个面涂上颜色,而后分割成大小均匀的边长为1的正方体”在生活中的实物模型—魔方:
所得小正方体中,①三个面有颜色的是位于原正方体八个顶点的八个小正方体;
②二个面有颜色的是位于原正方体十二条棱中间的十二个小正方体;
③一个面有颜色的是位于原正方体六个面正中间的六个小正方体;
④没有面有颜色的是位于原正方体正中心的一个小正方体。【评述】培养学生发现问题的能力,着重是培养学生数学地提出问题的能力,以及分析问题,解决问题的能力及过程。上述解决问题的过程是:数学问题情景—实物(或模型)—特征分析—归类整理—数学计算—结论。不但起到了巩固固有的思维结构与形式,而且收到了发散结论的思维效果。2.培养学生的质疑能力,促进创新意识的萌动
创新思维是从发现问题开始的,“学起于思,思源于疑”。
第 2 页 疑,是点燃学生思维的火种,有疑问才会去探索。如果对某些地方大胆质疑,便可促其深思,以求悟解。在数学教学中,要鼓励学生质疑,问难,敢于思考、猜测,敢于超越常规;鼓励学生善于生疑,反思。学生质疑越多,求知欲越旺,兴趣会越浓,这样学生的创新意识、创新思维、创新精神就会在质疑、解疑中得到培养和提高。
例如,异面直线间的距离的求法—线面间的距离,这一转化一旦直接提出学生是很难接受的,在其思维活动中必然产生疑虑,促使其利用现有知识去佐证:异面直线的公垂线的找法,从而整理如下材料。
①a,b为异面直线,过直线b上一点B有且只有一条直线c与a平行;-a∥c;
②过两条相交直线b,c有且只有一个平面α-a∥α; ③过直线a上一点A有且只有一条直线d与平面α垂直于C;-d⊥α即-AC⊥α;
④直线a∩直线d=A,过b,c有且只有一个平面β,使得β⊥α于直线e;-β⊥α;
⑤a∥α,a∩β,α∩β=e,则a∥e,又由a∥c知e∥c; ⑥在平面α中,e∥c,b∩c=B则b∩e=D;
⑦在平面β中,a∥e,过D有且只有一条直线f与d平行且f⊥a于E即DE∥AC且DE=AC;
⑧DE⊥a与E,DE⊥b与D则DE即为直线a,b的公垂线段亦
第 3 页 即异面直线a,b间的距离。
结论:异面直线a,b间的距离即为直线a到平面α的距离AC。
【评述】在疑问中探索,不仅能加强思维的形成过程,而且能拓展思维的广度,深度,促进创新意识的原始萌动。3.加强学生个性品质的养成,增强创新意识
个性品质是指学生具有一定的数学视野及数学意识,认识数学的科学价值和人文价值,崇尚数学的理性精神,形成审慎思维的习惯,体会数学的美学意义。在课堂上要培养学生创造性的心理素质,就必须尊重学生个性,努力创造一个让学生积极主动参与的教学活动,并敢于发表自己见解的民主氛围,让不同层次的学生获得不同程度的成功。在教学中要充分发挥学生的自主性和创造性,善于适时利用课堂中的每次“意外”,引导学生,鼓励学生即兴创造,超越预设的教学目标。
二、培养学生的数学思维能力,提高探究能力,发展学生的创新意识和实践能力
数学教学中注重培养学生数学地提出问题,分析问题和解决问题的能力,发展学生的创新意识和实践能力,提高学生数学探究能力,数学建模能力和数学交流能力。努力培养学生的数学思维能力。
1.“纵横联系”形成类比,培养学生思维的连续性,拓展性,第 4 页 发展学生的创新意识
类比,是一种思维跳跃,借助于类比,可以发现新领域里的新结论。教学中有意识地对相关知识模块进行比较,找出其异同点,以此获得更新,更高的理解,所以说类比是培养学生创新思维的一种重要方法。
例如,同一平面中线线位置关系→空间平面与平面;平面向量→空间向量。
2.“往前多走一步”,通过归纳,培养学生思维的全面性,深刻性,培养学生创新思维
归纳是由特殊到一般的认知过程;是通过对特例或事物的一部分进行观察与综合,进而发现和提出一般性结论或规律的过程;归纳能使我们迅速地发现事物的特征、属性和规律,是我们作出科学猜想的基础和依据,是发现数学问题的重要手段之一。因此,借助归纳是培养学生发现能力和创新思维的一条基本途径。
例如,求数列的通项的8种模式。
3.“多反思”,通过变式培养学生的发散思维,形成探索意识
教学中要求学生思考问题时要注重多思路,多方法,换角度;解决问题时要注重多路径,多方式。对同一个问题,从不同的方向、不同的角度、不同的层次横向拓展,纵向深入,去探索、转化、变换、迁移、分析,激发学生潜能,提高学生
第 5 页 素质。
例如,全集I={1,2,3,4,5},{1,3}?A?I,则符合条件的集合A有()个。
变式1{1,3}?A?I,则符合条件的集合A有()个。变式2{1,3}?A?I,则符合条件的集合A有()个。变式3{1,3}?A?I,则符合条件的集合A有()个。
【评述】变式训练不仅能增强例题的使用价值,强化了固有思维模式极其形成过程,而且培养了学生的发散思维,挖掘了学生的创新潜力,形成探究意识。
综上所述,我们应以培养学生创新思维为核心目标,充分给予学生自主学习的机会,鼓励学生敢于探索,勇于创新,科学运用数学思想、观点和方法解决问题,为一代创新人才的培养打下坚实的基础。
第 6 页