第一篇:例谈数学教学中创新思维的培养
例谈数学教学中创新思维的培养
有份报纸写到:一位教师在课堂上描述上海浦东开发引起的变化时,特别指出:纵横交错的“地铁”给人民的生活和学习带来了极大的方便,这时有一位学生在座位上发出一声感叹:如果有“天铁”该多好啊!课堂上一阵骚动,老师脸色一沉,瞪着他说:“就你能!”课堂里顿时安静下来。类似情况在我们的教学 中并不少见。然而,如此做法将会把一个设计师的梦想从此打破。
从这里我看出了创新思维是不可忽视的,尽管创新思维的火花是那末的微小,但决不能认为孩子的创造是“乱想”而批评他,这样创造的嫩芽就会被扼杀。因此说在数学教学中,培养学生的创新思维是必要的和有益的。
下面就教学中几个简单的实例阐述如下:
一、灵活运用教材,激发创新火花。
有时在教学中一个小小的改动,引导学生从不同侧面展开联想,开拓思路启
发他们探求多样的解法,从而可以促使学生积极主动的发展。
例如:五年制小学数学第九册《倒数的认识》课后有这样一道应用题:3/4×()=()×4/7=5/6×()=1。课上我对此题稍加改动,去掉最后一个等号,使之为;3/4×()=()×4/7=5/6×()。这样一改,这道题就拥有了无数个答案,不仅可以巩固学生对“倒数意义”这一新知识的理解,而且可以唤起学生对旧知的回忆。同时还可以为下一单元分数除法的学习做好知识迁移的准备。然而,我认为最重要的是能启发学生运用转化、迁移的数学方法,灵活的运用所学过的多种知识创造性的解决同一个问题,更有效地训练学生的创新思维,培养学生的创新能力。
不出所料,题一出现,学生首先根据“倒数的意义”进行填空,使每两个因数的积都等于1,3/4×(4/3)﹦(7/4)×4/7﹦5/6×(6/5),当大多数学生都以为大功告成时,还有一部分学生的手还举着,他们迫不及待地说:“老师,我在每个括号里都填0”、“老师,我让每两个因数的积等于2”、“老师,他说的不行。因为2÷3/4,我们还没学过呢,括号里不知填几”、“我知道几,因为根据3/4×(4/3)﹦(7/4)×4/7﹦5/6×(6/5)﹦1,再根据一个因数不变,另一个因数扩大2倍,积就扩大2倍。所以括号里填3/4×(8/3)﹦(14/4)×4/7﹦5/6×(12/5)”、“老师,我是这样想的:()×3/4﹦2,可以表示一个数的3/4是2,也就是把这个数平均分成4份,其中的3份是2。所以2÷3/4﹦2÷3×4,2÷3表示2平均分成3份后求一份是多少,所以2÷3﹦﹦2×1/3,因此2÷3/4﹦2÷3×4﹦2×1/3×4﹦8/3”。此时此刻,学生的思维异常活跃,学生的积极性一个赛一个过:“我想让它们的积等于1.5”、“我想让他们的积等于3/11”、“让它们的积等于多少都行”
当学生说到这里,我及时引导他们思考,这道题虽然有无数个答案,但看到这样的题目应从哪几方面想呢?学生通过讨论总结出可以从以下三个方面入手:⑴特殊数“0”,3/4×(0)﹦(0)×4/7﹦5/6×(0)﹦0。⑵倒数的意义,3/4×(4/3)﹦(7/4)×4/7﹦5/6×(6/5)﹦1。⑶ 取样求解,3/4×()﹦()×4/7﹦5/6×()﹦任何数,然后分别解三个方程。
一个小小的改动,活跃了课堂气氛,为学生创造性学习提供了更加广阔的思维舞台。
一个良好的育人环境,一个充满创新思维的环境可以激发学生创新思维的发展,可以让他们展开想象的翅膀,在知识的海洋了里遨游。
在进行“口算加减法”时,例题是27+28,引入有的学生采用尾数相加的方法:7+8=15,20+30=50,50+15=65;有的将一个加数进行分解:20+38=58,58+7=65,这两种方法都比较常用。我在充分肯定学生的成绩后提问:“谁还能想出不同的方法?”经过思考,有一位同学站起来说:“可以先把38与27的差算出来得11(38—27=11),再用27乘以2得54(27×2=54),最后将54与11相加得65(54+11=65)。我先是一惊他的想法很独特,便问他:“你为什么要用27×2呢?”他说:“因为前面有一个27,38里面也有一个27,所以用27×2=54,54再加上他们的差就是答案。”我觉得这样的方法太奇妙了,也很新鲜,我在全班表扬了他。到了第二天,有这样一道题:“养鸡场有母鸡1225只,第一天下了1118各蛋,第一天比第二天多下了109个。两天一共下了多少个蛋?”大部分同学这样做:1118+109=1227(个)、1227+1118=2345(个)。也许是受了昨天的影响。有一位学生这样做:1118×2=2236(个)2236+109=2345(个)。这一方法咋一看似乎不合解题思路,但是细想来,学生已进行了较复杂的思维过程。其中有求几个相同数之和的思考:(第一天比第二天多109个,其中肯定还有个1118。)整个过程,充分体现了学生得分析综合能力。这节课,除了适时地在解题策略方面给孩子们启发和诱导外,更给他们营造了一个民主、和谐、愉快的课堂氛围。从而自主、创造性的开展学习。孩子的潜能是巨大的,重在教师的开发和引导。“创新是一个民族的灵魂,是一个国家兴旺发达的不竭动力”。因此在教学中,我们要重视学生的奇妙想法,重视他们创造的火花。只有这样才能培养出具有创新精神的时代新人!
第二篇:浅谈数学教学中的创新思维的培养
浅谈数学教学中的创新思维的培养
刘柱红
(遵义县虾子镇南坪中学563125)
【摘要】 初中数学教学中创新思维的培养首先要激发学生创造欲望,培养学生的创新意识。其次,在中学数学教学中要注意通过培养培养直觉思维、发散思维、收敛思维来培养学生的创新思维。
【关键词】 创新思维 培养策略 直觉思维 发散思维
实施素质教育的重点是培养学生的创新精神和实践能力。目前,实施素质教育在一定意义上说就是创新教育,培养学生的创新思维和能力比一般地传授知识更为重要。数学教学要标新立异,改变观念,注重能力培养。把创新教育渗透到课堂教学中,精心创设求异情境,把学生引入一个多思、多问、多变的广阔的思维空间,开发智能,提高数学素质。
创造性思维是一种有创见的思维,它是人类的高级思维活动。创造性思维的结果,往往会发现新的方法新的规律或新的科学。随着科学技术的迅猛发展和培养人才的需要,现代数学教育越来越重视对学生创造性思维能力的培养。而创新是教与学的灵魂,是实施素质教育的核心;数学教学蕴含着丰富的创新教育素材,数学教师要根据数学的规律和特点,认真研究,积极探索培养和训练学生创造性思维的原则、方法。
当前,数学教学改革和发展的总趋势就是发展思维,培养能力。要达到这一要求,教师的教学就必须从要优化学生的思维品质入手,注意激发和培养学生多种优良的思维品质,把创新教育渗透到课堂教学中,激发和培养学生的思维品质。
一、探索问题的非常规解法,培养思维的创造性
培养学生的想象力和创造精神是实施创新教育中最为重要的一步。教师要启迪学生创造性地“学”,标新立异,打破常规,克服思维定势的干扰,善于找出新规律,运用新方法。激发学生根据情境,大胆猜想,或由因索果,或执果寻因,或综合应用相关知识进行推理判断。总之,这类问题对数学思想方法的要求较高,对解决问题的能力较高。
例1.解方程(x-1)(x + 2)= 70 该题的一般解法是把方程化为标准的一元二次方程求解。除此之外应激发学生去思考有无更巧更妙的解法?诱导学生去发现x+2与x-1的关系:它们的差是3,且x+2>x-1,故可把70分解成差为3的两个因数,从而求解。
解:原方程化为(x-1)(x+2)=7×10 =-10×(-7)∵ x+2 >x–1 ∴ x+2 =10 或 x+2 =-7 ∴ x1 =8,x2 =-9。
题目的新颖解法来源于观察分析题目的特点,以及对隐含条件的挖掘。因此,教师应从开发智能、培养能力这一目标着眼,有意识地引导学生联想、拓展,平时教学中注意总结解题规律,逐步培养学生的创新意识。
二、开拓思路,诱发思维的发散性
徐利治教授曾指出:详细说来,任何一位科学家的创造能力,可用如下公式来估计:创造能力 = 知识量×发散思维能力。从这里可以看到培养学生的发散思维能力的重要性。思维的发散性,表现在思维过程中,不受一定解题模式的束缚,从问题个性中探求共性,寻求变异,多角度、多层次去猜想、延伸、开拓,是一种不定势的思维形式。发散思维具有多变性、开放性的特点,是创造性思维的核心。在数学教学中,一题多变,一题多串,一题多用,一题多解(证),一空多填,一图多画等训练,都能培养和锻炼学生思维的发散性。例1.如图,在△ABC中,∠ACB = 90°,CD⊥AB,由上述条件你能推出哪些结论?
此题求解的范围、想象的空间是广阔的,思维是开放的。让学生在求解过程中求新、求速度、求最佳,通过不断思考,互相启 发,多数学生能找出7~10个结论,然后
教师诱导学生从边、角、相似及三角函数关系等方面归纳出至少 15种结论:
⑴.∠BCD=∠A,∠ACD=∠B,∠ADC=∠BDC=∠ACB.⑵.AC2+BC2=AB2,AD2+CD2=AC2,BD2+CD2=BC2.(勾股定理)⑶.AC2=AD·AB,BC2=BD·AB,CD2=AD·DB.⑷.AC·BC=AB·CD,⑸.△ABC∽△ACD∽△CBD.⑹.SinA = cosB, tgA = ctgB, sin2A + cos2A = 1, tgA·ctgA = 1.这类题具有很强的严密性和发散性,通过训练把学生的思维引到一个广阔的空间,培养了学生思维的广度和深度。这类题的题设与结论不匹配,需要对问题进行多方位,多角度,多层次的思考和审视,恰当运用数学知识去发挥、探索、推断,从而得到多个结果。此类题往往称为“开放型”试题。开放型问题设计是数学教学的一种形式,一种教学观,又是一种创设问题情境的意识和做法,具有很好的导向性,是今后出题的一种趋势。
三.创新多变,探索思维的求异性 求异思维是指在同一问题中,敢于质疑,产生各种不同于一般的思维形式,它是一种创造性的思维活动。学起于思,思源于疑,疑则诱发创新。教师要创设求异的情境,鼓励学生多思、多问、多变,训练学生勇于质疑,在探索和求异中有所发现和创新。本人教授“§2.7平行线的性质”一节时深有感触,一道例题最初是这样设计的:
例.如图已知a // b , c // d , ∠1 = 115。⑴ 求∠2与∠3的度数。
⑵ 从计算你能得到∠1与∠2是什么关系? 学生很快得出答案,并得到∠1=∠2。我正要向下讲解,这时一位同学举手发 言:“老师,不用知道∠1=115°也能得 出∠1=∠2。”我当时非常高兴,因为他
回答了我正要讲而未讲的问题,我让他讲述了推理的过程,同学们报以热烈的掌声。我又借题发挥,随之改为:
已知:a//b , c//d 求证: ∠1=∠2
让学生写出证明,并回答各自不同的证法。随后又变化如下: 变式1:已知a//b , ∠1=∠2 , 求证:c//d。变式2:已知c//d,∠1=∠2 , 求证:a//b。变式3:已知a//b, 问∠1=∠2吗?(展开讨论)
这样,通过一题多证和一题多变,拓展了思维空间,培养学生的创造性思维。对初学几何者来说,有利于培养他们学习几何的浓厚兴趣和创新精神。
总之,我们在课堂教学设计中,要根据教学目标和教学内容,通过选择恰当的常规的和非常规的问题,作为施教的载体。教师除了根据教学内容广泛收集问题外,最好能创造自己的问题,这些问题不仅仅停留在把课本的题目在条件、结论在逻辑上互动,而是把课本题进行改造,成为情境题、开放题、应用题。并加以积累,不断完善,形成具有特色的校本问题。然后把这些问题通过启导等教学手段,在课堂中使学生产生明显的意识倾向和情感共鸣,从而培养学生的创新意识和能力。
参考文献:
[1] 湖炯涛。数学教学论。广西教育出版社。1996 [2] 毛永聪主编。中学数学创新教法。北京:学苑出版社,1996.6
第三篇:谈数学教学创新思维的培养
谈数学教学创新思维的培养
数学教学中,如何遵循数学本身的规律,遵循学生的认知规律,去培养学生的创新思维能力,如何发挥数学思维的优势,开发学生的创造力,进一步提高学生的数学素质,己成为当前数学教学的紧迫问题。
对于学生来说,数学学习不仅意味着掌握数学知识,形成数学技能,也是在教师引导和帮助下的一个“再创造”过程。日常数学教学中,学生的创新思维我是通过如下途径来培养的。
一、兴趣――创新的灵魂
兴趣是最好的老师,那么在数学教学中如何激发学生的学习兴趣呢?
1、充分挖掘数学的内在美感因素,唤起学习的情感意识、培养学生的兴趣。
数学教师要善于展现数学美,让学生在对数学美的欣赏中得到积极的情感体验。一般可在提出数学问题时,展示它的新颖、奇异,激发学生学习的好奇心;在分析和解决问题时,使他们感受到数学的思维美和方法美,促使他们自觉地去研究它;在把知识加以整理的过程中,让他们体会到数学的和谐统一和简洁美,这样不仅可以减轻记忆的负担,而且可以品尝到知识结构的美妙。
2、使数学问题生活化,把“身边的数学”引入课堂,激发学生的学习兴趣。
数学知识来源于生活实际.生活本身又是一个巨大的数学课堂。在数学教学中要尽可能地接近学生的现实生括,让学生认识到生活中处处有数学,数学中也处处有生活的道理。在数学教学中要注重把教材内容与生活实践结合起来,加强数学教学的实践性,给数学找到生活的原型。
二、加强发散思维训练
由于发散性思维是创造性思维的起点,是创造力的重要测量指标,培养发散性思维有助于发展学生创造力。
思维是从问题开始的,教师的提问可以直接激发学生进行思维活动,发散性提问就是提出问题的结果不是唯一的,问题解决的手段和联系的内容是多方面,使学生产生尽可能的想法。在发散性提问的推动下,学生能展开多向的思维活动,以获取多方信息,能培养学生独立思考的自觉性.敢于突破常规大胆提出新颖的见解,教学中适当增加发散性提问,对培养发散思维,养成发散思维的习惯进而培养创新思维具有更直接、更现实的意义。
2、一题多解是训练发散思维的有效形式
多向求解之所以有助于发展学生的创新思维能力,主要是因为它要求学生的思维活动不局限于单一角度,不受一种思路的束缚。为了问题的解决,要求寻找多样化的方式,谋求多种可能性,开拓学生求新的思路。由此可见,教学时要多注意学生思维中的合理因素,鼓励“标新立异”。
3、一题多变,激活发散性思维的又一形式
采用一题多变,引导学生思维,克服静止、孤立地思考问题的习惯,向广处联想,向纵深发展,不断变换条件和结论,由浅入深,循序渐进,举一反三,层层深化,从一道题抓一类题,从特殊问题抓一般问题,达到由此及彼,触类旁通的目的。
由于思维的相互交流、相互碰撞,在变式教学中,使学生始终处于再创造、再发现状态,充分调动了学生的积极性和创造性,对开拓学生发散性思维发挥积极的作用。
三、加强开放型问题的训练
问题是数学的心脏,数学问题的重要性主要并不在于其直接的应用,而是其对数学创新思维训练的价值和潜在的对发展智力的影响。
开放型问题表现为条件不完备或不固定,开放型题按开放的要素分为条件开放型、推理开放题与结论开放题等不同类型。开放型问题要求学生能动态地分析可能的条件与面临的问题之间的复杂关系,要求主体参加问题的建构与引申,因而要解决它就不仅需要逻辑思维.还常常需要形象思维与直觉思维的积极参与。
总之,在数学教学中.只要我们在重视基础知识教学的基础上转变教学思想,切实改进教学方法,在揭示数学思维过程中,在发散性、直觉性思维等方面加大训练力度,强化问题解决和应用意识,就一定能对学生数学创新思维的培养起到积极地推动作用。
第四篇:数学教学中创新思维的培养
数学教学中创新思维的培养
通过数学的教学培养学生的创新意识,就要在数学课堂教学中培养学生的创新精神和创新能力。只有不断创新,激发学生学习数学的兴趣,激励学生不断探索数学问题,培养学生获取数学知识的能力,尊重学生在数学学习上的个体差异,才能实现学生的数学创新思维的培养,才能真正落实素质教育的要求。因此,在数学课堂教学中,教师应当注意创新课堂教学的方法。
一、创设良好的学习情境,激发学生学习的主动性、积极性,培养学生的创新思维我们的课堂教学形式单调,内容陈旧,知识面窄,严重影响学生对数学的全面认识,难以激起学生的求知欲望、创造欲。新课标中指出:“数学教学应从学生实际出发,创设有助于学生自主学习的问题情境”。因此,教师必须精心创设教学情境,有效地调动学生主动参与教学活动,使其学习的内部动机从好奇逐步升华为兴趣、志趣、理想以及自我价值的实现。教师就教学内容设计出富有趣味性、探索性、适应性和开放性的情境性问题,并为学生提供适当的指导,通过精心设置支架,巧妙地将学习目标任务置于学生的最近发展区,让学生产生认知困惑,引起反思,形成必要的认知冲突,从而促成对新知识意义的建构。在创造性的数学教学中,师生双方都是教学的主体。
教师要善于结合实际出发,巧妙地设置悬念性问题,将学生置身于“问题解决”中去,就可以使学生产生好奇心,吸引学生,从而激发学生的学习动机,使学生积极主动参与知识的发现,这对培养学生的创新意识和创新能力有着十分重要的意义。
二、鼓励学生自主探索与合作交流
解决问题的关键是教育内容的革新,教育观念的更新和教学方法的创新,“数学教学是数学活动的教学,是师生之间、学生之间交往互助与共同发展的过程。”学生的学习只有通过自身的探索活动才可能是有效地,而有效的数学学习过程不能单纯地依赖模仿与记忆;创造性教学表现为教师不在于把知识的结构告诉学生,而在于引导学生探究结论,在于帮助学生在走向结论的过程中发现问题,探索规律,学习方法;教师应引导学生主动地从事观察、实验、猜测、验证、推理与合作交流等数学活动,从而使学生形成自己对数学知识的理解和有效的学习策略。因此,在课堂教学中应该让学生充分地经历探索事物的数量关系,变化规律的过程。
三、尊重学生个体差异,实施分层教学,开展积极评价
由于智力发展水平及个性特征的不同,认识主体对于同一事物理解的角度和深度必然存在明显差异,由此所建构的认知结构必然是多元化的、个性化的和不尽完善的。学生的个体差异表现为认识方式与思维策略的不同,以及认知水平和学习能力的差异。作为一名教师要及时了解并尊重学生的个体差异,积极评价学生的创新思维,从而建立一种平等、信任、理解和相互尊重的和谐师生关系,营造民主的课堂教学环境,学生才会在此环境中大胆发表自己的见解,展示自己的个性特征,对于有困难的学生,教师要给予及时的关照与帮助,要鼓励他们主动参与数学活动,尝试用自己的方式去解决问题,发表自己的看法;教师要及时地肯定他们的点滴进步,对出现的错误要耐心地引导他们分析其产生的原因,并鼓励他们自己去改正,从而增强学习数学的兴趣和信心。
创新是素质教育的核心,只有不断的培养学生的创新思维能力,才能促进学生的健康成长与进步,成为社会主义合格的接班人。
第五篇:浅谈初中数学教学中创新思维的培养
浅谈初中数学教学中创新思维的培养
数学教学大纲指出“数学教学中,发展思维能力是培养能力的核心。”这就是说数学的课堂教学不仅是数学知识的传授,更重要的是利用数学知识这个载体来发展学生的思维能力。数学思维的创新是思维品质的最高层次,只有多种品质协调一致发生作用才能有助于创新思维能力的培养。
(一)初中数学课程改革有哪些变化(1)注重知识来源,激发学生求知欲
在新的数学教材中,每一章节在引入新的知识时,都非常注重新的知识来源,让学生知道要学新的知识是由于要解决新的问题的缘故,例如在引入有理数时,课本从温度,海拔高度,表示相反方向等多个角度,立体化地说明引入负数的必要性,从而激发学生的求知欲望,培养学生的学习兴趣,也在有利于教学中的重结论轻过程向既重结论又重过程的方向发展。(2)创设问题情景,提高学生解决问题能力
同样在新的教材中,课本亦相当重视提高学生自己动手,解决实际问题的能力,例如在新的几何教材中,就有让学生自己动手,通过实际操作得出几何中立体图形的初步概念的实验课,不仅提高学生的学习兴趣,还促进学生动手解决问题的能力,在中考中亦有类似的题目,如,用两个相同的等腰直角三角形,可以拼出多少个不同的平行四边形?学生只要动手比划一下,就可以得出结论,这对促进学生动手解决实际问题能力有着重要作用。(二)近年中考的命题有哪些变化
(1)注重对学生运用数学知识解决实际问题的能力
从近年的中考试题可以看出,由于中考是高中阶段的学校招生考试,具有一定的选拔性,因此,在试卷上重视对“双基”考查的同时,进一步加强了对数学能力,就是思维能力,运算能力,空间概念和应用所学知识分析问题和解决问题能力的考查,试题强调应用性,开放性与创新意识,试题新颖,具有很强的时代气息。例如广东移动通讯公司开设了两种通讯业务,“全球通”使用者先缴50元月基础费,然后每通话一分钟,再付0.4元;“神州行”不用缴月基础费,每通话一分钟付话费0.6元。若一个月通话X分钟,两种通讯方式的费用分别为X和Y元。
①写出两种通讯方式的函数关系式。
②一个月内通话多少分钟,两种通讯方式的费用相同?
③若某人预计一个月内使用话费200元,则应选择哪种方式较合算?(2)注重对学生通过实际动手获得知识考查
近年的中考中,亦出现了不少的题目注重对学生通过实际动手解决问题的能力的考查。例如,①请同学们在已知三角形中截取一个三角形与已知三角形相似。②已知一条河流的同侧有A、B两村庄,如果要在河边建一供水站,应如何选址才最节省通水管?这些问题,都是对学生动手能力的考查,学生只有灵活地掌握数学知识,才能运用这门工具解决实际问题。
针对初中数学课程改革和中考命题的变化,我们在备考时就要有的放矢,从着实提高学生运用数学知识解决问题能力入手,为此,我们应该注重提问的设计问题,培养学生独立思维的习惯。著名的数学教育家波利亚认为:“高质量的提问,使学生不断产生‘是什么’、‘为什么’的定向反射。”高质量的提问在课堂教学中不仅可以长时间的维持学生的有意注意,而且还会很好地培养学生的思维习惯。另外还要充分发挥学生的主体作用,培养学生独立思维习惯。例如,在讲解平行四边形的判定时,可以如下进行:A、从学生已有的知识入手,要求学生说出平行四边形的性质,并利用学生已有的研究几何图形的经验得到课题,把学法指导有机地贯穿在教学过程中,引导学生从已有的知识和经验出发,通过交流讨论得出平行四边形的判定命题,最后得出“一组对边平行且相等的四边形是平行四边形”的判定方法。B、在证明命题时,首先引导学生对四个命题的证明顺序进行研究。尽管四个命题都可以运用定义去证明,但教材编排的证明顺序仍然值得教师在教学过程中引导学生去认识和体会生活中就近上车的道理。C、在辅助线引入上应把精力放在辅助线的产生过程上,使学生不仅知道添什么,更要明白为什么这样添。这样既可以使学生加深对知识间的联系和作用的理解,同时还可以消除学生在添辅助线问题上的心理压力,使学生更有信心地学好几何。D、定理证明研究之后应安排一定的时间让学生消化理解并整理学习过的知识和研究方法,使学生把新知识和方法纳入已有的知识结构和方法结构中去,接着进行应用研究、练习。最后引导学生对本课的学习和研究进行小结。尽管可能各人的收获、体会不完全相同,但通过讨论和交流总可以受到相互启发。
以上可以看出在设计上注重了结论的探求过程和方法的思考过程的研究,由于学生亲自参加于知识的产生过程,由此对知识产生有一种亲近感,由此而陶冶出来的基本态度和思维能力则可以长久地保持并对变化的情况有广泛的适应性。