第一篇:高中数学 1.2.3 三角函数的诱导公式教案 新人教A版必修1
江苏省连云港灌云县第一中学高中数学 1.2.3 三角函数的诱导公式(1)教案 新人教A版必修1 ‘
教学目标:
1.通过学生的探究,明了三角函数的诱导公式的来龙去脉,理解诱导公式的推导过程; 2.通过诱导公式的具体运用,熟练正确地运用公式解决一些三角函数的求值、化简和证明问题;
3.进一步领悟把未知问题化归为已知问题的数学思想,提高解决问题的能力.教学重点:
诱导公式的推导和公式的灵活运用. 教学难点:
诱导公式的灵活运用.
教学方法:
学生自学、教师引导.
教学过程:
一、问题情境
问题1 我们已经学习了任意角的三角函数的概念.三角函数是以圆周运动为原型,为了刻画周期性运动而建立的数学模型.那么,周期性是怎样体现在三角函数的概念之中的? 问题2 已知任意角,观察角的终边绕着原点旋转的过程,在这一过程中,有哪些东西会周而复始地重复出现?
问题3 转整圈,同名三角函数值周而复始,那么转半圈呢?
(学生研究后发现,正切值周而复始,正弦与余弦值都发生了变化,并发现了变化规律)
问题4 转半圈的实质是关于原点对称,那么是否存在具有其它的对称关系时有三角函数值周而复始的性质呢„„
(学生研究后发现,当角的终边分别关于x轴、y轴对称时,分别有余弦值周而复始、正弦值周而复始„„)
二、学生活动
充分利用单位圆,讨论探究角与180的终边的关系;如果终边具有一定的特殊关系,如关于原点对称,它们的三角函数关系如何? 利用三角函数定义,可以在终边上找出对应的两点,如关于原点对称的两点P(x,y),P'(x,y),则可以得到三角函数之间的关系.进一步研究,180与的终边关系及三角函数关系.三、建构数学
1.引导学生认识“诱导公式”的由来,是根据终边上的点坐标间的关系得到的,强化对公式的理解;
2.记忆诱导公式的形式,点拨公式的运用;
3.前4组诱导公式可以将任意角的三角函数转化成一个[0,指明转化的步骤.四、数学运用 1.例题.例1 求值:(1)sin2]范围内的角的三角函数,并711(2)cos(3)tan(1560)64例2 判断下列函数奇偶性.
(1)f(x)1cosx(2)g(x)xsinx
2.练习.(1)课本P21练习1.(2)课本P21练习2.(3)课本P21练习4.
五、要点归纳与方法小结 本节课学习了以下内容: 1.诱导公式的推导与形式; 2.诱导公式的简单应用.
第二篇:三角函数的诱导公式教案
1.3 三角函数的诱导公式
贾斐
三维目标
1、通过学生的探究,明了三角函数的诱导公式的来龙去脉,理解诱导公式的推导过程;培养学生的逻辑推理能力及运算能力,渗透转化及分类讨论的思想.2、通过诱导公式的具体运用,熟练正确地运用公式解决一些三角函数的求值、化简和证明问题,体会数式变形在数学中的作用.3、进一步领悟把未知问题化归为已知问题的数学思想,通过一题多解,一题多变,多题归一,提高分析问题和解决问题的能力.重点难点
教学重点:五个诱导公式的推导和六组诱导公式的灵活运用,三角函数式的求值、化简和证明等.教学难点:六组诱导公式的灵活运用.课时安排2课时 教学过程 导入新课
思路1.①利用单位圆表示任意角的正弦值和余弦值.②复习诱导公式一及其用途.思路2.在前面的学习中,我们知道终边相同的角的同名三角函数值相等,即公式一,并且利用公式一可以把绝对值较大的角的三角函数转化为0°到360°(0到2π)内的角的三角函数值,求锐角三角函数值,我们可以通过查表求得,对于90°到360°(到2π)范围内的角的三角函数怎样求解,能2不能有像公式一那样的公式把它们转化到锐角范围内来求解,这一节就来探讨这个问题.新知探究 提出问题
由公式一把任意角α转化为[0°,360°)内的角后,如何进一步求出它的三角函数值? 活动:在初中学习了锐角的三角函数值可以在直角三角形中求得,特殊角的三角函数值学生记住了,对非特殊锐角的三角函数值可以通过查数学用表或是用计算器求得.教师可组织学生思考讨论如下问题:0°到90°的角的正弦值、余弦值用何法可以求得?90°到360°的角β能否与锐角α相联系?通过分析β与α的联系,引导学生得出解决设问的一种思路:若能把求[90°,360°)内的角β的三角函数值,转化为求有关锐角α的三角函数值,则问题将得到解决,适时提出,这一思想就是数学的化归思想,教师可借此向学生介绍化归思想.图1 讨论结果:通过分析,归纳得出:如图1.β180a,[90,180],=180a,[180,270], 360a,[270,360],提出问题
①锐角α的终边与180°+α角的终边位置关系如何? ②它们与单位圆的交点的位置关系如何? ③任意角α与180°+α呢? 活动:分α为锐角和任意角作图分析:如图2.图2 引导学生充分利用单位圆,并和学生一起讨论探究角的关系.无论α为锐角还是任意角,180°+α的终边都是α的终边的反向延长线,所以先选择180°+α为研究对象.利用图形还可以直观地解决问题②,角的终边与单位圆的交点的位置关系是关于原点对称的,对应点的坐标分别是P(x,y)和P′(-x,-y).指导学生利用单位圆及角的正弦、余弦函数的定义,导出公式二: sin(180°+α)=-sinα,cos(180°+α)=-cosα.并指导学生写出角为弧度时的关系式:
sin(π+α)=-sinα,cos(π+α)=-cosα,tan(π+α)=tanα.引导学生观察公式的特点,明了各个公式的作用.讨论结果:①锐角α的终边与180°+α角的终边互为反向延长线.②它们与单位圆的交点关于原点对称.③任意角α与180°+α角的终边与单位圆的交点关于原点对称.提出问题
①有了以上公式,我们下一步的研究对象是什么? ②-α角的终边与角α的终边位置关系如何? 活动:让学生在单位圆中讨论-α与α的位置关系,这时可通过复习正角和负角的定义,启发学生思考: 任意角α和-α的终边的位置关系;它们与单位圆的交点的位置关系及其坐标.探索、概括、对照公式二的推导过程,由学生自己完成公式三的推导,即: sin(-α)=-sinα,cos(-α)=cosα,tan(-α)=-tanα.教师点拨学生注意:无论α是锐角还是任意角,公式均成立.并进一步引导学生观察分析公式三的特点,得出公式三的用途:可将求负角的三角函数值转化为求正角的三角函数值.讨论结果: ①根据分析下一步的研究对象是-α的正弦和余弦.②-α角的终边与角α的终边关于x轴对称,它们与单位圆的交点坐标的关系是横坐标相等,纵坐标互为相反数.提出问题
①下一步的研究对象是什么? ②π-α角的终边与角α的终边位置关系如何? 活动:讨论π-α与α的位置关系,这时可通过复习互补的定义,引导学生思考:任意角α和π-α的终边的位置关系;它们与单位圆的交点的位置关系及其坐标.探索、概括、对照公式二、三的推导过程,由学生自己完成公式四的推导,即:
sin(π-α)=sinα,cos(π-α)=-cosα,tan(π-α)=-tanα.强调无论α是锐角还是任意角,公式均成立.引导学生观察分析公式三的特点,得出公式四的用途:可将求π-α角的三角函数值转化为求角α的三角函数值.让学生分析总结诱导公式的结构特点,概括说明,加强记忆.我们可以用下面一段话来概括公式一—四: α+k²2π(k∈Z),-α,π±α的三角函数值,等于α的同名函数值,前面加上一个把α看成锐角时原函数值的符号.进一步简记为:“函数名不变,符号看象限”.点拨、引导学生注意公式中的α是任意角.讨论结果:①根据分析下一步的研究对象是π-α的三角函数;
②π-α角的终边与角α的终边关于y轴对称,它们与单位圆的交点坐标的关系是纵坐标相等,横坐标互为相反数.示例应用
例1 利用公式求下列三角函数值:
(1)cos225°;(2)sin11;(3)sin(16);(4)cos(-2 040°).33 活动:这是直接运用公式的题目类型,让学生熟悉公式,通过练习加深印象,逐步达到熟练、正确地应用.让学生观察题目中的角的范围,对照公式找出哪个公式适合解决这个问题.解:(1)cos225°=cos(180°+45°)=-cos45°=(2)sin11=sin(4π322;
3)=-sin=33;23(3)sin(16)=-sin16=-sin(5π+)33=-(-sin)=33;2(4)cos(-2 040°)=cos2 040°=cos(6³360°-120°)=cos120°=cos(180°-60°)=-cos60°=1.2点评:利用公式一—四把任意角的三角函数转化为锐角的三角函数,一般可按下列步骤进行:
上述步骤体现了由未知转化为已知的转化与化归的思想方法.变式训练
利用公式求下列三角函数值:(1)cos(-510°15′);(2)sin(17π).3解:(1)cos(-510°15′)=cos510°15′ =cos(360°+150°15′)
=cos150°15′=cos(180°-29°45′)=-cos29°45′=-0.868 2;(2)sin(17π)=sin(-3³2π)=sin=3333.2例2 2007全国高考,1 cos330°等于()A.1 B.1 C.223 2D.3 2答案:C 变式训练 化简:解:==12sin290cos430sin250cos790
12sin290cos430sin250cos790
12sin(36070)cos(36070)sin(18070)cos(72070)12sin70cos70|cos70sin70| sin70cos70cos70sin70sin70cos701.=cos70sin70例3 化简cos315°+sin(-30°)+sin225°+cos480°.活动:这是要求学生灵活运用诱导公式进行变形、求值与证明的题目.利用诱导公式将有关角的三角函数化为锐角的三角函数,再求值、合并、约分.解:cos315°+sin(-30°)+sin225°+cos480°
=cos(360°-45°)-sin30°+sin(180°+45°)+cos(360°+120°)
=cos(-45°)1-sin45°+cos120°
2=cos45°1=221222222+cos(180°-60°)
-cos60°=-1.点评:利用诱导公式化简,是进行角的转化,最终达到统一角或求值的目的.变式训练
求证:tan(2)sin(2)cos(6)tan.(cos)sin(5)分析:利用诱导公式化简较繁的一边,使之等于另一边.证明:左边=tan(2)sin(2)cos(6)
(cos)sin(5)=tan()sin()cos()
(cos)sin()cossin=tansincos=tanθ=右边.所以原式成立.规律总结:证明恒等式,一般是化繁为简,可以化简一边,也可以两边都化简.知能训练
课本本节练习1—3.解答:1.(1)-cos4;(2)-sin1;(3)-sin;(4)cos70°6′.95点评:利用诱导公式转化为锐角三角函数.2.(1)1;(2)1;(3)0.642 8;(4)2232.点评:先利用诱导公式转化为锐角三角函数,再求值.3.(1)-sinαcosα;(2)sinα.点评:先利用诱导公式变形为角α的三角函数,再进一步化简.课堂小结
本节课我们学习了公式
二、公式
三、公式四三组公式,24这三组公式在求三角函数值、化简三角函数式及证明三角恒等式时是经常用到的,为了记牢公式,我们总结了“函数名不变,符号看象限”的简便记法,同学们要正确理解这句话的含义,不过更重要的还是应用,我们要多加练习,切实掌握由未知向已知转化的化归思想.作业
课本习题1.3 A组2、3、4.
第三篇:3《三角函数的诱导公式》教案
1.2.3 三角函数的诱导公式(1)
一、课题:三角函数的诱导公式(1)
二、教学目标:1.理解正弦、余弦的诱导公式二、三的推导过程;
2.掌握公式二、三,并会正确运用公式进行有关计算、化简;
3.了解、领会把为知问题化归为已知问题的数学思想,提高分析问题、解决问题的能力。
三、教学重、难点:1.诱导公式二、三的推导、记忆及符号的判断;
2.应用诱导公式二、三的推导。
四、教学过程:
(一)复习:
1.利用单位圆表示任意角的正弦值和余弦值; 2.诱导公式一及其用途:
sink( )sink,cos(360)ckos,tan(360k.Z)0,360问:由公式一把任意角转化为内的角后,如何进一步求出它的三角函数值? 3600,9090,360
我们对范围内的角的三角函数值是熟悉的,那么若能把内的角的三角函数值转化为求锐角的三角函数值,则问题将得到解决,这就是数学化归思想。
(二)新课讲解:
1.引入:对于任何一个: 0,360内的角,以下四种情况有且只有一种成立(其中为锐角)
,当0,90180,当90,180180,270180,当360,当270,360所以,我们只需研究180,180,360与的同名三角函数的关系即研究了与的关系了。
提问:(1)锐角的终边与180的终边位置关系如何?
2.诱导公式二:
(2)写出的终边与180的终边与单位圆交点P,P'的坐标。
(3)任意角与180呢? 通过图演示,可以得到:任意与180的终边都是关于原点中心对称的。则有P(x,y),P'(x,y),由正弦函数、余弦函数的定义可知:
siny,cosx;
sin(180)y,cos(180)x.
从而,我们得到诱导公式二: sin(180)sin;cos(180)cos.
说明:①公式二中的指任意角;
②若是弧度制,即有sin()sin,cos()cos; ③公式特点:函数名不变,符号看象限;
sin(180)sin④可以导出正切:tan(180)tan. cos(180)cos(此公式要使等式两边同时有意义)
3.诱导公式三:
提问:(1)360的终边与的终边位置关系如何?从而得出应先研究;
(2)任何角与的终边位置关系如何?
对照诱导公式二的推导过程,由学生自己完成诱导公式三的推导,即得:诱导公式三:sin()sin;cos()cos. 说明:①公式二中的指任意角; ②在角度制和弧度制下,公式都成立;
③公式特点:函数名不变,符号看象限(交代清楚在什么情况下“名不变”,以及符号确定的具体方法);
④可以导出正切:tan()tan.
4.例题分析:
43). 60,3600,360分析:先将不是范围内角的三角函数,转化为范围内的角的三角函 例
1求下列三角函数值:(1)sin960;
(2)cos(数(利用诱导公式一)或先将负角转化为正角然后再用诱导公式化到0,90范围内角 的三角函数的值。
解:(1)sin960sin(960720)sin240(诱导公式一)
sin(18060)sin60(诱导公式二)
3. 24343)cos(2)cos((诱导公式三)6677cos(6)cos(诱导公式一)
66cos()cos(诱导公式二)
663. 2方法小结:用诱导公式可将任意角的三角函数化为锐角的三角函数,其一般步骤是:
①化负角的三角函数为正角的三角函数;
0,360②化为内的三角函数; ③化为锐角的三角函数。
可概括为:“负化正,大化小,化到锐角为终了”(有时也直接化到锐角求值)。
cotcos()sin2(3)例2 化简. 3tancos()cot(cos)sin2()解:原式 3tancos()cot(cos)(sin)2 tan(cos)3cot(cos)sin2 tan(cos3)cos2sin21. sin2cos2
五、课堂练习:
六、小结:1.简述数学的化归思想;
2.两个诱导公式的推导和记忆;
3.公式二可以将180,270范围内的角的三角函数转化为锐角的三角函数; 4.公式三可以将负角的三角函数转化为正角的三角函数。
七、作业:
第四篇:高中数学《指数函数》教案1 新人教A版必修1
3.1.2指数函数
(二)教学目标:巩固指数函数的概念和性质 教学重点:指数函数的概念和性质 教学过程:
本节课为习题课,可分以下几个方面加以练习: 备选题如下:
1、关于定义域
x(1)求函数f(x)=11的定义域
9(2)求函数y=1x的定义域
51x1(3)函数f(x)=3-x-1的定义域、值域是……()
A.定义域是R,值域是R
B.定义域是R,值域是(0,+∞) C.定义域是R,值域是(-1,+∞) D.以上都不对(4)函数y=1x的定义域是______ 5x11(5)求函数y=ax1的定义域(其中a>0且a≠1)
2、关于值域
(1)当x∈[-2,0]时,函数y=3x+1-2的值域是______(2)求函数y=4x+2x+1+1的值域.(3)已知函数y=4x-3·2x+3的值域为[7,43],试确定x的取值范围.(4).函数y=3x3x1的值域是() A.(0,+∞)
B.(-∞,1) C.(0,1)
D.(1,+∞)
(5)函数y=0.25x22x12的值域是______,单调递增区间是______.3、关于图像
用心 爱心 专心 1
(1)要得到函数y=8·2-x的图象,只需将函数y=(12)x的图象()
A.向右平移3个单位
B.向左平移3个单位 C.向右平移8个单位
D.向左平移8个单位
(2)函数y=|2x-2|的图象是()
(3)当a≠0时,函数y=ax+b和y=bax的图象只可能是()
(4)当0 B.第二象限 C.第三象限 D.第四象限 (5)若函数y=a2x+b+1(a>0且a≠1,b为实数)的图象恒过定点(1,2),则b=______.(6)已知函数y=(12)|x+2|. ①画出函数的图象; ②由图象指出函数的单调区间并利用定义证明.(7)设a、b均为大于零且不等于1的常数,下列命题不是真命题的是() 用心 爱心 专心 A.y=a的图象与y=a的图象关于y轴对称 B.若y=a的图象和y=b的图象关于y轴对称,则ab=1 C.若a2x-xxx>a22-1,则a>1 ,则a>b D.若a>b 24、关于单调性 (1)若-1 A.5-x<5x<0.5x C.5<5<0.5x-xx B.5x<0.5x<5-x D.0.5<5<5 x-xx(2)下列各不等式中正确的是() A.()3()3()3 252C.()3()3()3 52212121211 B.()3()3()3 225 D.()3()3()3 *** 1211(x+1)(3-x)(3).函数y=(2-1)的单调递增区间是() A.(1,+∞)C.(1,3) B.(-∞,1) D.(-1,1) (4).函数y=()2xxx2为增函数的区间是() (5)函数f(x)=a-3a+2(a>0且a≠1)的最值为______.(6)已知y=(数.(7)比较52x12x12)xx22+1,求其单调区间并说明在每一单调区间上是增函数还是减函与5x22的大小 5、关于奇偶性 (1)已知函数f(x)= m21x2x为奇函数,则m的值等于_____ 11(1)如果82 x2x=4,则x=____ 用心 爱心 专心 3 6阶段检测题: 可以作为课后作业: 1.如果函数y=ax(a>0,a≠1)的图象与函数y=bx(b>0,b≠1)的图象关于y轴对称,则有 A.a>b B.a 3(3x-1)(2x+1) ≥1},则集合M、N的关系是 B.MN D.MN 3.下列说法中,正确的是 ①任取x∈R都有3x>2x ②当a>1时,任取x∈R都有ax>a-x ③y=(3)-x是增函数 ④y=2|x|的最小值为1 ⑤在同一坐标系中,y=2x与y=2-x的图象对称于y轴 A.①②④ C.②③④ B.④⑤ D.①⑤ 4.下列函数中,值域是(0,+∞)的共有 ①y=31 ②y=(A.1个 x1)③y=1()④y=3x B.2个 x11xC.3个 D.4个 5.已知函数f(x)=a1-x(a>0,a≠1),当x>1时恒有f(x)<1,则f(x)在R上是 A.增函数 B.减函数 C.非单调函数 D.以上答案均不对 二、填空题(每小题2分,共10分)6.在同一坐标系下,函数y=ax,y=bx,y=cx,y=dx的图象如下图,则a、b、c、d、1之间从小到大的顺序是__________.用心 爱心 专心 4 7.函数y=ax1的定义域是(-∞,0],则a的取值范围是__________.8.函数y=2x+k-1(a>0,a≠1)的图象不经过第四象限的充要条件是__________.9.若点(2,14)既在函数y=2ax+b的图象上,又在它的反函数的图象上,a=________,b=________.10.已知集合M={x|2x2+x≤(14) x- 2,x∈R},则函数y=2x的值域是__________.三、解答题(共30分)11.(9分)设A=am+a-m,B=an+a-n(m>n>0,a>0且a≠1),判断A,B的大小.12.(10分)已知函数f(x)=a- 22x1(a∈R),求证:对任何a∈R,f(x)为增函数.x1213.(11分)设0≤x≤2,求函数y=42a2xa21的最大值和最小值.课堂练习:(略)小结: 课后作业:(略) 用心 爱心 专心 则 教学准备 1.教学目标 1、知识与技能(1)识记诱导公式. (2)理解和掌握公式的内涵及结构特征,会初步运用诱导公式求三角函数的值,并进行简单三角函数式的化简和证明. 2、过程与方法 (1)通过诱导公式的推导,培养学生的观察力、分析归纳能力,领会数学的归纳转化思想方法. (2)通过诱导公式的推导、分析公式的结构特征,使学生体验和理解从特殊到一般的数学归纳推理思维方式. (3)通过基础训练题组和能力训练题组的练习,提高学生分析问题和解决问题的实践能力. 3、情感态度和价值观 (1)通过诱导公式的推导,培养学生主动探索、勇于发现的科学精神,培养学生的创新意识和创新精神. (2)通过归纳思维的训练,培养学生踏实细致、严谨科学的学习习惯,渗透从特殊到一般、把未知转化为已知的辨证唯物主义思想. 2.教学重点/难点 1、教学重点:诱导公式的推导及应用。 2、教学难点:相关角边的几何对称关系及诱导公式结构特征的认识。 3.教学用具 多媒体 4.标签 三角函数的诱导公式 教学过程 (一)创设问题情景,引导学生观察、联想,导入课题 I 重现已有相关知识,为学习新知识作铺垫。 1、提问:试叙述三角函数定义 2、提问:试写出诱导公式 (一)3、提问:试说出诱导公式的结构特征 4、板书诱导公式 (一)及结构特征: (至此,大多数学生无法再运算,从已有知识导出新问题) 6、引导学生观察演示 (一),并思考下列问题一: 课堂小结 课后习题 板书第五篇:1.3 三角函数的诱导公式 教学设计 教案