第一篇:苏教版六年级数学——分数乘分数
苏教版六年级数学——分数乘分数
[教学内容] 教科书第45-46页的例
4、例5及相应的试一试,完成随后的练一练和练习九第1-5题。[教材分析] 这部分内容先教学分数与分数相乘的计算方法,再通过比较,引导学生把分数与分数相乘的计算方法推及分数与整数相乘,帮助学生形成对分数乘法相对完整的认识。例4先让学生借助直观图形,初步理解的、的的含义;再让学生联系示意图所显示的结果和分数乘法的意义,列出相应的乘法算式,算出两个分数相乘的积,建立分数与分数相乘的计算方法的初步猜想。例5让学生验证猜想,在操作探究中进一步理解分数乘分数的意义,启发学生以直观的方式探索分数乘分数的计算结果。然后组织学生观察例
4、例5中几道题目的计算过程和结果,比较分析,归纳出分数和分数相乘的计算方法。其后,通过填空形式启发学生用分数与分数相乘的计算方法计算整数与分数相乘,把计算方法推及分数与整数相乘,促使学生从整体上把握分数乘法的计算方法,建立合理的认知结构。最后,教材举例介绍了计算分数乘法时更为简单的一种约分方法,简化计算过程。[教学目标]
1、通过例题的直观操作,理解分数与分数相乘的意义,初
第 1 页 步掌握分数乘分数的计算方法。
2、在探究活动中,让学生运用已有知识和经验,主动进行分析、观察、猜想验证、比较、归纳的过程,进一步发展学生初步的演绎推理和合情推理能力。
3、使学生通过学习进一步体会数学知识间的内在联系,感受数学知识和方法的应用价值,提高学好数学的信心。[教学过程]
一、口算,说说分数和整数相乘的方法。4 7 4 12(设计意图:抓住学生的认知起点,为学生进一步学习分数乘法的意义和计算方法作好铺垫。)
二、教学新知
(一)、建立猜想。
1、出示例4的长方形纸,学生观察。
2、依次呈现长方形图,逐步提问。
(1)出示长方形纸的涂色部分。问:涂色部分是这张长方形纸的几分之几?
(2)出示斜线。问:画斜线的部分各占的几分之几? 追问:的、的又各是这个长方形纸的几分之几? 让学生明确:的是,的是。(板书)
3、思考:求的是多少,可以列怎样的算式?求的呢 口答
第 2 页
4、小结:求一个分数的几分之几是多少也可以用乘法计算。
5、完成填空:
6、比一比:
这两个算式与以前的分数乘法有什么不同?(揭示课题)今天我们学习的是分数乘分数。
7、猜想:观察这2个式子,猜猜分数与分数相乘是怎么计算的?
让学生在观察的基础上初步说出自己的猜想。
(设计意图:理解分数与分数相乘的意义,是一个难点,因此在教学中,结合直观图,逐步的引导学生深入理解,在不断的追问、交流中形成完善的分数乘法的意义,获得独特体验,同时建立了初步的计算方法的猜想。)
(二)验证猜想。
谈话:这个猜想很有价值,对不对呢?我们还要举一些例子来验证。
1、出示例5的填空题和长方形图。
2、结合题意提问。
(1)说一说和分别表示的几分之几?(2)你能根据刚才的猜想写出这两个算式的结果吗? 学生完成填空。
3、操作验证:(1)提出要求:请大家先在两个长方形图中分别画斜线表
第 3 页 示的和的,然后观察一下结果和你猜想的得数一样吗?(2)学生操作活动,一生板演,师巡视(3)组织交流,证实猜想是正确的。
(三)比较归纳。
1、引导学生仔细观察例
4、例5四道算式:
提问:在这些算式中,你发现积的分子、分母与两个因数的分子、分母各有什么关系?
2、在学生独立思考基础上,再在小组里交流。
3、在交流中归纳总结方法;分数和分数相乘,用分子相乘的积作分子,分母相乘的积作的分母。
(设计意图:计算方法的得出是学生经历了猜想、验证、观察比较、概括归纳等一系列的数学思维活动后得出的,教师在活动中适时引导,学生则主动建构,在这个过程中学生的自主学习能力得到了发展,也体验到了数学学习的乐趣。)
(四)试一试
1、学生尝试解答,指名板演,核对时说一说怎样想的?
2、明确:计算过程中,能约分的,要先约分再算出结果。
三、方法推广。
1、出示:请用分数和分数相乘的方法计算下面各题 3== 4==
2、提示:整数都可以看成分母是1的分数。
3、学生尝试解答完成填空。指名板演。
第 4 页
4、追问:分数与分数相乘的计算方法适用于分数与整数相乘吗?为什么? 2 1
5、说明:分数乘法也可以像下面的这样计算,教师示范: 3 2 = 4=
6、小结:今后计算分数乘法时,照上面的样子去做,而不必把整数改写成分母是1的分数,这样比较简便。(设计意图:在前面探究的基础上,提供空间和时间让学生自主探究,培养了学生运用已有知识和经验解决问题的能力,教师再加以介绍点拨,促使学生从整体上把握分数乘法的计算方法。)
四、巩固练习。
1、完成练一练
学生独立完成,四名学生板演。
交流时选择部分题目,让学生说一说计算过程。注意书写格式。
2、完成练习九第1题
先让学生独立完成后,再组织交流。使学生明白,要求小时耕地公顷,就是求 公顷的是多少。
第 5 页
3、完成练习九第3题
学生独立判断,分析错误原因,并进行订正。
4、完成练习九第4题
学生先直接在书上写出得数,再引导学生比较每组的两道题,说说计算的过程有什么相同和不同的地方。
(设计意图:由学生自己探索得到的知识,最希望得到应用。利用好教材提供的练一练、改错比一比等多种形式的练习,让学生在练习中进一步巩固新知,并学会反思,养成检验的好习惯。)
五、总结
本节课学习了分数乘分数,你有什么收获?我们是怎么得到这个计算方法的?
(设计意图:必要的学习小结可以帮助学生养成自我反思的习惯,提高他们自我梳理知识的能力,提升学习方法。)
六、课堂作业
练习九第2题、第5题
第 6 页
第二篇:六年级数学 分数乘整数教案
分数乘整数
教学目标
使学生理解分数乘整数的意义,掌握分数乘整数的计算法则.
教学重点
使学生理解分数乘整数的意义,掌握分数乘整数的计算法则.
教学难点
引导学生总结分数乘整数的计算法则.
教学过程
一、设疑激趣
(一)下面各题怎样列式?你是怎样想的?
5个12是多少?10个23是多少?25个70是多少?
(概括:整数乘法表示求几个相同加数的和的简便运算)
(二)计算下面各题,说说怎样算?
+ + =
+ + =
说一说,这两道题目有什么区别和联系?第二小题还有什么更简便的方法吗?请你自己试一试.
同学之间交流想法: + + = = 3× ×3=
×3这个算式表示什么?为什么可以这样计算?
教师板书: + + = ×3=
二、自主探索
(一)出示例1 小新、爸爸、妈妈一起吃一块蛋糕,每人吃 块,3人一共吃多少块?
1.读题,说说 块是什么意思?
2.根据已有的知识经验,自己列式计算
三、交流、质疑
(一)学生汇报,并说一说你是怎样想的?
方法1: + + = = =(块)
方法2: ×3= + + = = = =(块)
(二)比较这两种方法,有什么联系和区别?
联系:两种方法的结果是一样的.
区别:一种方法是加法,另一种方法是乘法.
教师板书: + + = ×3 2
(三)为什么可以用乘法计算?
加法表示3个 相加,因为加数相同,写成乘法更简便.
(四)×3表示什么?怎样计算?
表示3个 的和是多少?
+ + = = = =,用分子2乘3的积做分子,分母不变.
(五)提示:为计算方便,能约分的要先约分,然后再乘.
四、归纳、概括:
(一)结合 = ×3= 和 + + = ×3=,说一说一个分数乘整数表示什么?
求几个相同加数的和的简便运算.
(二)分数乘整数怎样计算?
用分子和分母相乘的积做分子,分母不变
五、巩固、发展
(一)巩固意义
1.改写算式
+ + + =()×()
+ + + + + + + =()×()
2.只列式不计算:3个 是多少? 5个 是多少?
(二)巩固法则
1.计算(说一说怎样算)
×4
×6
×21
×4
×8
思考:为什么先约分再相乘比较简便?
2.应用题
(1)一个正方体的礼品盒,底面积是平方米,要想将这个礼品盒包装起来,至
少需要多少包装纸?
(2)美术馆要进行美术展览,有5张画是边长 米的正方形的,如果为这几幅画
配上镜框,需要木条多少米?
(三)对比练习
1.一条路,每天修 千米,4天修多少千米?
2.一条路,每天修全路的,4天修全路的几分之几?
六、课后作业
(一)的3倍是多少? 的10倍是多少?
(二)一个正方形的边长是 米,它的周长是多少米?
(三)一种大豆每千克约含油 千克,100千克大豆约含油多少千克?1吨大豆呢?
七、板书设计
分数乘整数
分数乘整数,用分数的分子和整数相乘的积作分子,分母不变.
例1.小新、爸爸、妈妈一起吃一块蛋糕,每人吃 块,3人一共吃多少块?
用加法算: + + = = =(块)
用乘法算: ×3= + + = = = =(块)
答:3人一共吃了 块.
分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算.
教学设计点评
1、依据知识的迁移,进行很必要的铺垫,利用知识间的联系,精心设计复习题,为教学重点服务服务,使学生顺利掌握“分数乘整数的意义与整数乘法意义相同”。同时复习分数加法,为推导公式进行铺垫。
2、重视法则推导过程,应用转化思想,启发学生把新知识转化为已学过的旧知识。进一步了解知识之间的联系,适时点拨,激发学生主动探索新知识。教师有意识的让学生参与法则推导,让学生先尝试、观察、讨论、总结,而后再概括法则,使学生学得生动,活泼,发挥小组的团结协作作用。
第三篇:六年级数学分数乘分数教学反思
六年级数学分数乘分数教学反思
六年级数学分数乘分数教学反思1
《分数乘分数》的教学重点是巩固理解分数乘法的意义,探索分数乘分数的计算算理与法则。
在教学实践中继续采用“数形结合”的数学方法,帮助学生达成以上两个教学目标。对于今天的“探究活动”没有直接放手,这是因为学生对“求一个数的几分之几是多少”的分数乘法意义的理解还不够深刻,因此在整个的教学过程分为三个层次:
一、引导学生通过用图形表示分数的意义,再用算式表示图形,深化“求一个数的几分之几是多少”的分数乘法意义,感知分数乘分数的计算过程。
二、以1/5*1/4为例,让学生先解释算式的意义,然后用图形表示这个意义,最后再根据图形表示出算式的计算过程,这样做的目的是通过“以形论数”和“以数表形”的过程让学生巩固分数乘法的意义,体会分数乘分数的计算过程。
三、学生运用数形结合的方法独立完成教材中的“试一试”,进一步达成以上目标,并为总结分数乘分数的计算积累认知。可以说整体教学的效果还好。
通过今天的课,我对数形结合的思想有了更进一步的理解。由于分数乘法的意义和计算法则的道理比较抽象,学生理解起来不是很容易,所以利用图形使抽象的问题直观化,在本单元教学中就显得特别重要了。纵观教材,树形结合思想的渗透也有不同的层次,数形结合能帮助学生从具体问题中抽象出数学问题;在本学期的分数乘分数中是利用直观的'几何图形,帮助学生理解分数乘分数的计算道理;接下来的分数乘法应用中,我们还将利用线段图帮助学生理解分数乘法应用的问题;使用的图形越来越简约体现了教材对数形结合思想渗透的一个过程。
数形结合的过程不是简单的抽象变为直观的过程,而是抽象变为直观之后,在从直观变为抽象的一个过程,也就是要将“以形论数”和“以数表形”两个方面有机的结合起来。只有完整的让学生经历数与形之间的“互动”,才能使他们感知“数形结合”,才能使他们能在解决问题时自觉地应用“数形结合”的方法。
六年级数学分数乘分数教学反思2
不久前,在教学分数乘分数时,有一些反思,现整理如下:
}案例一
浙江版教材是这样安排和处理的:一台饲料粉碎机,每小时粉碎饲料1/2吨,3/4小时粉碎饲料多少吨?引导学生想:3/4小时粉碎饲料多少吨,就是求1/2吨的3/4是多少,算式是1/23/4。通过数形结合的方法引导学生观察和思考:1小时粉碎饲料1/2吨,1/4小时粉碎1/2吨的1/4,就是把1/2吨平均分成4份,取中的1份,也就是把1/2吨平均分成(24)份,取其中的1份。3/4小时粉碎1/2吨的3/4,就是取3个1/ (24),结果是 ,最后师生归纳分数乘以分数的计算法则。
【反思一】
这样的安排侧重于意义的学习,但由于例题的安排缺乏一定的问题情境和生活情境,比较枯燥和抽象,很难调动学生的求知欲望。因为学生的学习不是简单地接受知识,而是在体验和创造中学习。我们的数学教学应该从学生的生活经验出发,从学生已有的数学知识结构出发,基于这样的想法,在实际教学中,我进行这样的处理:
〖案例二
先创设问题情境地,分数单位乘以分数单位。课件出示一个边长为1米的正方形,面积为1平方米。然后,在正方形一角又出示一个小长方形,请大家估计一下,图中的阴影部分大约是多少平方米,用分数表示。(学生猜测、估计)。课件出示背景格子图,学生很容易就看出来整个正方形被平均分成了20份,而这个阴影部分恰好是1/20平方米;这个格子图把正方形的边长分别平均分成了4份和5份,即:这个长方形阴影的长和宽分别是1/4米和1/5米。学生已经知道长方形的面积是长乘宽,那么1/51/4和1/20平方米之间有什么联系?你有什么想法?指导学生进行交流
【反思二】
教学情境是一种特殊的教学环境,是教师为了支持学生的学习,根据教学目标和教学内容有目的地创设的教学环境。建构主义学习理论认为,学习是学生主动的建构活动,学习应与一定的情境相联系,在实际情境下进行学习,可以使学生利用原有知识和经验同化当前要学习的新知识。这样获取的新知识,不但便于保持,而且容易掌握迁移到新的情境中去。创设教学情境,不仅可以使学生容易掌握数学知识和技能,而且可以使学生更好地体验教学内容中的情感,使原来枯燥的、抽象的数学知识变得生动形象、饶有兴趣。从现代教学论的观点看,数学教师的主要任务就是为学生设计学习的情境,提供全面、清晰的有关信息,引导学生在教师创设的教学情境中,自己开动脑筋进行学习,掌握数学知识。
孔企平说,我们在课堂里讲的数学学科与数学家研究的数学是有区别的。数学家研究的数学学科是从概念、公理、定理出发的以逻辑体系为基础的数学,而我们给学生讲的数学则更多地建立在学生经验的基础上,是这方面生活经验的升华。所以,这样的设计充分考虑到学生的已有的知识经验,
但这样的设计显然对算理的学习不足,学习知识的过程中学生的体验也是不足的。另外,所有这一切,包括图形和数据,都是教师事先准备好的,学生的所有猜想与活动都是在老师所划定的圈子里进行,虽然我精心为学生创设了一个探索的情境,但是,学生还是被老师牵着鼻子走。
〖案例三
活动与问题:1、每人拿出一张长方形纸,折一折,表示出它的1/□,涂上颜色;再把这张纸的1/□看作单位1,表示出它的1/□,也就是1/□的1/□,把折出的1/□涂上然后把这张长方形展开看一看,涂色部分是这张纸的几分之几? 2、你能把刚才折纸的操作活动用算式表示出来吗?3、猜想与验证:涂两种颜色的阴影是整个长方形的几分之几?打开折纸并验证。4、把学生的算式和结果尽可能多的都写在白板上。5、小组讨论并发现规律。
【反思三】
《国家数学课程标准》中强调:数学教学活动必须建立在学生的认知发展水平和已有的'知识经验基础之上。教师应激发学生的学习积极性,向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经验。学生是数学学习的主人,教师是数学学习的组织者、引导者与合作者。 如何把一些抽象的数学概念变为小学生看得见、摸得着、理解得了的数学事实?这是每个数学教师在课堂教学中必须很好考虑的问题。许多成功的案例说明,让小学生动手操作是提高数学学习的有效策略之一,因为这样做既符合儿童的生理、心理特征,可以吸引他们把注意力集中到有意识的教学活动中来;又能使他们在大量的感性材料的基础上,对材料进行整理,找出有规律的现象,逐步抽象、概括,获得数学概念和知识,使抽象问题具体化。
基于这样的认识,在实践中设计本课时,有以下三个想法:
1、开放式的教学设计。把一张长方形的纸折成1/□,可千万不要轻视这个小小的□,它给学生的很大的空间和权利。我们常说,学生是学习的主人;这个□就是在把学习的权利还给学生;
2、让学生经历猜想与验证的过程,并在这个过程中学会研究数学问题的方法,有了大胆的猜想才会更有继续研究的欲望。
3、在亲身活动中感受数学。美国华盛顿儿童博物馆的墙壁上张贴着一句格言:我听见了,就忘记了;我看见了,就知道了;而我做了,就理解了。案例三的设计重视学生的动手操作,把较复杂的分数乘分数的计算方法,用折纸这一直观动作进行反映,有利于学生感受和理解计算方法。
现代教学论认为,每位学生都有潜力,教师的作用仅仅是激发这种潜力。因此,在小学数学课堂教学中,教师就应力求凸显学生生命的主体地位,创设一定的情境,激发其内在的发展潜力,放手让学生参与学习活动。让他们经历知识的发现、问题的思考、规律的寻找、结论的概括、疑难的质问乃至知识结构的建构等一系列的数学活动过程,使短短的一节课,时时充满生命活力。这是学生课堂生命活动得以充分展现的关键。作为教师,在设计教学活动时,要尽可能给他们提供动手操作的机会。但数学课的操作毕竟是学习意义上的操作,是一种特殊的动手活动,在组织操作活动时必须注意以下几点:一是要有明确的操作目的,切忌为了操作而操作,使活动本身流于形式。二是要给学生留有足够的思维空间。学具操作要注意适时、适量和适度。适时就是要注意最佳时机,当学生想知而不知,似懂而非懂时,用学具摆一摆,就会起到化难为易的效果。适量是指要控制使用的次数,活动的时间,并不是搞得越多越好。适度是指当学生的感性认识已积累到一定程度时,就应引导学生在丰富的表象的基础上及时抽象概括,掌握火候,使感性认识逐步上升为理性认识。
六年级数学分数乘分数教学反思3
[片段一]
师: 1/41/2你们能不能利用以前学过的知识计算出它的答案呢?
生:能。
师:请同学们听清要求,先独立思考,再与你的同桌交流你是怎么想的?
生:(尝试计算答案,探究算理)
师:(巡视,指导)
师:许多组想出了很多办法,我们一起来交流一下。说说你们是怎么想的?(据学生汇报:化小数板书;折纸请他生再演示;汇报算式先放一放,最后请学生说说理由)
组1: 1/4=0.25,1/2=0.5,所以0.250.5=0.125=1/8,我们认为答案是1/8。
组2:可以把一张纸平均分成4份,再把其中的一份再平均分成2份取其中的一份,这样一共把这张纸平均分成了8份,取了其中的一份,所以是1/8。
(师:这种方法你听懂了吗?这个8是怎么来的?
组3:按他的想法来说,是折出来的,先平均分成4份,再把其中的一份再平均分成2份,实际上是把这长方形分成了8份。)
组4:(边说边画):我们用的是线段的方法,画一条线段作为单位1,把它平均分成4份,取其中一份,再把这一份平均分成2份取一份,就是把这条线段平均分成了8份,取了其中的一份。
师:以1/41/2=11/42=1/8为例,你为什么能用42呢?(课件呈现)
[片段二]
师:像1/41/2,大家想出了很多办法,如果工作1/3小时可以铺设这块地面的几分之几?3/4小时呢?现在你能不能解决了?谁来汇报算式?(课件呈现)。
师:听清要求,我们分工一下,1、2组研究第一个算式,3、4组研究第二个算式,用你喜欢的方法独立思考一下。
生:选择探究算理及其结果。
师:巡视,指导。
师:许多组想出了很多办法,我们一起来交流一下。我们先请选择第一个问题的同学汇报:说说你们是怎么想的?
生:汇报。
师:这题你们为什么没有化小数去解决。
生:不能化有限小数。
师:所以化小数去解决是不是对所有的分数乘分数都适用呢?(生:不能)所以化小数去解决分数乘分数有一定的局限性。
师:我们再请解决第二个问题的同学汇报:说说你们是怎么想的?
[片段三]
师:从刚才的推算中,我们已经得出了1/41/2=1/8、1/41/3=1/12、1/43/4=3/16,是不是我们以后遇到这样的题目都需要这样推算呢?(生:不是)
师:那请你们仔细观察一下,分数乘分数我们应该怎样计算呢?
同桌讨论,汇报:
(板书)分数乘分数,用分子相乘的`积做积的分子,分母相乘的积做积的分母。
[反思]
1.猜想验证归纳的探究思路是否需要?
在本节课的试教中,我采用了猜想验证归纳的探究思路来进行教学。在课堂中,我发现学生猜测1/41/2,他们猜测的结果都是1/8。在验证环节学生纯粹停留在如何得出算式结果上,导致学生的思路大大受到限制。而在第二次教学时。我采用了计算汇报方法归纳的思路进行教学。我发现学生在课堂中更为积极主动,学生在汇报方法时也体现了层次性。学生群体一:单纯从如何得出答案入手,但正所谓知其然而不知其所以然;学生群体二:能初步从自己的探究中知道应该怎样算。
综上所述,猜想验证归纳的探究思路的确在数学教学中起了相当大的作用,但对于部分内容的探究还是不适合的。
2.教师该如何从学生的发言中抓准本质?
课堂活跃了,学生发言就大胆了,自然而然课堂上各种不可预设的回答就出现了。作为教师要善于调控课堂节奏、善于引导(归纳)学生发言,这样才不至于让有价值的问题流失,不至于让课堂上学生的回答变的无人理睬。
如:我在试教中,学生汇报了1/41/2=(14)(12)=18=1/8,我一开始并没有理解这位同学的这样做的理由。我马上问:有谁明白这样做的理由吗?为自己尽量争取尽可能多的时间。当然,即使我明白这样做的理由,也应让学生多思考、多说说,这样才能有效的培养学生的参与度。
综上所述,我觉得善于从学生的发言中抓准本质不是一朝一夕就能形成,它必须从自身漫长的经历中去体验、感悟才能变得收放自如。
六年级数学分数乘分数教学反思4
自从“对话”理念走进我们的阅读课堂,无论是公开课还是平时的上课,对话已成为广大教师关注的教学形态。可是,常常见学生往往只读了一两遍课文,就把书放在一边,开始师生对话或者生生对话了。这时学生对于课文的生字词尚未读准,句子尚未读通,对文章还没有初步的感知,拿什么来进行对话呢?
即使有少数学生,发表见解,见解也不深刻。因此,也常常见课堂上出现冷场的现象。究其原因,是对话缺乏基础,要想实现真正意义上的对话,必须铺垫对话的基础.师生对话的基础是教师与学生分别认真地潜心地与文本进行对话.
1、教师与文本对话
备课时,教师就应该认真研读教材,潜心钻研,独立思考。教师要想与文本充分对话,应有以下四个层次的要求
①教师与作者的对话
教师与文本对话,首先是与作者的间接对话。作者是躲在文本背后不出面的,以文本的书面文字为其代眼。培根说过:“读一本好书,就是在和高尚的人谈话。”因此,教师应善于与作者对话,用心去感受理解文本的价值意义,体悟作者的思想感情,正确把握文本的人文精神。要通过字里行间感受作者情感跳动的脉搏,并且产生情感的共鸣。教师只有被文本感动了,有了真真切切的感受,教学时才能以真情感动学生。
②教师与文本对话
了解了作者的写作意图,还要重视文本语言本身的特点,发现学生语言发展的生长点。学生的语言发展有赖文本典范性语言的吸纳、积累、内化和运用。教师只有先于学生对文本的语言有一番“虚心涵咏,切己体察”,对文本中的每一句话,每一个标点符号都能做到心中有数,师生对话时才能恰当引导,画龙点睛。
③教师与编者的对话
如果说教师与文本对话是为了了解文本所传递的信息的话,那么,教师与编者的对话则是为了把握师生对话的方向。文本是根据课标精神精心选编的。每一课有每一课的要求,每一单元有每一单元的重点。那些躲在背后的编者选编文本的.意图是什么?需要教师去领悟、去把握。因此,教师应认真研读教参,领悟编者的意图,把握教学的重难点。这样教学目标才不会有失偏颇,教学过程才不会滑边。师生对话时才能做到心中有数,指点有方。
④教师与时空的对话
文本的内涵是极其丰富的。有时候,教师对文本的理解不一定深刻、全面。这就需要教师去阅读大量的与文本有关的文章,帮助自己了解文本的写作背景,人文内涵,思想意识等以及作者所处的社会情况、自然情况,提高自己对文本的理解。这种超越时空的对话,其实是把自己原来的“一桶水”变成“一条奔腾不息的长江”。俗话说“台上一分钟,台下十年功”。只有这样才能使自己对文本的理解更深刻更全面,才能逐渐提高自己的文化品位和修养,也才能为师生对话奠定坚实的基础。
2、学生与文本的对话
对话是平等的相互交流的过程。在学生生字读不准、句子读不通的情况下,谈什么平等交流呢?因此对话也应建立在学生与文本的充分对话的基础上。首先走近文本,读准字音,读通句子,了解课文的大概内容,初步感知文本,然后才能与文本进一步对话。与作者对话,听听文本讲了什么,是怎么讲的。即站在与作者平等的地位去感受与理解作者的思想感情,去体会作者是怎样诉诸语言文字的。这才是经过消化吸收以后所形成的新认知,是生命自身获得的感悟,是蚕食桑而吐的丝,蜂采花而酿的蜜。
但是学生对文本的理解毕竟是浅显的,因为,小学语文篇幅虽然短小,但大多是经典性语言凝炼精美,蕴含着丰富的人文内涵。学生要去深刻理解,需要融入自己的生活经验和情感积淀,这需要时间,需要过程。因此,学生与文本对话必须充分。
六年级数学分数乘分数教学反思5
今天教学了分数乘分数(例4和例5),在课前研究教材时就觉得不太好理解,因为例题中都有两个单位1, 比如画斜线的1份占1/2的1/4,此时的单位1是1/2,但是对于整个长方形来说是1/8,此时的单位1是一个长方形。
后面的1/2的3/4,以及对例5的两个算式的理解都是同出一辙。但要注意两者教学时的区别:例4是让学生从图中猜想(感知)出两个分数乘分数的结果。例5是让学生先猜算结果,再用图来验证。二者在教学中的顺序是相反的,但其目的都是让学生从图形直观感知进而理会出分数乘分数的计算方法。
但是从学生的反馈来看,好像不能够充分理解,确实是太抽象了,虽然有图的'辅助。分开来看都能理解斜线部分是1/2的1/4,又是这张纸的1/8。但是为什么1/2的1/4就是1/8呢?这其间可是隐含着两个不同的单位1啊。学生能转得过来吗?单靠猜想感知行吗?教学时我是照书按步就班的教的,但有不少学生好像钻到云雾里去了。
为什么呢?怎么办呢?
原因很简单太抽象了。
办法是有的化抽象为形象:我们来看看练习九的第1题,与例题的最大的区别在于例题是在数之间思考,练习中的第1题是在数量之间的思考。不要小瞧这一点变化,借助数量来理解就比例题数之间的理解要容易得多。
本课的教学目的是教学分数乘分数的计算方法,前面的几个例题都是借助具体的数量让学生理解算理的,而分数乘分数比前面的几个例题都复杂些,但是却摆脱数量而抽象成数,学生的思维难度陡增。为什么不借助数量呢?如果把例题转换成像练习九第1题这样的情境,学生会很容易列式,也比较容易理解算理。在此基础之上,再抽象成数,如例题式样的,学生学起来会好得多。]
六年级数学分数乘分数教学反思6
《分数乘分数》的教学重点是巩固理解分数乘法的意义,探索分数乘分数的计算算理与法则。
在教学实践中继续采用“数形结合”的数学方法,帮助学生达成以上两个教学目标。对于今天的“探究活动”没有直接放手,这是因为学生对“求一个数的几分之几是多少”的分数乘法意义的理解还不够深刻,因此在整个的教学过程分为三个层次:
一、引导学生通过用图形表示分数的意义,再用算式表示图形,深化“求一个数的几分之几是多少”的分数乘法意义,感知分数乘分数的.计算过程。
二、以1/5*1/4为例,让学生先解释算式的意义,然后用图形表示这个意义,最后再根据图形表示出算式的计算过程,这样做的目的是通过“以形论数”和“以数表形”的过程让学生巩固分数乘法的意义,体会分数乘分数的计算过程。
三、学生运用数形结合的方法独立完成教材中的“试一试”,进一步达成以上目标,并为总结分数乘分数的计算积累认知。可以说整体教学的效果还好。
通过今天的课,我对数形结合的思想有了更进一步的理解。由于分数乘法的意义和计算法则的道理比较抽象,学生理解起来不是很容易,所以利用图形使抽象的问题直观化,在本单元教学中就显得特别重要了。纵观教材,树形结合思想的渗透也有不同的层次,数形结合能帮助学生从具体问题中抽象出数学问题;在本学期的分数乘分数中是利用直观的几何图形,帮助学生理解分数乘分数的计算道理;接下来的分数乘法应用中,我们还将利用线段图帮助学生理解分数乘法应用的问题;使用的图形越来越简约体现了教材对数形结合思想渗透的一个过程。
数形结合的过程不是简单的抽象变为直观的过程,而是抽象变为直观之后,在从直观变为抽象的一个过程,也就是要将“以形论数”和“以数表形”两个方面有机的结合起来。只有完整的让学生经历数与形之间的“互动”,才能使他们感知“数形结合”,才能使他们能在解决问题时自觉地应用“数形结合”的方法。
六年级数学分数乘分数教学反思7
分数乘分数的意义是分数乘整数意义的扩展,记住分数乘法的计算法则并不困难,但让学生理解算理难度就比较大了。所以这部分内容是本节课教学的重点,也是难点。教学中我主要是突出了实际操作和图形语言,使学生在实际操作中,直观体会分数乘分数的计算并能运用自己的语言进行总结。
首先在复习中,我先让学生理解分数乘整数的意义及计算方法,然后通过直观演示,依次折出长方形纸条的1/2,再取1/2的1/4和3/4,并让学生用乘法算式来表示这个过程,初步感受分数乘分数的意义和计算方法,并用语言概括,初步渗透了无限的思想;然后让学生猜想1/2×1/4=?由于学生已有了分数乘整数的基础,所以不难猜出:1/2×1/4=1/8,接着就让学生在实际操作中,借助图形语言,体会分数乘分数的意义,感受分数乘分数为什么是用“分子乘分子,分母乘分母”的方法,学生在折纸的过程中,体验到结果都相同,再借助教材中“讨论”的问题,鼓励学生讨论算式与图形之间的关系,通过类似几道题的“折一折、想一想、算一算”,让学生运用自己的语言小结分数乘分数的`方法。
教学中充分借助学生已有的知识基础,通过观察、实验、操作、推理等活动,通过例题的直观操作,通过知识的迁移帮助学生理解了分数乘分数的意义,初步掌握了分数乘分数的计算方法。在探究活动中,让学生主动进行分析、观察、猜想验证、比较、归纳的过程,进一步发展学生初步的演绎推理和合情。
六年级数学分数乘分数教学反思8
分数乘法这一单元内容包括:分数乘法的意义和计算方法以及分数乘法的应用。内容不仅多并且较抽象,学生理解较难。
分数乘法的意义在整数乘法的基础上有了进一步的拓展和延伸。特别是对一个数乘分数的理解上是这一单元的重点和难点。利用图形使抽象的问题直观化,在本单元教学中就显得重要了。
数量关系的理解,要紧紧依托于图像的直观性,这就是我们通常理解的图形与数量的结合。变抽象为直观,用直观的图示帮助学生理解抽象的文字表述,再逐步使学生脱离直观上升到抽象语句的规律性理解和掌握。例如在教学一个数乘分数的意义时,就要引导学生用图示的方式方法理解把一个数平均分成了几份,表示这样的几份,就是求这个数的几分之几是多少,反之求一个数的几分之几是多少,直接用乘法来列式即可。同时引导学生直观的感知到了积小于被乘数的道理。下一步教学计算时更是要借助图示来帮助理解等于几的道理。用图形表征让学生充分观察理解分数乘分数的这一比较复杂的计算过程。引导归纳得到一个规律性的结论:分子相乘做积的分子,分母相乘做积的分母,能约分的要先约分才比较简便。
分数乘法的应用,则要用画线段图的方式来帮助学生建立数量与分数之间的对应关系。进一步使学生理解和明确分数乘法的应用就是对分数乘法意义的拓展和深化。
数学的理解是离不开图形的辅助的'。图形和数量是数学学习的一对相互依附的对象。要学好数学就要教师帮助学生建立用一定的符号、图形来翻译抽象的数学内涵,变深邃为简约,更有利于学生的深刻理解和掌握,为进一步的学习数学知识积累数学活动的经验吧。
在教学《分数乘法》时,我重点让学生掌握分数乘法的计算方法,坚持每天进行口算训练。对于求一个数的几分之几是多少的应用题,能联系一个数乘分数的意义进行教学,注重加强分析题目的数量关系,明确把谁看作单位“1”,但也忽略了单位化聚的方法复习以及一些重点评讲。以后应从以下几点来加强日常教学。
1、在教学中多进行题组训练,突破难点,让学生充分感知提炼方法。
2、教学中要注意用线段图表示题目的条件和问题,这有利于学生弄清以谁为标准,让学生用画图的方式强化理解一个分数的几分之几用乘法计算。
3、帮助学生理解“一个数的几分之几”与“一个数占另一个数的几分之几”的不同。
4、加强单位化聚方法的复习,如?时=( )分吨=( )千克。
第四篇:六年级数学分数乘整数练习题
1、分数乘整数
(一)1、分数乘整数
(一)一、细心填写:
1、2+2+2=()×()=()777
1+1+1+1=()×()=()=()666
555552、++++……+=()×()=()=()121212121
2个 64、8平方米=()平方分米25
3时=()分
45千米=()米
算式:
5、()与整数乘法的意义相同。
二、准确计算:
234×5×6×5131911
155×10×8×12 6126
2715个的和是多少?的9倍是多少? 518
三、解决问题:
1、一个正方形边长
2、一种胡麻每千克约含油
3、一批大米,每天吃去
5分米,它的周长多少分米? 128千克,1吨胡麻约含油多少千克? 251吨,3天一共吃去多少吨? 6
第五篇:分数乘分数
分数乘分数
教学内容:
苏教版小学数学六年级上册,教科书第45页的例
4、例5,第46页“试一试”、“练一练”,练习九的第1~3题。教学目标:
1、使学生知道分数乘分数的计算法则也适用于整数和分数相乘,把分数乘法统一成一个法则。进一步巩固分数乘法的计算法则。
2、使学生经历解决问题的探索过程,进一步培养观察、比较、分析、推理的能力,体验数学学习的乐趣。
教学重点:分数乘分数的计算法则。教学难点:学生经历解决问题的探索过程。教学用具:小黑板 教学过程:
一、复习
口算并说出每个算式表示的意义 12×1/2 3/4×8 这是我们上节课学习的分数与整数相乘的内容,今天我们来学习分数与分数相乘的知识。
二、探索分数乘分数的计算方法
师:同学们,咱们都知道“把一张纸平均分成2份,1份就是这张纸的 ”,请看屏幕!
1、(小黑板出示)例4 下面图中的涂色部分都表示一张纸的,画斜线的部分各占的几分之几?各是这张纸的几分之几?
请同学们默读题目,仔细观察上图:把一张纸平均分成2份,涂色部分表示一张纸的。(课件出示)
左图画斜线的部分占 1/2的1/4,右图画斜线的部分占 1/2的3/4。
2、师随手板书1/2 的1/4、1/2 的3/4 各是这张纸的几分之几?问:你能列算式并看图填写出结果吗?
我们知道求一个数的几分之几是多少,用乘法计算,那么求“ 1/2的1/4 是多少”和“求 1/2的3/4 是多少”,同样用乘法计算。请大家打开书P45,在书上填一填,试着算一算。
找一生说算式师板书。让学生说一说,这样列的乘法算式你是如何计算的,又是怎么想的?
3、学生看书例5,在图中画斜线表示计算结果,再填空。
请同学们观察图,涂色部分用分数来表示,是把这个长方形平均分成3份,涂色部分占其中的2份。在左图画斜线,画斜线的部分占2/3 的1/5 ;在右图画斜线,画斜线的部分占2/3 的4/5。
想一想: 2/3的1/5 和2/3 的4/5 各是这个长方形的几分之几?会算的同学可以先算一算,再在图中画一画斜线,看一看自己这样算的对不对;也可以先在图中画一画斜线,看一看结果是多少,然后想一想应该怎样计算。
集体订正
4、比较例
4、例5
观察例
4、例5,你发现积的分子、分母与两个因数的分子、分母各有什么关系?在小组里交流。
通过观察比较几道算式的因数和积,每个积的分子、分母与它们两个因数的分子、分母之间的关系,我们可以发现分数和分数相乘的计算方法是:
板书:分数和分数相乘,用分子相乘的积作分子,分母相乘的积作分母。
注意:在计算过程中,能约分的要先约分,再乘。板书 :2/3×9/4 师生共同做题,要有约分的过程
5、试一试
师读题,你能先约分再计算吗?试着算一算。
2生板演,其余学生做在书上,集体订正
师强调:计算时,用分母4和分子2约分;计算时,用分母9和分子3约分,分母4和分子8约分。请同学们注意:计算分数乘法时,能约分的,要先约分再计算。
三、统一分数乘法的计算方法
1、师生看书:请用分数和分数相乘的方法计算下面各题。
同学们,整数都可以看成分母是1的分数。请大家独立完成计算,想一想:分数和分数相乘的计算方法适用于分数和整数相乘吗?为什么?
集体订正
师问:分数和分数相乘的计算方法适用于分数和整数相乘吗?为什么?小组交流,汇报
师小结:分数和分数相乘的方法同样适用于分数和整数相乘。因为整数都可以看成分母是1的分数,所以分数和整数相乘也可以看成分数和分数相乘;不过,在实际计算时,可以直接按此前学过的方法计算分数和整数相乘,而不必把整数改写成分母是1的分数,这样比较简便。
2、分数乘法也可以像下面这样计算。
分数乘法可以“先约分,再相乘”,大家今后计算分数乘法时,可以照样子去做。
这节课我们学的内容你会了吗?比一比,看谁学的好!
四、巩固练习
1、第46页的 “练一练”
4个学生板演,其余生做题。集体订正。
2、请独立完成下面两道题。
做书上第48页的第1题,要求学生要先在图中画一画,再列式计算。
一台拖拉机每小时耕地 1/2公顷,1/3小时耕地多少公顷? 2/3小时呢?先在图中表示出来,再列式计算。
师:解答这一题,题中要求 1/3小时(2/3小时)各耕地的公顷数,就是求1/2公顷的1/3(2/3)各是多少。要先在图中表示出 公顷的 和 公顷的,再列式计算。
3、做书上第48页的第3题,请同学们认真思考,独立完成。打开书P48看第3题,就写在书上。
第3题的第⑴题5×5/6,用整数5与分子5约分是错误的。整数可以看成
分母是1的分数,因此整数只能与分数的分母约分,而不能与分子约分;第⑵题8/21 ×7/24,用分母21和分子7约分,分母24和分子8约分,约分之后分母相乘的结果是9,因此得数是,而不是9。
五、全课小结
通过这节课的学习,你有什么收获?还有什么疑惑?
六、作业 练习九的第2题。