第一篇:八年级数学上册第13章《轴对称》教学设计2(新版)新人教版
13.1.1《轴对称》
一、授课内容的数学本质与教学目标定位
本节课是人教版八年级数学上册第13章《轴对称》中第一节的内容.轴对称是现实生活中应用较广泛的一种现象,是密切数学与现实联系的重要内容,是利用轴对称设计图案、用坐标表示轴对称等知识的基础,也是研究线段、角、等腰三角形、矩形、菱形、正多边形、圆等图形性质的基础.其中线段垂直平分线是研究轴对称图形及轴对称的两个图形的关键直线.本节从观察生活中的轴对称现象出发,让学生动手操作——剪圣诞树,结合生活中大量平面图形的实例,抽象概括出轴对称图形的本质特征.又让学生把圣诞树剪成两个图形,粘贴在白纸板上,使它们沿着折痕能完全重合,结合生活中轴对称的实例对比得出两个图形成轴对称的概念.在此基础上,利用学生粘贴的实物图形及从中抽象的三角形、四边形来探究成轴对称的两个图形的对称轴与对应点所连线段之间的关系,进而得出轴对称的性质.类比其过程,得到轴对称图形的性质.整个过程体现由特殊到一般、类比的数学思想.基于以上分析,我确定本节课的四维目标:
1、知识技能:让学生了解轴对称图形和两个图形成轴对称的概念,知道轴对称图形和两个图形成轴对称的区别和联系,了解线段垂直平分线的概念,理解轴对称和轴对称图形的性质.2、数学思考:在探索轴对称图形和轴对称的概念及性质的过程中,让学生在参与观察、实验、猜想、证明、归纳等数学活动中,体会由具体到抽象认识问题的过程,感悟类比方法在研究数学问题中的作用,发展学生由合情推理到演绎推理的能力.3、问题解决: 在探索轴对称图形和轴对称的概念及性质的过程中,培养学生从数学的角度观察生活,发现问题,提出问题,解决问题的意识和能力,并获得一定的研究图形变换的一般方法.4、情感态度:让学生在学习轴对称的过程中体验到对称在生活中无处不在,对称给我们的生活带来美的享受,以及做人的人生感悟!这三个目标不是独立存在的,而是依据课标要求,结合学生实际,互为依托,相辅相成.二、学习本内容的基础、地位及应用
本节课是继七年级的平移之后又一种图形变换,隐含着重要的变换思想,是培养学生思维能力,树立运动变化观点的好素材.学生在学习习近平移的定义、性质及作图的过程中,已初步感悟到如何从运动变化的角度去探索图形的特征,以及如何从构成图形最基本的元素“点”的角度研究图形性质的基本方法.在此基础上学习轴对称,既是对这种图形研究方法的深刻 1
体会,也为以后学习旋转提供了基本的研究方法,又为学习等腰三角形的相关知识奠定了基础,是构建学生数学知识体系并形成相应的数学技能的重要内容.在探索的过程中,经历观察、操作、实验、归纳、应用的过程,激起学生对数学学习的兴趣,点燃在学习中发现美、欣赏美、创造美的热情,体会轴对称在现实生活中的广泛应用和文化价值.三、教学诊断分析及学习本内容时容易了解与误解的地方
学生在小学学过轴对称,能识别简单的轴对称图形及其对称轴,但对轴对称图形和两个图形成轴对称的概念还是首次接触,学生在了解轴对称图形和两个图形成轴对称的区别与联系上会有一定的困难.教学时,先让学生观察生活中的轴对称现象,然后又设计了一个剪纸活动,让学生在剪纸活动中体会图形的对称性,再结合剪纸的动画翻折,让学生总结出轴对称图形的定义.在学生操作和观察图片的基础上,感知轴对称图形的特征,为抽象出轴对称图形的概念作铺垫.教学中鼓励学生充分观察、操作,并用语言概括出这些图形的特征,以培养学生的动手实践能力和归纳总结能力.在学生总结出轴对称图形的概念后,又设置了一个动手操作的探究活动,让学生通过动手粘贴,在粘贴的过程中体会成轴对称的两个图形的特殊位置关系.类比轴对称图形概念的学习过程,发现轴对称的特征,进而概括出轴对称的概念.让学生在操作中初步感知成轴对称和轴对称图形的区别与联系.四、本节课教法特点及预期效果分析
针对本节课的特点,我采用“观察感悟、动手操作、猜想验证、自主探究、合作交流”的教学方式,以“剪纸活动”为主线、“圣诞树”为载体,在教师有组织地数学活动中,使学生经历数学的发生发展过程,引导学生体验如何发现问题,如何把实际问题变成数学问题,如何设计解决问题的方案,如何选择合作的伙伴,如何有效地呈现探究的成果.通过这样的教学活动,使学生逐步积累运用数学解决问题的经验.整节课首先通过多媒体展示生活中学生熟悉的平移、轴对称、旋转的现象,让学生通过观察、辨析,对这些图片进行分类,从而导入课题《轴对称》,使学生在几何变换的知识大框架中认识轴对称.又通过教师剪出的蝴蝶、学生剪出的圣诞树以及课件展示的飞机、风筝、北京天安门、国徽等图片引导学生归纳出轴对称图形的概念;又让学生把圣诞树剪成两个图形,先任意粘贴其中一个图形,再借助大头针、三角板、双面胶、剪刀等工具,选择不同的方法如:度量、针扎等寻找另一个图形的粘贴位置,使它们沿折痕仍然能够完全重合,并借 2
助多媒体演示生活中的轴对称图片,归纳总结轴对称的的概念,进而培养学生充分观察、操作、思考、归纳的能力.至此,学生从整体上认识了轴对称图形和轴对称.接着,继续借助粘贴的图形,从构成图形的最基本元素“点”的角度发现了线段垂直平分线的概念,再从圣诞树上抽取的三角形、四边形等基本图形,运用由特殊到一般的方法进一步探究了轴对称的性质;又引导学生用类比的方法得出了轴对称图形的性质.至此,学生从构成图形的基本元素进一步认识了轴对称图形和轴对称的.学生在参与观察、实验、猜想、证明、归纳等一系列数学活动中,获得研究几何图形的一般方法,感受到归纳、类比等数学思想,发展合情推理和演绎推理的能力,使学生初步具有从数学的角度发现问题、提出问题、解决问题的能力,积累一定的数学活动经验,学会学数学、用数学.最后,师生在享受生活中的对称美之后,教师话锋一转,告诉学生:“生活中存在一些不和谐的音符,以一张扭曲的不健康的脸为例,揭露了社会上也存在一些丑恶的现象,使人类的心灵变得扭曲.作为新时期的中学生,我们要做一个正常的人、正道的人、正直的人,为早日实现中华民族伟大复兴的中国梦,请同学们都来做一个堂堂正正的中国人!”通过教师激情四射的德育渗透,培养学生的爱国主义情操.这样的课堂设计,学生的思维会被极大限度地调动起来,有了兴趣和参与的保证,学生顺利完成教学目标,达到令人满意的教学效果.在作业设置中,知识性作业意在强化对本节知识的理解与运用,实践性作业体现了学生学“有用的数学”这一理念.课改的道路上,我只有在不断地学习和实践中,寻找生命成长的高效课堂,本节课的设计,还肯请各位专家同仁的不吝指导.3
第二篇:八年级数学《轴对称》教学设计(推荐)
八年级数学《轴对称》教学设计
教学课题:新课标八年级人教版数学《轴对称》
一、教材分析:
本节课的内容是轴对称。轴对称是对称中非常重要的一种,小学时期就已经对此有所了解。轴对称是现实生活中广泛存在的一种现象,是密切数学与现实联系的重要内容。因此,在教学时,要先让学生观察现实生活中的对称现象,找出其中潜在的规律,归纳出轴对称图形的特征,从而引出轴对称图形的概念,并让学生总结出判定一个图形是否为轴对称图形的方法。这是前半节的内容,而关于两个图形成轴对称,关键点是要让学生理解这是两个图形之间的一种位置关系,即两个图形沿某条直线折叠之后能重合。两者之间的联系是定义中都有一条直线,都要沿这条直线折叠重合。不同的是前一个是针对一个图形而言,后一个是叙述两个图形的一种特殊位置。
在教学中要让学生学会研究、发现、归纳、比较、运用的研究问题的方法,这对以后 学习数学都有帮助。
二、教学目标:
A、知识与能力
1、了解轴对称图形和对称轴的定义。
2、能辨别一个图形是否是轴对称图形,并指出它的对称轴。
3、了解成轴对称的两个图形的定义理解对称点的概念。
4、理解轴对称图形和轴对称的联系与区别。B、过程与方法
1、通过归纳、比较轴对称图形的相关图片,总结出轴对称图形的定义,掌握判断一个图形是否是轴对称图形的方法。
2、通过观察、比较以及合作交流等,理解成轴对称的两个图形之间的对称关系,培养观察能力、抽象归纳能力和合作交流的能力,初步了解研究、发现、归纳、运用的研究问题的方法。
三、教学重点:
1、轴对称图形和轴对称的概念。
2、能识别轴对称图形,并找出图形的对称轴。
3、轴对称图形与轴对称的联系与区别。
四、教学难点:
轴对称图形与轴对称的联系与区别。
五、教学突破:
在教学中要让学生认识到轴对称图形描述的是一个图形的性质,轴对称描述的是两个图形的关系。
六、教学准备:
多媒体课件、现实生活中的对称图形、剪纸
七、教学课时:
1课时
八、教学过程:
A、通过图片中的对称现象引出课题
1、出示课件图片,请学生观察图片,描述图片中反映的现象。
2、一段时间后,鼓励学生积极发言,阐述自己的看法。
3、教师肯定学生的表现,强调指出:对称现象无处不在,从自然景观到分子结构,从建筑物到艺术作品,甚至日常生活用品,我们都可以找到对称的例子。本节课就来讨论轴对称。
B、探究轴对称的相关概念和性质
一>
轴对称图形
1、剪纸是我们中华传统文化的瑰宝,展示剪纸图片,这些剪纸和窗花有什么共同的特点?思考一下。
2、活动:学剪纸。同学们,要想更深入地了解窗花的特点,我们就亲手来制作一个。跟我学剪纸。
3、展开你的剪纸,你发现了什么?(展开后对折的两部分会重合在一起。)
4、教师肯定学生的积极表现,引导全班总结出轴对称图形、对称轴、对称的概念: 像窗花一样,如果一个图形沿着一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,这条直线就是它的对称轴。这时,我们也说这个图形关于这条对称轴对称。
5、巩固练习: a、展示图片,它们是轴对称图形吗?
6、请学生列举日常生活中见到的对称现象。
7、抢答题:哪些数字是轴对称图形?找出它的对称轴。
8、出示图片,提问,设置情境:是否有些图形的对称轴不止一条呢?(如正方形有四条、圆有无数条。)
二>
轴对称
1、多媒体展示下面的图形,提问:观察下面的图形,它们又有什么共同的特点?试找出它们的对称轴。
2、鼓励学生发言。
3、教师总结指出:图中的每一对图形,如果沿着虚线折叠,左边的图形能与右边的图形重合。(归纳:轴对称、对称轴、对称点的概念。)一起填空。
4、练习:(出示课件)a、判断下列哪些数字、汉字是轴对称图形。b、摆一摆。c、试着画出下列图形的对称轴。
5、总结对称图形对称轴的画法及轴对称图形的基本性质。
6、游戏找规律填图形。
7、分组讨论,思考:(1)成轴对称的两个图形全等吗?(2)如果把一个轴对称图形沿对称轴分成两个图形,那么这两个图形全等吗?这两个图形对称吗?
8、比较归纳:
区别 联系 轴对称图形 _个图形
两个图形成轴对称 _个图形
1.沿一条直线折叠,直线两旁的部分能够____. 2.都有____. 3.如果把一个轴对称图形沿对称轴分成两个图形,那么这两个图形关于这条直线___;如果把两个成轴对称的图形看成一个图形,那么这个图形就是____.
三、巩固练习
1、创作题。
2、思考题
四、归纳小结:本节课你学到了什么?
第三篇:八年级上册数学轴对称说课稿
13.1.1轴对称说课稿
一、教材分析
(一)、教材所处的地位和作用:
轴对称是与平移、旋转等相关联的又一种图形变换,在小学已有初步的渗透.初中阶段,它既是前面全等三角形概念的拓展与延伸,又是图形全等的具体应用,也是研究今后研究等腰三角形、特殊四边形等图形性质的重要依据和基础.因此,本节课起着承上启下的作用.同时,轴对称在现实生活中有着广泛的应用,这节课对于培养学生的数学审美能力和动手能力,拓展学生的空间想象力也有十分重要的意义。
本节从观察生活中的轴对称现象出发,通过生活中平面图形的实例,抽象概括出轴对称图形的本质特征,并类比得出两个图形成轴对称的概念在此基础上,通过探索成轴对称的两个图形的对称轴与对应点所连线段之间的关系获得了性质,并类比其过程,得到轴对称图形的性质.整个过程是由具体到抽象的过程,也体现了类比方法在研究数学问题中的重要作用.(二)、教学目标
1、知识与技能目标:
(1)了解轴对称图形和两个图形成轴对称的概念,知道轴对称图形和两个图形成轴对称的区别与联系。
(2)探索轴对称图形和成轴对称的两个图形的性质,理解垂直平分线的概念
2、过程与方法目标:
(1)通过图形欣赏、观察、折叠、剪纸,设计等数学活动过程,积累数学活动的经验,从而培养学生的动手操作能力、总结概括能力、空间想象力和创新创造能力。
(2)通过性质探索过程,体会由具体到抽象的过程,感悟类比方法在学习中的应用
3、情感与态度目标:通过感受轴对称的价值,增强学生的数学审美意识和热爱生活的情感,初步获得动手的乐趣和成就感,提高学生学习数学的兴趣。
(三)、教学重点、难点
1、重点:理解轴对称图形和两个图形成轴对称的概念和性质
2、难点:理解轴对称图形和两个图形成轴对称的区别与联系
二、学情分析
学生在小学认识过轴对称,能够识别简单的轴对称图形及其对称轴,但是对于两个图形成轴对称第一次接触,在了解两个概念的区别和联系上有一定难度。因此教学中,教师要充分利用具体图形,让学生获得感性认知,进而了解两者的区别和联系。同时,八年级上学期的学生具有初步几何知识,但他们的几何认知能力仍处于较低级的阶段,抽象概括、空间想象力还需要进一步提高。
三、教法分析
在教学过程中为了突出重点,突破难点,我采用了直观演示、设疑诱导、操作发现的教学方法。在学生已有知识的基础上,从欣赏图片出发,以操作、观察、想象、发现、概括的探究式学习方式,让学生参与知识的发生、发展、形成过程。运用多媒体直观演示,化静为动,使学生始终处于主动探索问题的积极状态中,使数学学习变得有趣、有效、自信、成功。
四、教学过程
为达成教学目标,我实施了以下教学环节:
1、创设情境,感悟新知
2、抽象概括,总结概念
3、动手操作,探索性质
4、当堂检测,应用拓展
5、反思盘点,整合新知
6、布置作业,体验创造
(一)、创设情景,感悟新知
欣赏一组具有对称美的图片让学生发现这些事物的美具有什么共同特点
学生回答,引出课题
【设计意图】从学生非常熟悉的生活美景导入,激起学生的兴趣,初步感受生活中的对称美,引出课题。遵循新课标中强调从学生已有的生活经验出发,获得对数学的理解。
(二)、抽象概括,总结概念
本环节是教学重点,主要包括三个方面教学
活动1:观察对称美,发现共性
抛出问题:问题1 仔细观察观察图形,他们有什么共同的特征?
学生思考总结特点,师生共同归纳概念,然后学生理解概念,圈关键词
再追问:能举出其他轴对称图形的例子吗?
【设计意图】通过创设情境-观察类比-概括归纳-定义概念-事例判断的过程培养学生的观察思考能力和语言表达能力,对学生的回答给予积极的评价和肯定,增加其学好数学的自信心。
活动2:类比旧概念,收获新知
成轴对称概念的学习主要建立在已获新知基础上
问题2:观察每对图形,类比轴对称图形的概念概括出它们的共同特征吗
学生自主探索特征,教师规范语言
【设计意图】通过学生再次观察类比,进行思考,仿照轴对称图形概念的形成过程,得出成轴对称的概念。
活动3合作共交流,辨析概念
本节的难点在于轴对称图形与两个图形成轴对称有什么区别与联系,因此此环节利用具体的等腰三角形获得感性认识,进而了解两者间的区别和联系。将独立思考,小组讨论,教师讲解进行有机结合。
(三)、动手操作,探索性质
将长方形纸对折,在一侧标出三个点A,B,C(不在同一条直线上)
用笔对准三个点扎孔(穿透两面)
展开,在另一侧分别标出A′,B′,C
′
画出折痕MN,分别连接折痕两旁的三个点,形成△ABC
和△A′B′C′
问题4 这两个三角形什么关系?
追问1:连接AA′,BB′,CC′,那他们与对称轴MN有什么关系呢?
追问2:那如果再连接任何一对对应点呢?
追问3:由此可以概括出成轴对称的性质吗?
教师引导学生探索并说明其中的道理,学生思考回答得出成轴对称的性质
问题5:如果在动手操作中顺次连接A,B,C,C′,B′,A′,所形成的六边形是轴对称图形吗?
追问:能类比成轴对称的性质概括出轴对称图形的性质吗?学生用数学语言概括轴对称图形的性质
拓展:如果老师将点A扎在折痕MN上,我们可以得到同样的结论,那此刻点A的对应点呢?下列结论不一定正确的是()
A.∠ABC=∠A
B′C
B.CC′∥BB
C.BC=B′C′D.AD=DD′
【设计意图】通过“扎眼”活动,从特例出发,一图多用,让学生经历发现结论,说明结论的过程。直观的操作获得成轴对称的两个三角形,又可以获得轴对称图形,加深概念理解,体会概念在探索性质中的重要作用。
(四)、当堂检测,举一反三
基础达标
1.下面四个图形分别是节能、节水、低碳和绿色食品标志,是轴对称图形的是()
A.
B.
C.
D.
2.在下列交通标识图案中,不是轴对称图形的是()
A.
B.
C.
D.
3.下列图形:是轴对称图形且有两条对称轴的是()
A.①②
B.②③
C.②④
D.③④
能力提升
4.下列图形中,一定是是轴对称图形的有()
①正方形;
②梯形;
③长方形;
④平行四边形;
⑤等腰三角形;
⑥直角三角形
A.6个
B.5个
C.4个
D.3个
5.将四个全等的直角三角形按图1方式拼接,三角形4与三角形
成轴对称(填编号),整个图形轴对称图形
(填“是”或“不是”),它有条对称轴.(五)、反思盘点,梳理收获
通过本节课的学习你有什么收获?还想要继续学习本章的哪些知识?
【设计意图】本环节旨在通过反思、归纳,培养概括能力;养成梳理的好习惯。作为章始课,教师也有必要帮助学生构建本章知识体系也为后续学习做铺垫。
(六)实践应用,体验创造
必做题:导学案课后作业
选做题:采用自己喜欢的方式(折叠、剪纸、拼接、扎眼等)设计轴对称图形
【设计意图】对称既是一个数学概念,又是一个美学概念,在本节课中,不仅要讲知识,还要对学生的审美情操、审美能力培养。作品创作,目的是让每个学生学会创新创造都能感受成功的喜悦
课后作业
1.下列图形是轴对称图形的有()
A.1个
B.2个
C.3个
D.4个
2.下列图形中,不是轴对称图形的是()
A.
B.
C.
D.
3.下面有4个汽车标志图案,其中是轴对称图形的是()
A.②③④
B.①③④
C.①②④
D.①②③
4.在下列图形中,有两条以上的对称轴的图形有()个.
①角;
②正方形;
③长方形;
④等腰三角形;
⑤等腰梯形;
⑥线段;
⑦直角三角形;
⑧等边三角形;
⑨平行四边形;⑩圆.
A.2
B.3
C.4
D.5
5.如图,点A在直线l上,△ABC与△AB′C′关于直线l对称,连接BB′分别交AC,AC′于点D′,连接CC′,下列结论不一定正确的是()
A.∠BAC=∠B′AC′
B.CC′∥BB
C.BD=B′D′
D.AD=DD′
板书设计
13.1轴对称
沿直线折叠
重合一概念
二性质
应用
分开
1相关概念:垂直平分线
1画轴对称
1轴对称图形
2性质:
2几何中应用
2成轴对称
整体
第四篇:八年级数学教学计划新人教
一、指导思想
通过数学课的教学,使学生切实学好从事现代化建设和进一步学习现代化科学技术所必需的数学基本知识和基本技能;努力培养学生的运算能力、逻辑思维能力,以及分析问题和解决问题的能力。
二、学情分析
八年级是初中学习过程中的关键时期,学生基础的好坏,直接影响到将来是否能升学。80班、81班均是刚刚接手,对班上学生不了解,从原科任老师处得知:两班比较,81班优生稍多一些,但后进面却较大,学生非常活跃,有少数学生不上进,思维不紧跟老师。80班学生单纯,有少数同学基础特差,问题较严重。要在本期获得理想成绩,老师和学生都要付出努力,查漏补缺,充分发挥学生是学习的主体,教师是教的主体作用,注重方法,培养能力。
三、教材分析
第十一章 一次函数通过对变量的考察,体会函数的概念,并进一步研究其中最为简单的一种函数————一次函数。了解函数的有关性质和研究方法,并初步形成利用函数的观点认识现实世界的意识和能力。在教材中,通过体现“问题情境————建立数学模型————概念、规律、应用与拓展”的模式,让学生从实际问题情境中抽象出函数以及一次函数的概念,并进行探索一次函数及其图象的性质,最后利用一次函数及其图象解决有关现实问题;同时在教学顺序上,将正比例函数纳入一次函数的研究中去。教材注意新旧知识的比较与联系,如在教材中,加强了一次函数与一次方程(组)、一次不等式的联系等。
第十二章 数据的描述通过对实际问题的讨论,使学生体会数据的作用,更好地理解数据表达的信息,发展数感和统计观念,为了更好地理解较大的数据信息,本单元首先安排了有关大数的感受与表示的内容,重点是让学生运用身边熟悉的事物,从多种角度对大数进行估计,对于所收集的数据,还要清晰、有效的进行展示,以尽可能的获取有用的信息。教材安排了扇形统计图、条形图、折线图、直方图等的认识与制作,不同的统计图表的选择等内容。
第十三章 全等三角形主要介绍了三角形全等的性质和判定方法及直角三角形全等的特殊条件。更多的注重学生推理意识的建立和对推理过程的理解,学生在直观认识和简单说明理由的基础上,从几个基本事实出发,比较严格地证明全等三角形的一些性质,探索三角形全等的条件。
第十四章 轴对称立足于已有的生活经验和初步的数学活动经历,从观察生活中的轴对称现象开始,从整体的角度直观认识并概括出轴对称的特征;通过逐步分析角、线段、等腰三角形等简单的轴对称图形,引入等腰三角形的性质和判定的概念。
第十五章 整式在形式上力求突出:整式及整式运算产生的实际背景————使学生经历实际问题“符号化”的过程,发展符号感;有关运算法则的探索过程————为探索有关运算法则设置了归纳、类比等活动;对算理的理解和基本运算技能的掌握————设置恰当数量和难度的符号运算,同时要求学生说明运算的根据。
四、教学措施
1、课堂内讲授与练习相结合,及时根据反馈信息,扫除学习中的障碍点。
2、认真备课、精心授课,抓紧课堂四十五分钟,努力提高教学效果。
3、抓住关键、分散难点、突出重点,在培养学生能力上下功夫。
4、不断改进教学方法,提高自身业务素养。
5、教学中注重自主学习、合作学习、探究学习。
一、指导思想
通过数学课的教学,使学生切实学好从事现代化建设和进一步学习现代化科学技术所必需的数学基本知识和基本技能;努力培养学生的运算能力、逻辑思维能力,以及分析问题和解决问题的能力。
二、学情分析
八年级是初中学习过程中的关键时期,学生基础的好坏,直接影响到将来是否能升学。80班、81班均是刚刚接手,对班上学生不了解,从原科任老师处得知:两班比较,81班优生稍多一些,但后进面却较大,学生非常活跃,有少数学生不上进,思维不紧跟老师。80班学生单纯,有少数同学基础特差,问题较严重。要在本期获得理想成绩,老师和学生都要付出努力,查漏补缺,充分发挥学生是学习的主体,教师是教的主体作用,注重方法,培养能力。
三、教材分析
第十一章 一次函数通过对变量的考察,体会函数的概念,并进一步研究其中最为简单的一种函数————一次函数。了解函数的有关性质和研究方法,并初步形成利用函数的观点认识现实世界的意识和能力。在教材中,通过体现“问题情境————建立数学模型————概念、规律、应用与拓展”的模式,让学生从实际问题情境中抽象出函数以及一次函数的概念,并进行探索一次函数及其图象的性质,最后利用一次函数及其图象解决有关现实问题;同时在教学顺序上,将正比例函数纳入一次函数的研究中去。教材注意新旧知识的比较与联系,如在教材中,加强了一次函数与一次方程(组)、一次不等式的联系等。
第十二章 数据的描述通过对实际问题的讨论,使学生体会数据的作用,更好地理解数据表达的信息,发展数感和统计观念,为了更好地理解较大的数据信息,本单元首先安排了有关大数的感受与表示的内容,重点是让学生运用身边熟悉的事物,从多种角度对大数进行估计,对于所收集的数据,还要清晰、有效的进行展示,以尽可能的获取有用的信息。教材安排了扇形统计图、条形图、折线图、直方图等的认识与制作,不同的统计图表的选择等内容。
第十三章 全等三角形主要介绍了三角形全等的性质和判定方法及直角三角形全等的特殊条件。更多的注重学生推理意识的建立和对推理过程的理解,学生在直观认识和简单说明理由的基础上,从几个基本事实出发,比较严格地证明全等三角形的一些性质,探索三角形全等的条件。
第十四章 轴对称立足于已有的生活经验和初步的数学活动经历,从观察生活中的轴对称现象开始,从整体的角度直观认识并概括出轴对称的特征;通过逐步分析角、线段、等腰三角形等简单的轴对称图形,引入等腰三角形的性质和判定的概念。
第十五章 整式在形式上力求突出:整式及整式运算产生的实际背景————使学生经历实际问题“符号化”的过程,发展符号感;有关运算法则的探索过程————为探索有关运算法则设置了归纳、类比等活动;对算理的理解和基本运算技能的掌握————设置恰当数量和难度的符号运算,同时要求学生说明运算的根据。
四、教学措施
1、课堂内讲授与练习相结合,及时根据反馈信息,扫除学习中的障碍点。
2、认真备课、精心授课,抓紧课堂四十五分钟,努力提高教学效果。
3、抓住关键、分散难点、突出重点,在培养学生能力上下功夫。
4、不断改进教学方法,提高自身业务素养。
5、教学中注重自主学习、合作学习、探究学习。www.xiexiebang.com
五、教学进度
周 教学内容及课时安排
111。1。1变量(1)11。1。2函数(2)
211。1。3函数的图象(3)11。2。1正比例函数(1)11。2。2一次函数(1)
311。2。2一次函数(3)11。3。1一次函数与一元一次方程(1)
11。3。2一次函数与一元一次不等式(1)
411。3。3一次函数与二元一次方程(组)(1)第十一章小结(3)
512。1。1条形图与扇形图(1)12。1。2折线图(1)12。1。3直方图(1)
12。2。1用扇形图描述数据(1)12。2。2用直方图描述数据(1)
612。3课题学习(2)第十二章小结(2)
713。1全等三角形(1)13。2三角形全等的条件(4)
813。2三角形全等的条件(2)13。3角平分线的性质(1)
第十三章小结(2)
9段考
1014。1轴对称(3)14。2。1轴对称变换(1)14。2。2用坐标表示轴对称(1)
1114。3。1等腰三角形(3)14。3。2等边三角形体(2)
12第十四章小结(2)15。1。1整式(1)15。1。2整式的加减(2)
1315。2。1同底数幂的乘法(1)15。2。2幂的乘方(1)15。2。3积的乘方(1)
15。2。4整式的乘法(2)
1415。2。4整式的乘法(2)15。3。1平方差公式(2)15。3。2完全平方公式(1)
1515。3。2完全平方公式(2)15。4。1同底数幂的除法(1)15。4。2整式的除法(2)
1615。5因式分解(1)15。5。1提公因式法(1)15。5。2公式法(3)
17第十五章小结(3)总复习
18总复习
19总复习
20考试
第五篇:八年级轴对称数学活动教学设计
八年级轴对称数学活动教学设计3篇
作为一名人民教师,常常要根据教学需要编写教学设计,教学设计要遵循教学过程的基本规律,选择教学目标,以解决教什么的问题。那要怎么写好教学设计呢?下面是小编整理的八年级轴对称数学活动教学设计3篇,希望能够帮助到大家。
八年级轴对称数学活动教学设计3篇1教学内容:
人教版小学数学二年级下册第29页例1及相关内容。
教学目标:
1、认识对称现象,初步理解对称轴和轴对称图形的含义,掌握判断一个图形是否是轴对称图形的方法。
2、经历观察、操作、想象、交流等活动,感知现实世界中普遍存在的对称现象,发展空间观念。
3、体验到生活中处处有数学,获得成功的喜悦,培养学生的探究精神和美感。
教学重点:
认识对称现象和轴对称图形的特点。
教学难点:
掌握识别轴对称图形的方法。
教具准备:
多媒体课件、实物图片等。
教学过程:
1、说说在游乐场喜欢玩的项目,出示主题图,引导学生观察。
2、从蝴蝶形状的风筝引出“对称”
(一)观察图形,认识对称
1、观察几幅对称图形,引导学生感悟对称。
2、说一说生活中的对称现象
(二)动手操作,认识轴对称图形
1、猜一猜:出示几幅轴对称图形,猜一猜它们是怎么来的。
2、动手操作,剪出轴对称图形
(1)师示范剪一件上衣的过程:折一折、画一画、剪一剪。
(2)生动手剪出自己喜欢的轴对称图形。
(3)交流展示学生的作品
3、认识对称轴
(1)看一看,摸一摸,说一说
(2)画一画:师示范画出对称轴,然后学生自己画,再交流。
4、初步理解轴对称图形
(1)说一说轴对称图形的特点,初步理解轴对称图形。
(2)议一议:讨论判断轴对称图形的方法(对折后完全重合才是轴对称图形)。
(3)举一举身边的轴对称图形的例子。
1、判一判:哪些是轴对称图形。
2、猜一猜:出示轴对称图形的一半,猜出它是什么图形。
3、折一折、画一画、数一数:长方形、正方形、圆形各有几条对称轴。
通过这节课的学习,你有什么收获?
教学内容:
北师大版三年级数学课本23-24页的相关内容。
教学目标:
1、知识与技能:通过观察和操作活动,初步认识轴对称图形。会直观判断轴对称图形,能用对折的方法找出轴对称图形的对称轴。
2、过程与方法:通过学生动手操作等实践活动,培养学生的观察能力和想象能力。
3、情感态度与价值观:在学生的学习活动中,让学生学会欣赏数学之美。
教学重点:
认识轴对称图形的基本特征,能画出轴对称图形的对称轴。
教学难点:
能直观判断出轴对称图形,能用折纸的方法找出对称轴;
教学准备:
课件、一些轴对称图形图片、纸和剪刀、长方形、正方形、圆形纸等。
教学过程:
一、巧设情境,激发好奇心。
花园里有只可爱的蝴蝶在翩翩起舞。一天她遇见了小蜻蜓,对小蜻蜓说:“我们是一家人。”小蜻蜓就奇怪了,我是小蜻蜓,你是蝴蝶,怎么是一家人了。蝴蝶笑了笑说,在大自然里还有很多物体和我们是一家呢。
二、欣赏图片,建立表象。
1、这不,你瞧。蝴蝶找来了什么?
课件出示:蝴蝶、枫树叶、七星瓢虫、蜻蜓、脸谱、交通标志、数字8、飞机、天平、一些字母等。这些图形漂亮吗?学生欣赏各种对称图形。
2、引导观察图形,交流汇报
刚才同学看到的这些图形在日常生活中还有很多很多,那么这些图形中你发现都有什么特征呢?把你的发现在小组内说一说。
师:你发现了什么数学问题?
生1:我发现他们都很美。
生2:左右一样。上下?
生3:我发现它们是对称的。
师:你是怎么理解对称的?
生3:对称就是左右两边是完全一样的。
3、教学板书“对称”
(1)课题导入
师:是啊,刚才我们看到的其实是生活中的轴对称图形的现象。今天老师和大家一起来研究数学上的轴对称图形。(板书课题)刘元平三下《轴对称图形》教学设计刘元平三下《轴对称图形》教学设计
(2)结合剪纸作品,抽象概念
师:谁能在最快的时间内剪出一个葫芦吗?
学生自己操作创作。(先把纸对折后再剪)
教师选几张学生剪得好的轴对称图形贴在黑板上。
找出不同的剪法,让学生说一说是怎样剪的。
师:请大家观察,比较这些图形,你发现了什么?
生1:他们的形状不同。
生2:他们的大小也不同。
生3:他们的.两边是完全一样的。
生4:这些图形上都有一条折痕。
现在你们把你自己剪的图形重新对折一下,你们会发现他们怎么样?(两边完全重合)是的,那么什么样的图形才是轴对称图形呢?
学生回答自己理解的轴对称图形。(对折后两边的部分完全重合的图形就是轴对称图形)
那么这条折痕应该给它取个什么样的名字呢?(对称轴)
老师把课前准备好的作品展示给大家看。(灯笼、衣服等)
三、实践操作,深化认识。
1、组织活动——折一折
(1)每个学生剪下附页中的图1,先对折,看两边是否完全重合,再打开,看折痕的位置。
(2)学生小组合作,完成折一折。组织学生将自己小组折出的对称图形进行展示并汇报各自的折法。
(3)学生认识对称轴,中间这条折痕我们就把它叫做对称轴,用虚线表示。
请学生用铅笔画出你们剪出的对称图形的对称轴。
2、小结:通过折、画,小朋友们都认识了轴对称图形,那么现在谁能为大家介绍一下这样的图形。
得出结论:如果一个图形沿一条直线对折,两侧的图形能够完全重合,这个图形就叫做轴对称图形。
折痕所在得直线叫做对称轴。
四、巩固练习,深化认识。
1、看下面那些图形是轴对称图形。
2、找一找下列哪些数字、汉字、字母是轴对称图形。
3、用对折的方法找出下面图形的对称轴
五、回归生活,体会美感。
1、谈一谈:其实生活中也有很多对称的图形、物体,你能说一说吗?
2、欣赏生活、艺术、自然、建筑、剪纸等领域的对称之美。
六、总结全课,升华主题。
通过这节课的学习,你有什么收获?
轴对称
对折:两边完全重合——轴对称图形
折痕——对称轴
八年级轴对称数学活动教学设计3篇3教材简析:
本课的教学对象是小学三年级的学生,在此之前学生已经学过一些平面图形的特征,形成了一定的空间观念,自然界和生活中具有轴对称性质的事物很多,也为学生奠定了感性基础。他们的思维特点是以具体形象思维为主,同时具有初步的抽象思维能力,对于具体、直观的内容有较大的依赖性。所以,本课尽量营造一种轻松愉悦的氛围,让学生在玩中学,在观察、操作中探索研究,以多媒体课件为学习媒体,让学生自主探索,在探索中发现,在探索中学习。在教学中,我通过让学生找生活中的对称物体,欣赏图片,加强了知识与生活之间的联系。同时,学生通过动手、折一折、画一画、猜一猜、剪一剪等活动,建立起了轴对称图形的概念,探索出了轴对称图形的特征以及判断轴对称图形的方法。
教学目标:
1、联系生活中的具体物体,通过观察和动手操作,使学生初步体会生活中的对称现象,认识轴对称图形的一些基本特征。
2、使学生能根据自己对轴对称图形的初步认识,在一组实物图案和平面图形中识别出轴对称图形,能用一些方法做出轴对称图形,能在方格纸上画出简单的轴对称图形。
3、使学生在认识和制作简单的轴对称图形的过程中,感受到物体或图形的对称美。激发对数学学习的积极情感。
教学重点:
使学生初步认识轴对称图形的一些基本特征,能识别出轴对称图形,能用一些方法做出轴对称图形,能在方格纸上画出简单的轴对称图形。
教学难点:
引导学生自己发现和认识轴对称图形的一些基本特征。
教学准备:
多媒体课件一套,每小组有不同的图形一套,小剪刀等。
教学过程:
情境导入:昆虫家族今天开了个舞会,它们正欢快的飞舞着。看!它们向这儿飞来了,不过只有它们的半个身影。它们说:“只要你猜对我们是谁,我们就会出现。”
1、请你猜一猜,他们分别是什么?
2、提问:你们怎么猜得这么准啊?(它们的两边都是一模一样的。)
小结:像这些昆虫的两边是一模一样,我们就说它是对称的。
【设计意图:从学生熟悉的事物入手,根据学生的感知规律,创设了有趣的“猜一猜”情境,不但激发了学生的学习兴趣,同时昆虫图形的介入为学生感知轴对称图形的特征作了铺垫。】
师:老师这还带来了一组对称物体的照片,请大家来观察,看看这些照片有什么共同之处。
生:左右两边一模一样。
1、初步感知
过渡:刚才同学们的观察都很准确。生活中还有哪些物体是对称的?
生:蝴蝶,裤子,鞋子,七星瓢虫等。
师:日常生活中,我们不但可以经常看到一些对称的物体,还能看到很多对称的图形。今天老师也要给你们露一手,看看我要表演什么啊?(剪纸)嗯,不过,你能猜出我剪的是什么吗?
学生回答:(剪一棵松树)。
提问:那么仔细观察这两个图形,看看它们有什么相同的地方?
引导学生,让他们说出:这两个图形的两边是一模一样的,它们是对称的,中间有一条折痕。
继续提问:(出示提前准备好的一张音符图)那这个图形的两边也是一模一样的,中间也有一条折痕,那它和上面两个图形有什么不同的地方?请你们把它们对折后想一想。
引导:音符图对折后只上半部分重叠在一起,下半部分不重叠。像这样只有一部分重合在一起,我们就称为是部分重合。(板书:部分重合)而松树图和爱心图对折后能全都重合在一起。
小结:对折后能全都重合在一起,我们称为是完全重合。(板书:完全重合)像这样对折后能完全重合的图形我们叫它轴对称图形。这条折痕就是对称轴,我们用点划线来表示。
揭题:这就是我们这节课要学习的内容轴对称图形。(板书:轴对称图形)
同桌互相说一说什么是轴对称图形。
【设计意图:通过折音符图形,得出音符图形只有部分重合,在与松树、爱心图形的比较中,感受部分重合与完全重合的区别,学生对“完全重合”的认知已经非常地清晰,从而深刻理解轴对称图形的特征。】
2、加深理解
过渡:同学们说的真好。这里有三张照片,是我对同一只杯子从不同的角度拍的。
(1)出示这是从杯子的正面拍的。这个图形是轴对称图形吗?对称轴在哪?
(2)出示这是从杯子的上面拍的。这个图形是轴对称图形吗?对称轴在哪?
小结:对称轴可以有不同的方向。
(3)出示这是从杯子的侧面拍的。这个图形是轴对称图形吗?那你有办法把它变成轴对称图形吗?(添柄、去柄)
小结:同一只杯子由于观察的角度不一样,看到的图形有时是轴对称图形,有时不是轴对称图形。
【设计意图:通过不同角度的杯子照片,让学生明白可以横着画对称轴,也可以竖着画对称轴,也可以斜着画对称轴,对称轴可以有不同的方向。】
1、折一折
过渡:今天我给大家带来了一些老朋友,你还认识它们吗?那我们就一起说出它们的名字。
(1)下面请你们用对折的方法,看看哪些是轴对称图形,哪些不是轴对称图形?
(2)生折交流汇报。
平行四边形不是轴对称图形。为什么不是,你是如何证明的?(对折后不能完全重合)
能不能折一次就好了?
小结:我们要判断一个图形是不是轴对称图形,要看它对折后能否完全重合。
(3)那其他四个图形都是轴对称图形吗?你是怎样判断的?
生演示并说明理由
等腰三角形、等腰梯形有一种对折方法,长方形有两种对折方法,圆有无数种对折方法。
小结:这些图形不管只有一种对折方法还是很多种对折方法,只要对折后能完全重合的图形,就是轴对称图形。
2、判断
过渡:刚才同学们都用对折的方法来判断是不是轴对称图形。现在,不对折,你能用眼睛看出来吗?真的?现在就考考你们。
出图生判断,说说对称轴在哪?
【设计意图:练习设计体现生活化、多样化、层次分明,同时也让学生再一次感受到数学与生活的密切联系。即让学生巩固理解轴对称图形的特征,同时又突出轴对称图形的重要性。】
过渡:刚才我们是根据一半的图形猜出另一半,那如果告诉你轴对称图形的一半,你能画出它的另一半吗?
(1)生尝试画一个,汇报交流
你是如何画的?你为什么要和这个点连起来?这两个点为什么不用找?
(2)方法小结:第一步找对称点,第二步依次连线。
说明在找对称点的时候,如果图形的顶点在对称轴上,那么这个点的对称点就是它自己,就不用找了。
(3)用这种方法完成其他两幅图并汇报交流。
今天,我们学习了轴对称图形,你有哪些收获呢?
留心我们的生活,你会发现轴对称图形、对称现象的物体无时无刻都在美化我们的生活。蝴蝶、蜻蜓等因为有了对称的翅膀,才能自由飞翔;我们的服装因为对称才显得大方、典雅;古今中外,有许多的建筑也是对称的,多么神奇,多么美丽。我们只要用心思考,就会感到对称的力量。