高等代数北大版教案-第5章二次型

时间:2019-05-12 17:04:47下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《高等代数北大版教案-第5章二次型》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《高等代数北大版教案-第5章二次型》。

第一篇:高等代数北大版教案-第5章二次型

第五章 二次型

§1 二次型的矩阵表示

一 授课内容:§1 二次型的矩阵表示

二 教学目的:通过本节的学习,掌握二次型的定义,矩阵表示,线性替换和矩阵的合同.三 教学重点:矩阵表示二次型

四 教学难点:二次型在非退化下的线性替换下的变化情况.五 教学过程:

定义:设P是一数域,一个系数在数域P中的x1,x2,,xn的二次齐次多项式

f(x1,x2,,xn)a11x122a12x1x22a1nx1xn(3)a22x22a2nx2xn…annxn称为数域P上的一个n元二次型,或者,简称为二次型.22例如:x1x1x23x1x32x2 就是有理数域上的一个4x2x33x323元二次型.定义1 设x1,x2,,xn,y1,y2,,yn是两组文字,系数在数域P中的一组关系式

x1c11y1c12y2c1nynxcycycy22112222nn (4)xncn1y1cn2y2cnnyn称为x1,x2,,xn到y1,y2,,yn的一个线性替换,或则,简称为线性替换.如果系数行列式 cij0,那么线性替换(4)就称为非退化的.二次型的矩阵表示:

·48·令 aijaji,ij 由于 xixjxjxi,那么二次型(3)就可以写为

f(x1,x2,,xn)a11x12a12x1x2a1nx1xn a21x2x1a22x2a2nx2xn…+an1xnx1an2xnx2annxnnnaijxixj(5)

i1j1把(5)的系数排成一个nn矩阵

a11aA21an1a12a22an2a1na2n

ann它称为二次型(5)的矩阵.因为aijaji,i,j1,2,,n,所以

AA.我们把这样的矩阵称为对称矩阵,因此,二次型(5)的矩阵都是对称的.x1x2令X,于是,二次型可以用矩阵的乘积表示出来,xna11a21xnan1a12a22an2a1nx1a2nx2

annxnXAXx1x2x1x2a11x1a12x2a1nxnaxa22x2a2nxnxn211

axaxaxn22nnnn11aijxixj.i1j1nn故 f(x1,x2,,xn)XAX.·49· 显然,二次型和它的矩阵是相互唯一决定的.由此还能得到,若二次型

f(x1,x2,,xn)XAXXBX

且 AA,BB,则,AB 线性替换的矩阵表示

c11c21令Ccn1c1ny1c22c2ny2,Y,那么,线性替换(4)可以写成,ycn2cnnnc12x1c11x2c21xcnn1c1ny1c22c2ny2

cn2cnnync12或者XCY.显然,一个非退化的线性替换把二次型还是变成二次型,现在就来看一下替换后的二次型与原二次型之间有什么关系.设 f(x1,x2,,xn)XAX,AA,(7)是一个二次型,作非退化的线性替换

XCY(8)得到一个y1,y2,,yn的二次型YBY.现在来看矩阵B与矩阵A的关系 把(8)代入(7)有

f(x1,x2,,xn)XAX(CY)A(CY)YCACYY(CAC)YYBY.容易看出,矩阵CAC也是对称的,事实上,(CAC)CACCAC.由此,即得

BCAC.定义2 数域P上nn矩阵A,B称为合同的,如果有数域P上可逆的nn矩阵C,使

BCAC.合同是矩阵之间的一个关系,不难看出,合同关系具有

·50·(1)反身性 AEAE.(2)对称性 由 BCAC,即得A(C1)B(C1).(3)传递性 由A1C1AC1,A2C2A1C2,即得A2(C1C2)A(C1C2).因之,经过非退化的线性替换,替换后的二次型的矩阵与原二次型矩阵是合同的.§2 标准形

一 授课内容:§2 标准形

二 教学目的:通过定理的证明掌握二次型化为标准形的配方法.三 教学重点:化普通的二次型为标准形.四 教学难点:化普通的二次形为标准形的相应矩阵表示.五 教学过程:

I 导入

可以认为,在二次型中最简单的一种是只含有平方项的二次型 d1x12d2x2(1)dnxnII 讲授新课

定理1 二次型都可以经过非退化的线性替换变为平方和(1)的形式.不难看出,二次型(1)的.d100d2xn0000dn22=x1d1x12d2x2dnxnx2x1x2.xn反过来,矩阵是对角形的二次型就只含有平方项.定理2 在数域P上,任意一个对称矩阵都合同于一对角矩阵.定义 二次型f(x1,x2,,xn)经过非退化的线性替换所变成的平方和称为f(x1,x2,,xn)的一个标准形.·51· 例 化二次型

f(x1,x2,x3)2x1x26x2x32x1x3

为标准形.解:作非退化的线性替换

x1y1y2x2y1y2 xy33则f(x1,x2,x3)2(y1y2)(y1y2)6(y1y2)y32(y1y2)y3

2222y122y24y1y38y2y32(y1y3)22y32y28y2y3

z1y1y3y1z1z3再令 z2y2或y2z2

yzzy3333222则f(x1,x2,x3)2z122z2.8z2z32z32z122(z22z3)26z3w1z1z1w1最后令 w2z22z3或z2w22w3

wzzw333322则 f(x1,x2,x3)2w122w2 6w3是平方和,而这几次线性替换的结果相当于作一个总的线性替换,3w1x1110101100w111x2110010012w2011w2.x001001001w00133w3用矩阵的方法来解 例 化二次型

f(x1,x2,x3)2x1x26x2x32x1x3

为标准形.101解:f(x1,x2,x3)的矩阵为A103.130

·52·110C110取1,则A1C1AC1

001111020211001110103110024.001130001240101再取C2010,则A2C2A1C2

001021012001002010024010024.101240001042100再取C3012,则A3C3A2C3

001010010020010024012 021042001A3是对角矩阵,因此令

311010110011CC1C2C3110010012111,001001001001就有

200CAC020.006作非退化的线性替换

XCY

即得

22.f(x1,x2,x3)2y122y26y3

·53·

§3 唯一性

一 授课内容:§3 唯一性

二 教学目的: 通过本节的学习,让学生掌握复二次型,实二次型的规范形,正(负)惯性指数,符号差.三 教学重点:复二次型,实二次型的规范形的区别及唯一性的区别.四 教学难点:实二次型的唯一性 五 教学过程:

在一个二次型的标准形中,系数不为零的平方项个数是唯一确定的,与所作的非退化的线性替换无关.二次型的矩阵的秩有时候就称为二次型的秩.至于标准形的系数就不是唯一的.例 二次型f(x1,x2,x3)2x1x26x2x32x1x3经过非退化的线性替换

3w1x111x0112w2 x0013w3得到标准形

22.2w122w26w3而经过非退化的线性替换

x1x2x3112112001y11y2 31y33就得到另一个标准形

1222y2y3.23这就说明,在一般的数域内,二次型的标准形不是唯一的,而与所作

2y12

·54·的非退化的线性替换有关.下面只就复数域与实数域的情形来进一步讨论唯一性的问题.对于复数域的情形

设f(x1,x2,,xn)是一个复系数的二次型,则经过一个适当的非退化的线性替换后,f(x1,x2,,xn)变为标准形,不妨设标准形为

2d1y12d2y2dryr2,di0,i1,2,,r(1)易知,r就是f(x1,x2,,xn)的矩阵的秩.因为复数总可以开平方,我们再作一非退化的线性替换

1yz11d1yr1zr(2)dryr1zr1ynzn(1)就变为 z12z2zr2(3)(3)称为复二次型f(x1,x2,,xn)的规范形.显然,规范形完全被原二次型的矩阵的秩所决定.定理3 任意一个复系数的二次型,经过一个适当的非退化的线性替换可以变为规范形,规范形是唯一的.定理3换个说法就是,任意一个复的对称矩阵合同于一个形式为

11

00的对角矩阵.从而有,两个复对称矩阵合同的充分必要条件是它们的秩相等.·55· 对于实数域的情形

设f(x1,x2,,xn)是一个实系数的二次型,则经过一个适当的非退化的线性替换,再适当排列文字的次序,可使f(x1,x2,,xn)变为标准形,d1y12dpy2dryr2(4)pdp1yp1di0 i1,2,,r,r就是f(x1,x2,,xn)的矩阵的秩.因为在实数域中,正实数总可以开平方,所以,再作一非退化的线性替换

1yz11d1yr1zr (5)dryr1zr1ynzn(4)就变为 z12z2pzp1zr(6)(6)称为实二次型f(x1,x2,,xn)的规范形.显然,规范形完全被r,p这两个数所决定.定理4(惯性定理)任意一个实数域上的二次型,经过一个适当的非退化的线性替换可以变为规范形,规范形是唯一的.定义3 在实二次型f(x1,x2,,xn)的规范形中,正平方项的个数p称为f(x1,x2,,xn)的正惯性指数,负平方项的个数rp称为f(x1,x2,,xn)的负惯性指数,它们的差p(rp)2pr称为f(x1,x2,,xn)的符号差.惯性定理也可以叙述为,实二次型的标准形中系数为正的平方项个数是唯一的,它等于正惯性指数,而系数为负的平方项个数也是唯一的,它等于负惯性指数.·56·

§4 正定二次型

一 授课内容:§4 正定二次型

二 教学目的:通过本节的学习,让学生掌握正定(负定,半正定,半负定,不定)二次型或矩阵.(顺序)主子式的定义,掌握各种类型的判别法.三 教学重点:正定二次型.四 教学难点:判别方法 五 教学过程:

定义4 实二次型f(x1,x2,,xn)称为正定的,如果对于任意一组不全为零的实数c1,c2,,cn都有f(c1,c2,,cn)0.显然,二次型 f(x1,x2,,xn)x12xn2是正定的,因为只有在c1c2cn0时,c12cn才为零.一般的,实二次型 f(x1,x2,,xn)d1x12d2x2dnxn是正定的,当且仅当di0 i1,2,,n.可以证明,非退化的实线性替换保持正定性不变.定理5 n元实二次型f(x1,x2,,xn)是正定的充分必要条件是它的正惯性指数等于n.定理5说明,正定二次型f(x1,x2,,xn)的规范形为 y12yn(5)定义5 实对称矩阵A称为正定的,如果二次型XAX正定.因为二次型(5)的矩阵是单位矩阵E,所以一个实对称矩阵是正定的,·57· 当且仅当它与单位矩阵合同.推论 正定矩阵的行列式大于零.定义6 子式

a11Pia21ai1a12a1ia22a2i(i1,2,,n)

ai2aii称为矩阵A(aij)nn的顺序主子式.定理6 实二次型

f(x1,x2,,xn)aijxixjXAX

i1j1nn是正定的充分必要条件为矩阵A的顺序主子式全大于零.例 判断二次型

22f(x1,x2,x3)5x12x2x34x1x28x1x34x2x3

是否正定.解:f(x1,x2,x3)的矩阵为

245212 425它的顺序主子式

52452120 50,0,221425因之,f(x1,x2,x3)正定.与正定性平行,还有下面的概念.定义7 设f(x1,x2,,xn)是一实二次型,对于任意一组不全为零的实数c1,c2,,cn,如果都有f(c1,c2,,cn)0,那么f(x1,x2,,xn)称为负定的;如果都有f(c1,c2,,cn)0,那么f(x1,x2,,xn)称为半正定的;

·58·如果都有f(c1,c2,,cn)0,那么f(x1,x2,,xn)称为半负定的;如果它既不是半正定又不是半负定,那么f(x1,x2,,xn)就称为不定的.对于半正定,我们有

定理7 对于实二次型f(x1,x2,,xn)XAX,其中A是实对称的,下面条件等价:

(1)f(x1,x2,,xn)是半正定的.(2)它的正惯性指数与秩相等.(3)有可逆实矩阵C,使

d1d2CAC,其中,di0 i1,2,,n.dn(4)有实矩阵C使ACC.(5)A的所有主子式皆大于或等于零.注意:在(5)中,仅有顺序主子式大于或等于零是不能保证半正定性的.比如,f(x1,x2)xx12200x1x201x 就是一个反例.2

·59·

第二篇:高等代数北大版教案-第6章线性空间

第六章 线性空间

§1 集合映射

一 授课内容:§1 集合映射

二 教学目的:通过本节的学习,掌握集合映射的有关定义、运算,求和号与乘积号的定义.三 教学重点:集合映射的有关定义.四 教学难点:集合映射的有关定义.五 教学过程: 1.集合的运算,集合的映射(像与原像、单射、满射、双射)的概念 定义:(集合的交、并、差)设S是集合,A与B的公共元素所组成的集合成为A与B的交集,记作AB;把A和B中的元素合并在一起组成的集合成为A与B的并集,记做AB;从集合A中去掉属于B的那些元素之后剩下的元素组成的集合成为A与B的差集,记做AB.定义:(集合的映射)设A、B为集合.如果存在法则f,使得A中任意元素a在法则f下对应B中唯一确定的元素(记做f(a)),则称f是A到B的一个映射,记为

f:AB,af(a).如果f(a)bB,则b称为a在f下的像,a称为b在f下的原像.A的所有元素在f下的像构成的B的子集称为A在f下的像,记做f(A),即f(A)f(a)|aA.若aa'A,都有f(a)f(a'), 则称f为单射.若 bB,都存在aA,使得f(a)b,则称f为满射.如果f既是单射又是满射,则称f为双射,或称一一对应.2.求和号与求积号(1)求和号与乘积号的定义

为了把加法和乘法表达得更简练,我们引进求和号和乘积号.设给定某个数域K上n个数a1,a2,,an,我们使用如下记号:

·60·a1a2anai, a1a2anai.i1i1nn当然也可以写成

a1a2an(2)求和号的性质 容易证明,1inai, a1a2an1inai.aiai,(aibi)aibi,aijaij.i1i1i1i1i1nnnnnnmmni1j1j1i1事实上,最后一条性质的证明只需要把各个元素排成如下形状:

a11a21an1a12a22an2a1ma2m

anm分别先按行和列求和,再求总和即可.§2 线性空间的定义与简单性质

一 授课内容:§2 线性空间的定义与简单性质

二 教学目的:通过本节的学习,掌握线性空间的定义与简单性质.三 教学重点:线性空间的定义与简单性质.四 教学难点:线性空间的定义与简单性质.五 教学过程:

1.线性空间的定义

(1)定义4.1(线性空间)设V是一个非空集合,且V上有一个二元运算“+”(VVV),又设K为数域,V中的元素与K中的元素有运算数量

·61· 乘法“”(KVV),且“+”与“”满足如下性质:

1、加法交换律 ,V,有;

2、加法结合律 ,,V,有()();

3、存在“零元”,即存在0V,使得V,0;

4、存在负元,即V,存在V,使得0;

5、“1律” 1;

6、数乘结合律 k,lK,V,都有(kl)k(l)l(k);

7、分配律 k,lK,V,都有(kl)kl;

8、分配律 kK,,V,都有k()kk, 则称V为K上的一个线性空间,我们把线性空间中的元素称为向量.注意:线性空间依赖于“+”和“”的定义,不光与集合V有关.(2)零向量和负向量的唯一性,向量减法的定义,线性空间的加法和数乘运算与通常数的加、乘法类似的性质

命题4.1 零元素唯一,任意元素的负元素唯一.证明:设0与0'均是零元素,则由零元素的性质,有00'00';

V,设,'都是的负向量,则

0(')'()0, 于是命题得证.由于负向量唯一,我们用代表的负向量.定义4.2(减法)我们定义二元运算减法“-”如下:

定义为().命题4.2 线性空间中的加法和数乘满足如下性质:

1、加法满足消去律 ;

2、可移项 ;

3、可以消因子 k且k0,则1; k4、00, k00,(1).(3)线性空间的例子

·62·例4.1令V表示在(a,b)上可微的函数所构成的集合,令K,V中加法的定义就是函数的加法,关于K的数乘就是实数遇函数的乘法,V构成K上的线性空间.4.1.2线性空间中线性组合和线性表出的定义,向量组的线性相关与线性无关的定义以及等价表述,向量组的秩,向量组的线性等价;极大线性无关组.定义4.3(线性组合)给定V内一个向量组1,2,,s,又给定数域K内s个数k1,k2,,ks,称k11k22kss为向量组1,2,,s的一个线性组合.定义4.4(线性表出)给定V内一个向量组1,2,,s,设是V内的一个向量,如果存在K内s个数k1,k2,,ks,使得k11k22kss,则称向量可以被向量组1,2,,s线性表出.定义4.5(向量组的线性相关与线性无关)给定V内一个向量组1,2,,s,如果对V内某一个向量,存在数域K内不全为零的数k1,k2,,ks,使得k11k22kss0,则称向量组1,2,,s线性相关;若由方程k11k22kss0必定推出k1k2ks0,则称向量组1,2,,s线性无关.命题4.3 设1,2,sV,则下述两条等价: 1)1,2,s线性相关; 2)某个i可被其余向量线性表示.证明同向量空间.定义4.6(线性等价)给定V内两个向量组

1,2,,r(Ⅰ), 1,2,,s(Ⅱ), 如果(Ⅰ)中任一向量都能被(Ⅱ)线性表示,反过来,(Ⅱ)中任一向量都能被(Ⅰ)线性表示,则称两向量组线性等价.定义4.7(极大线性无关部分组)给定V内一个向量组1,2,,s,如

·63· 果它有一个部分组i1,i2,,ir满足如下条件:(i)、i1,i2,,ir线性无关;

(ii)、原向量组中任一向量都能被i1,i2,,ir线性表示, 则称此部分组为原向量组的一个极大线性无关部分组.由于在向量空间中我们证明的关于线性表示和线性等价的一些命题中并没有用到Kn的一些特有的性质,于是那些命题在线性空间中依然成立.定义4.8(向量组的秩)一个向量组的任一极大线性无关部分组中均包含相同数目的向量,其向量数目成为该向量组的秩.例4.2 求证:向量组e1x,e2x的秩等于2(其中12).证明:方法一:设k1,k2∈R,满足k1e1xk2e2x0,则k1e1xk2e2x,假若k1,k2不全为零,不妨设k10,则有e(12)xk2,而由于12,等号左k1边为严格单调函数,矛盾于等号右边为常数.于是k1k20.所以e1x,e2x线性无关,向量组的秩等于2.证毕.方法二:若在(a,b)上k1e1xk2e2x0, 两端求导数,得k11e1xk22e2x0,cck1e1k2e20,以xc(a,b)代入,有 1c2ck11ek22e0.而e1ce2c1e2c2e2ce(12)c(21)0, 于是k1k20.证毕.·64·§3 维数、基与坐标

一 授课内容:§3 维数、基与坐标

二 教学目的:通过本节的学习,掌握线性空间的基与维数,向量的坐标的有关定义及性质.三 教学重点:基与维数、向量坐标的有关定义.四 教学难点:基与维数、向量坐标的有关定义.五 教学过程: 1.线性空间的基与维数,向量的坐标 设V是数域K上的线性空间,则有: 定义4.9(基和维数)如果在V中存在n个向量1,2,,n,满足: 1)1,2,,n线性无关;

2)V中任一向量在K上可表成1,2,,n的线性组合, 则称1,2,,n为V的一组基.基即是V的一个极大线性无关部分组.基的个数定义为线性空间的维数.命题4.4 设V是数域K上的n维线性空间,而1,2,,nV.若V中任一向量皆可被1,2,,n线性表出,则1,2,,n是V的一组基.证明:由1,2,,n与V的一组基线性等价可以推出它们的秩相等.命题4.5 设V为K上的n维线性空间,1,2,,nV,则下述两条等价: 1)1,2,,n线性无关;

2)V中任一向量可被1,2,,n线性表出.定义4.10(向量的坐标)设V为K上的n维线性空间,1,2,,n是它的一组基.任给V,由命题4.4,可唯一表示为1,2,,n的线性组合,即!aiK,(i1,2,,n),使得a11a22ann,于是我们称a1,a2,,an为在基1,2,,n下的坐标.易见,在某组基下的坐标与V/K中的向量是一一对应的关系.·65· §4 基变换与坐标变换

一 授课内容:§4 基变换与坐标变换

二 教学目的:通过本节的学习,掌握基变换与过渡矩阵的定义、运算, 坐标变换公式.三 教学重点:基变换与过渡矩阵的定义、运算, 坐标变换公式.四 教学难点:坐标变换公式的应用.五 教学过程: 1.线性空间的基变换,基的过渡矩阵

设V/K是n维线性空间,设1,2,,n和1,2,,n是两组基,且

1t111t212tn1n,ttt,2121222n2n nt1n1t2n2tnnn.将其写成矩阵形式

t11t12t1nttt2n(1,2,,n)(1,2,,n)2122.tttnnn1n2定义4.11 我们称矩阵

t11t12t1nttt2nT2122 tttnnn1n2为从1,2,,n到1,2,,n的过渡矩阵.命题4.6 设在n维线性空间V/K中给定一组基1,2,,n.T是K上一个n阶方阵.命

(1,2,,n)(1,2,,n)T.·66·则有1,2,,n是V/K的一组基,当且仅当T可逆.证明:若1,2,,n是线性空间V/K的一组基,则1,2,,n线性无关.考察同构映射:VKn,在1,2,,n下的坐标,构造方程

k1(1)k2(2)kn(n)0, 其中kiK,(i1,2,,n), (k11k22knn)0k11k22knn0, k1k2kn0(1),(2),,(n)线性无关.(1),(2),,(n)构成了过渡矩阵的列向量,所以过渡矩阵可逆;

反过来,若过渡矩阵可逆,则构造方程

k11k22knn0,其中kiK,(i1,2,,n), 两边用作用,得到k1(1)k2(2)kn(n)0, k1k2kn0.证毕.2.向量的坐标变换公式;Kn中的两组基的过渡矩阵(1)向量的坐标变换公式

设V/K有两组基为1,2,,n和1,2,,n,又设在1,2,,n下的坐标为a1,a2,,an,即

a1a(1,2,,n)2,an在1,2,,n下的坐标为(b1,b2,,bn),即

b1b(1,2,,n)2.bn现在设两组基之间的过渡矩阵为T,即(1,2,,n)(1,2,,n)T.记

·67·

a1b1ab22X,Y, abnn于是

(1,2,,n)X(1,2,,n)Y[(1,2,,n)T]Y(1,2,,n)(TY).于是,由坐标的唯一性,可以知道XTY,这就是坐标变换公式.(2)Kn中两组基的过渡矩阵的求法 我们设Kn中两组基分别为

1(a11,a12,,a1n),2(a21,a22,,a2n),n(an1,an2,,ann).和

1(b11,b12,,b1n),2(b21,b22,,b2n),n(bn1,bn2,,bnn).而(1,2,,n)(1,2,,n)T.按定义,T的第i个列向量分别是i在基1,2,,n下的坐标.将1,2,,n和1,2,,n看作列向量分别排成矩阵

a11a21Aan1a12a1nb11b12b1na22a2nbbb21222n;B,ban2annbbnnn1n2则有BAT,将A和B拼成n2n分块矩阵A|B,利用初等行变换将左边矩阵A化为单位矩阵E,则右边出来的就是过渡矩阵T,示意如下:(A|B)行初等变换(E|T).·68·

§5 线性子空间

一 授课内容:§5 线性子空间

二 教学目的:通过本节的学习,掌握线性子空间的定义、判别定理.三 教学重点:线性子空间的定义、判别定理.四 教学难点:线性子空间的判别定理.五 教学过程: 1.线性空间的子空间的定义

定义4.12(子空间)设V是数域K上的一个线性空间,M时V的一个非空子集.如果M关于V内的加法与数乘运算也组成数域K上的一个线性空间,则称为V的一个子空间.命题4.7 设V是K上的线性空间,又设一个非空集合WV,则W是子空间当且仅当下述两条成立: i)W对减法封闭; ii)W对于K中元素作数乘封闭.证明:必要性由定义直接得出;

充分性:各运算律在V中已有,所以W满足运算律的条件.只需要证明0W且对于任意W,W,且对加法封闭即可.事实上,由于W关于数乘封闭,则00W;(1)W,于是对于,W,()W,W关于加法封闭.于是W是V的一个子空间.证毕.事实上,W关于加法和数乘封闭也可以得出上述结论.命题4.8 设W是V的一个有限维子空间,则W的任一组基可以扩充为V的一组基.证明:设dimVn,dimWr,(rn),若rn,则命题为真; 若rn,对nr作归纳:设1,2,,r为W的一组基,取r1VW,则1,2,,r,r1线性无关.于是令W'{kr1|W,kK},易见,W’是V的一个子空间,且dimW'r1,此时ndimW'nr1,对其用归纳假设即可.·69· §6 子空间的交与和

一 授课内容:§6子空间的交与和

二 教学目的:通过本节的学习,掌握子空间的交与和的定义、性质及维数公式.三 教学重点:子空间的交与和的定义及维数公式.四 教学难点:子空间的交与和的性质及维数公式..五 教学过程: 1.子空间的交与和,生成元集 定义4.13 设1,2,,tV,则

k11k22ktt|kiK,i1,2,,t

是V的一个子空间,称为由1,2,,t生成的子空间,记为L(1,2,,t).易见,生成的子空间的维数等于1,2,,t的秩.定义4.14(子空间的交与和)设V1,V2为线性空间V/K的子空间,定义

V1V2{vV1且vV2},称为子空间的交; V1V2{v1v2|v1V1,v2V2},称为子空间的和.命题4.9 V1V2和V1V2都是V的子空间.证明:由命题4.7,只需要证明V1V2和V1V2关于加法与数乘封闭即可.事实上,,V1V2,则,V1,,V2.由于V1,V2均是V的子空间,则V1,V2,于是V1V2,V1V2关于加法封闭;V1V2,kK,kvV1,kvV2,于是kvV1V2,V1V2关于数乘封闭.,V1V2,则由V1V2的定义,1,1V1,2,2V2,使得,121,2而11V1,22V2,则

(12)(12)(11)(22)V1V2, V1V2关于加法封闭;V1V2,kK,1V1,2V2,使得12,由于k1V1,k2V2,则kk(12)k1k2V1V2,V1V2关于

·70·数乘封闭.证毕.命题4.10 设V1,V2,,Vm是V的子空间,则V1V2Vm和V1V2Vm均为V的子空间.2.维数公式.定理4.1 设V为有限维线性空间,V1,V2为子空间,则

dim(V1V2)dimV1dimV2dim(V1V2).这个定理中的公式被称为维数公式.证明:设dimV1s,dimV2t,dim(V1V2)n,dim(V1V2)r,取V1V2的一组基1,2,,r(若V1V2=0,则r0,基为空集),将此基分别扩充为V1,V2的基

1,2,,r,1,2,,sr, 1,2,,r,1,2,,tr, 只需要证明1,2,,r,1,2,,sr,1,2,tr是V1V2的一组基即可.首先,易见V1V2中的任一向量都可以被1,2,,r,1,2,,sr,1,2,,tr线性表出.事实上,V1V2,则12,其中1V1,2V2,而

1k11k22krrkr11kr22kssr,2l11l22lrrlr11lr22lttr.ki,ljK 于是12可被1,2,,r,1,2,,lr,1,2,tr线性表出.只要再证明向量组1,2,,r,1,2,,lr,1,2,,tr线性无关即可.设k11k22krra11a22asrsrb11b22btrtr0, 其中ki,aj,bhK.则

k11k22krra11a22asrsrb11b22btrtr(*)于是

k11k22krra11a22asrsrV1, b11b22btrtrV2,·71· 于是k11k22krra11a22asrsrV1V2,记为.则可被1,2,,r线性表示,设

h11h22hrr, 代入(*),有

h11h22hrrb11b22btrtr0, 由于1,2,,r,1,2,,tr是V2的一组基,所以线性无关,则

h1h2hrb1b2btr0, 代回(*),又有k1k2kra1a2asr0, 于是向量组1,2,,r,1,2,,sr,1,2,,tr线性无关.证毕.推论2.1 设V1,V2,,Vt都是有限为线性空间V的子空间,则: dim(V1V2Vt)dimV1dimV2dimVt.证明:对t作归纳.§7 子空间的直和

一 授课内容:§7 子空间的直和

二 教学目的:通过本节的学习,掌握子空间的直和与补空间的定义及性质.三 教学重点:子空间的直和的四个等价定义.四 教学难点:子空间的直和的四个等价定义.五 教学过程: 1.子空间的直和与直和的四个等价定义

定义 设V是数域K上的线性空间,V1,V2,,Vm是V的有限为子空间.若对于Vi中任一向量,表达式

i1m12m,iVi,i1,2,,m.·72·是唯一的,则称Vi为直和,记为

i1mV1V2Vm或Vi.i1m定理 设V1,V2,,Vm为数域K上的线性空间V上的有限为子空间,则下述四条等价: 1)V1V2Vm是直和; 2)零向量表示法唯一;

ˆV){0},i1,2,,m; 3)Vi(V1Vim4)dim(V1V2Vm)dimV1dimV2dimVm.证明: 1)2)显然.2)1)设12m12m,则

(11)(22)(mm)0.由2)知,零向量的表示法唯一,于是

ii,i1,2,,m, 即的表示法唯一.由直和的定义可知,V1V2Vm是直和.ˆV){0},2)3)假若存在某个i,1im,使得Vi(V1VimˆV),于是存在V,使得 则存在向量0且Vi(V1Vjjimˆim.1由线性空间的定义,ˆV), Vi(V1Vim则1()m()0,与零向量的表示法唯一矛盾,于是

ˆV){0},i1,2,,m.Vi(V1Vim3)2)若2)不真,则有

01im, 其中jVj(j1,2,,m)且i0.于是

ˆV), ˆimVi(V1Vi1im

·73· 与3)矛盾,于是2)成立.3)4)对m作归纳.①m=2时,由维数公式得到

dim(V1V2)dimV1dimV2dim(V1V2)dimV1dimV2.②设m1(m3)已证,则对于m, dim(V1V2Vm)dimVmdim(V1V2Vm1)dim(Vm(V1V2Vm1))dimVmdim(V1V2Vm1),而i,1im1,都有

垐Vi(V1ViVm1)Vi(V1ViVm){0};

由归纳假设,可以得到dim(V1V2Vm)dimV1dimV2dimVm.4)3)i,1im,都有

垐dim(Vi(V1ViVm))dim(Vi)dim(V1ViVm)dim(V1V2Vm)0, ˆV){0},i1,2,,m.证毕.于是Vi(V1Vim推论 设V1,V2为V的有限维子空间,则下述四条等价: i)V1V2是直和; ii)零向量的表示法唯一; iii)V1V2{0};

iv)dim(V1V2)dimV1dimV2.2.直和因子的基与直和的基

命题 设VV1V2Vm,则V1,V2,,Vm的基的并集为V的一组基.证明: 设i1,i2,,ir是Vi的一组基,则V中任一向量可被

i{i1mi1,i2,,ir}线性表出.又dimVdimVir1r2rm,由命题4.5,imi1它们线性无关,于是它们是V的一组基.证毕.3.补空间的定义及存在性

定义 设V1为V的子空间,若子空间V2满足VV1V2,则称为V1的补

·74·空间.命题 有限维线性空间的任一非平凡子空间都有补空间.证明: 设V1为K上的n为线性空间V的非平凡子空间,取V1的一组基1,2,,r,将其扩为V的一组基1,2,,r,r1,r2,,n取V2L(r1,r2,,n),则有

VV1V2,且dimV1dimV2ndim(V1V2), 于是VV1V2,即V2是V1的补空间.证毕.§8 线性空间的同构

一 授课内容:§1线性空间的同构

二 教学目的:通过本节的学习,掌握线性空间同构的有关定义及线性空间同构的判定.三 教学重点:线性空间同构的判定.四 教学难点:线性空间同构的判定.五 教学过程: 1.线性映射的定义

定义 设U,V为数域K上的线性空间,:UV为映射,且满足以下两个条件: i)()()(),(,U); ii)(k)k(),(U,kK), 则称为(由U到V的)线性映射.由数域K上的线性空间U到V的线性映射的全体记为HomK(U,V),或简记为Hom(U,V).定义中的i)和ii)二条件可用下述一条代替: (kl)k()k(),(,U,k,lK).·75· 例 Mmn(K)是K上的线性空间,Msn(K)也是K上线性空间,取定一个K上的sm矩阵A,定义映射

:Mmn(K)Msn(K),xAX.则是由Mmn(K)到Msn(K)的线性映射.例 考虑区间(a,b)上连续函数的全体,它是R上的线性空间,令

UL(1,sinx,sin2x,,sinnx), VL(1,cosx,cos2x,,cosnx).再令

:则是由U到V的一个线性映射.定义 设:UV是线性映射

UV,f(x)AX.i)如果是单射,则称是单线性映射(monomorphism); ii)如果是满射,则称是满线性映射(endmorphism);

iii)如果既单且满,则称为同构映射(简称为同构,isomorphism),并说U与V是同构的,同构映射也称为线性空间的同态(homomorphism),同构映射的逆映射也是同构映射;

iv)的核(kernel)定义为ker{U|()0};

v)的像(image)定义为im={V|U,s.t()},也记为(U);

命题 ker和im是V的子空间.证明:容易证明它们关于加法和数乘封闭.vi)的余核定义为cokerV/im.命题 线性映射f是单的当且仅当kerf{0},f是满的当且仅当cokerf{0}.定理(同态基本定理)设f:UV是数域K上的线性空间的满线性

·76·映射,则映射

:U/kerfV,kerff().是同构映射.证明:首先证明是映射,即若'U/kerf,则()(').由于',存在kerf,使得'.于是

f()f(')f(')f()f('),即()(').再证明是线性映射.,U/ker,k,lK,有

(kl)f(kl)kf()lf()k()l().易见是满射,且有Vimf.只要再证明是单射即可,即证明.设ker,则()f()0,于是kerf,即有0.ker{0}证毕.命题 设:UV是线性映射,dimUn,则下述三条等价: i)单;

ii)将U中任意线性无关组映为V中的线性无关组; iii)dim(U)n.证明:i)ii)若1,2,,tV线性无关,则令

k1(1)k2(2)kt(t)0, 由线性映射的定义,(k11k22ktt)0.单,于是k11k22ktt0,则k1k2kt0,ii)成立;

ii)iii)若取U的一组基1,2,,n,则由已知, (1),(2),,(n)线性无关,而im中任意向量可以被(1),(2),,(n)线性表出,于是(1),(2),,(n)构成im的一组基,iii)成立;

iii)i)由同态基本定理知U/kerim,于是diUmdimkerdimke,r即有ker{0}.证毕.·77·

第三篇:高等代数教案第四章线性方程组

第四章

线性方程组

一 综述

线性方程组是线性代数的主要内容之一.本章完满解决了关于线性方程组的三方面的问题,即何时有解、有解时如何求解、有解时解的个数,这在理论上是完美的.作为本章的核心问题是线性方程组有解判定定理(相容性定理),为解决这个问题,从中学熟知的消元法入手,分析了解线性方程组的过程的实质是利用同解变换,即将方程的增广矩阵作行变换和列的换法变换化为阶梯形(相应得同解方程组),由此相应的简化形式可得出有无解及求其解.为表述由此得到的结果,引入了矩阵的秩的概念,用它来表述相容性定理.其中实质上也看到了一般线性方程组有解时,也可用克莱姆法则来求解(由此得所谓的公式解——用原方程组的系数及常数项表示解).内容紧凑,方法具体.其中矩阵的秩的概念及求法也比较重要,也体现了线性代数的重要思想(标准化方法).线性方程组内容的处理方式很多,由于有至少五种表示形式,其中重要的是矩阵形式和线性形式,因而解线性方程组的问题与矩阵及所谓线性相关性关系密切;本教材用前者(矩阵)的有关问题讨论了有解判定定理,用后者讨论了(有无穷解时)解的结构.实际上线性相关性问题是线性代数非常重要的问题,在以后各章都与此有关.另外,从教材内容处理上来讲,不如先讲矩阵及线性相关性,这样关于线性方程组的四个问题便可同时讨论.二 要求

掌握消元法、矩阵的初等变换、秩、线性方程组有解判定定理、齐次线性方程组的有关理论.重点:线性方程组有解判别法,矩阵的秩的概念及求法.4.1 消元法

一 教学思考

本节通过具体例子分析解线性方程组的方法——消元法,实质是作方程组的允许变换(同解变换)化为标准形,由此得有无解及有解时的所有解.其理论基础是线性方程组的允许变换(换法、倍法、消法)是方程组的同解变换.而从形式上看,施行变换的过程仅有方程组的系数与常数项参与,因而可用矩阵(线性方程组的增广矩阵)表述,也就是对(增广)矩阵作矩阵的行(或列换法)初等变换化为阶梯形,进而化为标准阶梯形,其体现了线性代数的一种重要的思想方法——标准化的方法.二 内容要求

主要分析消元法解线性方程组的过程与实质,以及由同解方程组讨论解的情况(存在性与个数),为下节作准备,同时指出引入矩阵的有关问题(初等变换等)的必要性,矩阵的初等变换和方程组的同解变换间的关系.三 教学过程

11x213x2x3151.引例:解方程组x1x23x3

3(1)

32x4x5x21233定义:我们把上述三种变换叫做方程组的初等变换,且依次叫换法变换、倍法变换、消法变换.2.消元法的理论依据

TH4.1.1初等变换把一个线性方程组变为与它同解的线性方程组(即线性方程组的初等变换是同解变换.)

3.转引

在上面的讨论中,我们看到在对方程组作初等变换时,只是对方程组的系数与常数项进行了运算,而未知数没有参加运算,也就是说线性方程组有没有解以及有什么样的解完全决定于它的系数和常数项,因

a11a21Aa12a22a1na2n,则A可经过一系列行初等变换和第一种列初等变换化为如下形式:

am1aam2mn1010001brr1; 000000000000进而化为以下形式:

1000c1r1c1n0100cc2r12n0001crr1crn.其中r0,rm,rn,“”表示不同的元素.0000000000005)用矩阵的初等变换解线性方程组

a11x1对线性方程组:a12x2a1nxnb1ax1a22x2a2nxnb212

(1)am1x1am2x2amnxnbma11a12a1n由定理1其系数矩阵Aaaa21222n可经过行初等变换和列换法变换化为 am1am2amn1000c1r1c1n0100cc2r12n0001crr1crn;则对其增广矩阵 000000000000

y1d1c1r1kr1c1nknydckck22r1r12nn2,这也是(1)的解,由kr1,,kn的任意性(1)有无穷多解.yrdrcrr1kr1crnknyr1kr1ynknx12x23x3x452x4xx3124例1 解线性方程组.x12x25x32x48x12x29x35x421解:对增广矩阵作行初等变换:

23151140132A01252801295210200100001212003213 60013x2xx24122同解,故原方程组的一般解为所原方程组与方程组113x3x42631x2xx42122.131x3x4624.2 矩阵的秩

线性方程组可解判别法

一 教学思考

1.本节在上节消元法对线性方程组的解的讨论的基础上,引入了矩阵的秩的概念,以此来表述有解判定定理,在有解时从系数矩阵的秩与未知数的个数间的关系可讨论解的个数,其中在有无数解时引入了一般解与通解的概念.2.矩阵的秩的概念是一个重要的概念,学生易出问题.定义的表述不易理解,应指出秩是一个数(非负整数)r,其含义是至少有一个r阶非零子式,所有大于r阶(若有时)子式全为0.重要的是“秩”的性质——初等变换下不变,提供了求秩的另一方法——初等变换法.3.本节内容与上一节和下一节互有联系,结论具体,方法规范,注意引导总结归纳.二 内容要求

1. 内容:矩阵的秩、线性方程组可解判定定理

2. 要求:掌握矩阵的秩的概念、求法及线性方程组求解判定定理 二 教学过程

1.矩阵的秩(1)定义

x1x2x31x1x2x3 xxx23124.3 线性方程组的公式解

一 教学思考

1.本节在理论上解决了当线性方程组有解时,用原方程组的系数和常数项将解表示出来——即公式解,结论的实质是克拉默法则的应用.其中过程是在有解判定的基础上选择r个适当方程而得,可归纳方法步骤(方程的选择、自由未知量的选择),内容规范完整,理论作用较大,实用性较小.2.作为特殊的线性方程组——齐次线性方程组的解的理论有特殊的结果,易于叙述和理解,需注意其特殊性(与一般的区别,解的存在性、解的个数等).二 内容要求

1.内容:线性方程组的公式解,齐次线性方程组的解

2.要求:了解线性方程组的公式解,掌握齐次线性方程组的解的结论 三 教学过程

1.线性方程组的公式解

a11x1a12x2a1nxnb1axaxaxb2112222nn2

(1)有解时,用方程组的系数和常数项把解本节讨论当方程组am1x1am2x2amnxnbm表示出来的问题——公式解.处理这个问题用前面的方法——消元法是不行的,因为这个过程使得系数和常数项发生了改变,但其思想即化简得同解线性方程组的思想是重要的,所以现今能否用其它方法把(1)化简得同解方程组且系数和常数项不变,才可能寻求公式解.x12x2x32,(G1)为此看例,考察2x13x2x33,(G2)

(2)

4xxx7,(G)3123显然G1,G2,G3间有关系G32G1G2,此时称G3是G1,G2的结果(即可用G1,G2线性表示).则方程组(2)与x12x2x32(G1)同解.2x3xx3(G)2321同样地,把(1)中的m个方程依次用G1,G2,,Gm表示,若在这m个方程中,某个方程Gi是其它若干个方程的结果,则可把(1)中的Gi舍去,从而达到化简的目的.即现在又得到化简(1)的方法:不考虑(1)中那些是其它若干个方程的结果,而剩下的方程构成与(1)同解的方程组.现在的问题是这样化简到何种程度为止,或曰这样化简的方程组最少要保留原方程组中多少个方程.由初等变换法,若(1)的r(A)r,则可把(1)归结为解一个含有r个方程的线性方程组.同样

TH4.3.1设方程组(1)有解,r(A)r(A)r(0),则可以在(1)中的m个方程中选取r个方程,使得剩下的mr个方程是这r个方程的结果.因而解(1)归结为解由这r个方程组成的方程组.下看如何解方程组:

第四篇:高等代数教案第一章基本概念

第一章

一 综述

基本概念

1.本章是本门课程所需要的最基本概念(集合、映射、整数的一些性质、数环和数域)和方法(数学归纳法、反证法).所需位置不同,可根据课时安排及进度分散处理.如集合、整数的一些整除性质、数学归纳法、数环和数域可先讲,映射可放在线性空间前讲.2.从内容上讲,除集合中的卡氏积的概念及数环、数域的概念外,其它内容是学生在中学数学当中熟知的,只不过是将有关内容的系统化、理论化(如整数的整除性、映射、数学归纳法,其在中学中熟知其一些事实,今在理论上加以严密论证).3.新的知识点是集合的卡氏积、数环、数域的概念,数学归纳法作为定理的论证.4.学习本部分的难点是:从概念出发进行推理论证,这需要从具体例子引导训练,逐步培养.二 重点、难点

1.重点在于所有基本概念,特别是引入的新概念.2.难点是可逆映射、整数的整除性、数学归纳法本身的证明.1.1

一 教学思考

1.集合可以作为不定义的概念来处理,有些教材上给出了一个简单刻化.2.确定一个集合A,就是要确定哪些是集合的元素,哪些不是集合的元素.说明一个集合包含哪些元素时,常用“列举法”、“示性法”(描述法).3.中学代数大部分的内容是计算,因此一开始遇到证明题时,往往不知从何入手,此需注意培养学生的推理能力,这里应通过证明“集合相等”来加强这方面的训练.4.为稍拓宽知识,可讲解一下补集、幂集等概念.二 重点、要求

1.重点、难点:卡氏积的概念及从概念出发(集合相等、子集等)进行推理.2.要求:使学生了解有关集合的刻化及运算,培养推理能力.三 教学过程

1.集合:简称集,在此是一个不定义的原始概念,通常可给出如下描述性的解释:即所谓集合,是指由某些确定的事物(或具有某种性质的事物)组成的集体.其中每个事物称为这个集合的元素.常用大写字母A、B、C表示集合,用小写字母a、b、c表示集合的元素.若a是集合A的元素,就说a属于A,记作aA,或者说A包含a.若a不是集合A的元素,就说a不属于A,记作aA,或者说A 不包含a.常采用两种方法:

(1)列举法:列出集合的所有元素(包括利用一定的规律列出无限集)的方法.如A1,2,3,.(2)示性法(描述法):给出集合所具有的特征性质.如Bx|x3x40表示方程

2x23x40的解集.2.集合的分类(按所含元素的个数分): 有限集:只含有有限多个元素的集合.无限集:由无限多个元素组成的集合.空集:不含任何元素的集合.用表示.约定:是任何集合的子集.3.集合间的关系:

(1)设A、B是两个集合.“xAxB”)子集:若A的每个元素都是B的元素,则称A是B的子集(即若..记作AB

如:f:RR,xx;g:RR,x2.映射的合成

x2.有fg.(1)定义3.设f:AB,g:BC是两个映射,对xA,有f(x)B,从而g(f(x))C,这样,对xA,就有C中唯一的g(f(x))与之对应,就得到A到C的一个映射,这个映射是由f:AB和g:BC所决定的,称为f与g的合成.记作gf.即:gf:AC,xg(f(x)).例子:f:RR,xx2;g:RR,xsinx.则

gf:RR,xsinx2;fg:RR,xsin2x.(2)映射合成满足结合律:

设f:AB,g:BC,h:CD,则由合成映射的定义可得AD的两个映射:h(gf),(hg)f,则h(gf)(hg)f.3.几类特殊映射

定义4.设f:AB,对xA,有f(x)B,则所有这样的象所作成B的子集,用f(A)表示,即f(A)f(x)|xA,叫做A在f下的象,或叫做映射f的象.(1)满射: 定义5.设f:AB是一映射,若f(A)B,则称f是A到B上的一个映射,也称f是一个满射.(2)单射: 定义6.设f:AB是一个映射,若对x1,x2A,只要x1x2,就有f(x1)f(x2),则称f是A到B的一个单射,简称单射.(3)双射(1-1对应):定义7.若f:AB既是单射又是满射,即

1)若 f(x1)f(x2)x1x2,x1,x2A;

2)f(A)B.则称f是A到B的一个双射.特别若f是A到A上的一个1-1对应,就称f为A的一个一一变换;有限集A到自身的双射称为A的一个置换.如:jA是A的一个一一变换,同样jB是B的一个一一变换.由映射合成及相等:若f:AB,则有fjAf,jBff.TH1.2.1令f:AB是一个映射,则:下述两条等价:1)f是双射;2)存在g:BA使得gfjA,fgjB.且2)成立时,其中的g由f唯一决定.(4)可逆映射及其逆映射

定义8.设f:AB,若存在g:BA,使得gfjA,fgjB,则称f是可逆映射,且称g为f的逆映射.求其逆的方法

由定理知:f:AB可逆f是双射.而验证双射有具体方法,所以可先证f可逆(双射),再求其逆.而由TH1证知f可逆时其逆唯一为g:BA,yx(若f(x)y)(即对yB,找在f下的原象).(5)代数运算

引例:我们常说整数加法是整数的一个“代数运算”.其意思是说对任一对整数(a,b),有确定的唯一一个整数(通过相加)与之对应,用映射的观点来说整数加法是ZZZ的一个映射::(a,b)ab.同样实数乘法亦然.一般地:

定义9.设A是一个非空集合,我们把AAA的一个映射叫做集合A的一个代数运算.若集合A 有代数运算,也说A对封闭.要从中体会严格的推理论述.此与多项式相应的问题平行,到时应对照学习.1.整除、带余除法(1)整除

这时a叫做b的一个因数,而b叫做a的一个倍数.若a不整除b(即对dZ,adb),记作a|b.B)整除的性质:

1)a|b,b|ca|c;

(传递性)2)a|b,a|ca|(bc);3)a|b,cZa|bc;

4)由2)、3)a|bi,ciZ,i1,2,3,,na|bcii;

5)1|a,a|0,a|a(aZ);由此任意整数a有因数1,a,它们称为a的平凡因数; 6)若a|ba|b;

7)a|b且b|aab或ab.(对称性)(2)带余除法

“整除”是整数间的一种关系,任意两个整数可能有这种关系,可能没有这种关系,一般地有:

TH1.4.1(带余除法)设a,bZ,且a0;那么q,rZ使得baqr

且0ra.满足上述条件的q,r是唯一的.2.最大公因数、互素(1)最大公因数

且c|a,c|bc|d(即d能被a与b的任一个公因数整除).则称d为a与b的一个最大公因数.最大公因数的概念可推广至有限个整数.B)最大公因数的存在性(及求法)

TH1.4.2 任意n(n2)个整数a1,a2,,an都有最大公因数;若d为a1,a2,,an的一个最大公因数,则d也是;a1,a2,,an的两个最大公因数至多相差一个符号.C)性质

TH1.4.3 设d为a1,a2,,an的一个最大公因数,那么t1,t2,,tnZ使得A)定义1.设a,bZ,若dZ使得bad,则称a整除b(或b被a整除).用符号a|b表示.d|a且d|bA)定义2.设a,bZ,dZ,若d满足:1)(即d是a与b的一个公因数);2)若cZdt1a1ta22tnan.略证:若a1a2an0,则d0,从而对tiZ都有0t1a1t2a2tnan;若ai不全为0,由证明过程知结论成立.(2)互素

定义3.设a,bZ,若(a,b)1,则称a,b互素;一般地设a1,a2,,anZ,若(a1,a2,,an)1,则称a1,a2,,an互素.3.素数及其性质

(1)定义4.一个正整数p1叫做一个素数,若除1,p外没有其他因数.(2)性质

1)若p是一个素数,则对aZ有(a,p)p或(a,p)1.(注意转换为语言叙述,证易;略)

2)aZ且a0,1;则a可被某一素数整除.3)TH1.4.5 设p是一个素数,a,bZ,若p|ab,则p|a或p|b.TH1.4.4 n个整数a1,a2,,an互素t1,t2,,tnZ使得t1a1t2a2tnan1.6-

第五篇:复旦大学2000年高等代数

复旦大学高等数2000

1. 求方阵

101111

110的逆阵。

2. 设A为一个n阶方阵且A的秩等于A的秩。证明A的秩等于A的秩。

3. 设A为一个n阶正交阵,x1,x2,,xn1为一组线性无关的列向量,对于1in1都

有Axixi。如果A的行列式等于1,证明A是单位矩阵。

4. 设n是一个自然数,V是由所有nn实矩阵构成的n2维实向量空间,U和W分别为

由所有nn对称矩阵和反对称矩阵构成的空间。证明VUW,既V是U和W的直和。

5. 设K为一个数域,K[x]为K上以x作为不定元的多项式全体所组成的集合。设23

f(x)g(x)其中f(x),g(x),h(x),q(x)K[x]。假定f(x)q(x)g(x)h(x)是Ah(x)q(x),

K中的一个不等于零的数。证明A可以表示成有限多个以下类型的矩阵的乘积:101s(x)a0r(x)1,01,0b,其中a,b是K中的非零数,而r(x),s(x)K[x].

下载高等代数北大版教案-第5章二次型word格式文档
下载高等代数北大版教案-第5章二次型.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    高等代数与高等数学

    高等代数与高等数学的区别 高等代数、数学分析是数学专业中更细的数学研究的分类。高等代数是代数方向的究,而数学分析使用极限方法研究函数特性的数学。而高等数学是对非数......

    高等代数半期心得体会

    高等代数半期心得体会 刚刚开始接触到高等代数的时候,对它一无所知,仅仅听其它专业的同学谈论过线性代数这门课程。唏嘘记得第一高代课节讲的是排列,全新的知识点,因为第一次课......

    教学大纲-厦门大学高等代数

    教学大纲 一. 课程的教学目的和要求 通过这门课的学习,使学生掌握高等代数的基本知识,基本方法,基本思路,为进一步学习专业课打下良好的基础,适当地了解代数的一些历史,一些背景。......

    2014福州大学高等代数考研资料免费下载

    2014福州大学高等代数考研资料免费下载 历年考研真题试卷 福州大学2007年招收硕士研究生入学考试试卷 考试科目高等代数科目编号818 注意:作图题答案可直接做在试卷上。所有......

    浙江大学2006年高等代数试题

    浙江大学2006年攻读硕士研究生入学初试试题 考试科目:高等代数科目代号:341 注意:所有解答必须写在答题纸上,写在试卷或草稿纸上一律无效! 一、(15分)矩阵A,B具有相同的行数,把B的......

    高等代数机算讲稿

    1 矩阵的基本运算 1. 矩阵赋值方法; 2. 矩阵加法、数乘、转置和乘法运算; 3. 矩阵幂运算及逆运算; 4. 矩阵元素群运算; 5. 演算矩阵的运算规则。 例1.1 用MATLAB软件生成以下矩......

    高等代数课程教学工作总结

    《高等代数》教学工作总结数理学院 陈金萍一、教学基本情况 1.1教学要求 2010—2011学年主要教授了信息工程学院计算机专业试点班的《高等代数》,教材由北京大学数学系几何......

    2021年《高等代数》试题题库

    2021年《高等代数》试题题库一、选择题1.在里能整除任意多项式的多项式是。.零多项式.零次多项式.本原多项式.不可约多项式2.设是的一个因式,则。.1.2.3.43.以下命题不正确的是。.若;.集......