第一篇:比的意义的基本性质
比的意义的基本性质
一、填空
1、比的前项扩大8倍,后项扩大2倍,这时的比值是原来比值的()。
2、把5克糖溶化在100克水中。糖和糖水的比是(),比值是()。
3、一个比的前项是,后项是前项的倒数,这个比化成最简单的整数比是()。
4、有一个直角三角形,它的一个锐角是60°,它的三个内角度数的比,从大到小依次是()。
5、两个正方体棱长的比是3∶10,它们棱长总和的比是(),表面积的比是(),体积的比是()。
6、走同一段路,甲用6分钟,乙用8分钟,甲乙两人的速度比是()。
7、正方形的边长与周长比是(),正方体棱长与棱长总和的比是()。
8、一个平行四边形和一个三角形的底相等,它们面积的比是1∶2,它们高的比是()。
9、在3∶7中,如果后项加上2,要使比值不变,前项要加上()。10、6∶8=3∶4=12∶()=()∶12=
11、甲乙两数比是5∶8,则甲数比乙数少,乙数比甲数多。
12、从甲堆煤倒出给乙堆,这时两堆煤的重量相等,那么甲乙两堆煤的重量比为()∶()。
二、选择
1、比的前项扩大2倍,后项缩小3倍,比值()
A、不变 B、扩大6倍 C、扩大5倍 D、扩大1.5倍 E、缩小1.5倍
2、比的前项扩大4倍,要想使比值不变,后项应()A、扩大4倍 B、增加3倍 C、缩小4倍 D、增加4倍
3、比的前项和后项是(),这个比一定是最简整数比。A、互质数 B、两个不同的质数 C、只有公因数1 D、合数
三、化简比或连比
1、A比B多,B∶C=5∶6,则A∶B∶C=()。
2、甲数与乙数的比是1∶2,乙数与丙数的比是5∶6,则甲乙丙三数的比是()。
3、甲的等于乙的,则甲∶乙=()。
4、男生人数的
5、甲班的相当于女生的,则男生∶女生=()
等于乙班的,又是丙班的。则甲班∶乙班∶丙班=()
6、一班人数比二班人数多,二班人数比三班人数少
7、苹果重量是梨的,又是橘子的,求苹果、梨、橘子重量的比。,求三个班人数的比。
8、甲乙两个三角形底的比是4∶3,高的比是5∶8,面积的比是几比几?
9、甲乙两种货物,总价比是3∶2,数量比是4∶5,单价比是几比几?
10、一个长方形与一个正方形的周长相等,长方形的宽是长的,求长方形的面积与正方形的面积比。
11、一个长方形与一个正方形周长的比是4∶3,长方形长与宽的比是5∶3,求这个长方形与正方形面积的比。
比的应用1
1.被减数是648,减数与差的比是2∶1,减数和差各是多少?
2.在一个直角三角形中,两个锐角度数比是3∶2,则这个三角形最小角是多少度?
3.在一个等腰三角形中,顶角与底角底数比是5∶2,那么顶角和底角各多少度?
4.甲乙两数相差0.4,甲的5.甲乙两数的比是9∶8,如果乙增加34,这里甲数除以乙数的商是是多少?,甲数
等于乙的,甲乙两数的和是多少? 6.等腰三角形周长是36厘米,腰与底边长的比是4∶1,这个三角形的底是多少厘米?
7.一个长方体棱长总和是72厘米,长、宽、高的比是4∶3∶2,这个长方体的体积是多少?
8.甲、乙、丙三数的平均数是19,甲与乙的比是3∶2,乙与丙的比是3∶2,甲、乙、丙三个数各是多少?
9.学校购进480本图书上,把其中的分给低年级,余下的按5∶3分给高年级和中年级,高年级比中年级多分多少本?
10、甲、乙、丙三人同乘一辆出租车,大家商定,出租车费一定要合理分摊,在全程的处甲下车,全程的
处乙下车,最后丙一人坐到终点,付车费90元,他们三人如何承担车费合理?
第二篇:比的意义和基本性质
比的意义和基本性质(1)班级:姓名: 【知识点详解】
比的意义:两个数相除又叫做两个数的比。
比的前项:在两个数的比中,比号前面的数叫做比的前项。比的后项:在两个数的比中,比号后面的数叫做比的前项。(3)比值:比的前项除以后项所得的商,叫做比值。
连比:三个或三个以上的数也可以用比表示,这样的比叫做连比。
反比:如果一个比的前项和后项是另一个比的后项和前项,这两个比叫做互为反比。如:a:b和b:a互为反比。
互为反比的两个比的比值互为倒数。
前项为0的比没有反比,因为比的后项不能为0。
比的基本性质:比的前项和后项同时乘或除以相同的数(0除外)比值不变,这叫做比的基本性质。
最简单的整数比:比的前项和后项是互质数的比,叫做最简单的整数比。
化简比:把两个数的比化成最简单的整数比,叫做化简比,也叫做比的化简。把一个数量按照一定的比进行分配,这种方法通常叫做按比例分配。典型例题精讲
知识点一:求比值。
求两个数比的比值,就是用比的前项除以比的后项。比值和比都可以用分数形式来表示,比表示一种除法关系,比值是一个数值。
比值不能写成比的形式,但是它可以是分数,也可以是小数或整数。比与分数、除法的关系为:a:b=a÷b=(b≠0)【例1】:求比值。
(1)12:0.7
(2):13
(3)0.36: 【例2】:求比值(有单位名称的比:先统一单位名称再求比值)。(提示:任何一个比的比值都不带有单位名称).(1)3km:4km
(2)20分:0.25时(3)3.75吨:250千克 知识点二:化简比。
1.整数比的化简方法:把比的前项和后项同时除以它们的最大公因数。【例3】(1)15:10
(2)180:120 2.分数比的化简方法:
(1)比的前项和后项中含有分数的,把比的前项和后项同时乘他们分母的最小公倍数,变成整数比,再进行化简;
(2)利用求比值的方法也可以化简分数比,但结果必须写成比的形式。【例4】把:化成最简单的整数比。
3.小数比的化简方法:把比的前项和后项的小数点同时向右移动相同的位数,变成整数比,再进行化简。【例5】(1)0.75:0.2
(2)1.2:3 【例6】甲数是乙数的,乙数是丙数的,求这三个数的连比。
【例6】一个等腰三角形的周长是40厘米,其中两条边的比是1:2,则它的三条边各是多少厘米?
【例7】一个长方体的棱长总和是216厘米,它的长、宽、高之比是4:3:2。长方体的表面积和体积各是多少? 【思维拓展训练】
一、填空题。
1.甲数除以乙数,商是0.6,那么乙数和甲数的比是()。2.60分:3小时的比值是()。3.两个数的比表示(),()叫做比值。4.0.3米:20厘米的比值是()。
5.在200克盐水中,含盐40克,盐与水的比是()。6.白兔60只,灰兔29只,白兔和灰兔只数的比是(),比值是()。7.化简比=()。
8.甲数除乙数的商是0.4,那么甲数与乙数的最简比是()。9.一个等腰三角形,它的顶角与一个底角的比是1:4,这个三角形三个内角的度数分别是()、()和().10.六(1)班有男生27人,男生、女生人数的比是3:2,女生有()人。11.5.6:4.2化成最简单的整数比是(),比值是()。12.如果把3:7的前项加上9,要使它的比值不变,后项()。
13.一个比的前项缩小到原来的,后项缩小到原来的后比值是,这个比原来的比值是()。14.甲加工3个零件用40分钟,乙加工4个零件用30分钟,甲、乙工作效率的比是()。15.把25g盐放入100g水中,盐和盐水的比为()。16.学校新进一批图书,按3:4:5分配给四、五、六年级。五年级分得120本,四年级分得()本,六年级分得()本。
17.小华和爷爷的年龄比是1:6,已知小华比爷爷小50岁,小华和爷爷年龄和是()。
18.赵老师用60厘米长的铁丝围成一个长方形的教具,围成的长方形长和宽的比是3:2,。则这个长方形教具的长是(),宽是是()。19.一个减法算式中减数与差的比是:,已知被减数是14,则减数是(),差是()。20.甲数的和乙数的相等,甲:乙=():()。
21.有一个三角形,它的三个内角的度数比是7:3:10,最小的角是()度,这个三角形是()三角形。
22.A数比B数多,A:B=():()。
23.a、b、c三个数的平均数是60,这三个数的比是1:2;3,这三个数分别是()、()、()。24.a除以b的商是,a和b的比是()。
25、等腰直角三角形三个内角度数之比是().26.4和它的倒数的最简整数比是()。
27.一个最简整数比的比值是4.5,这个比是().28.1.2与的最简整数比是(),比值是()。
29.把10克盐溶解到100克水中,则盐和盐水的重量比为():()。30.如果a÷b=4……1,那么a:b=。
31.把1吨:250千克化成最简整数比是(),它的比值是()。32.:0.75的比值是(),把它化成最简整数比是()。33.减数相当于被减数的,差和减数的比是()。34.甲数的等于乙数的(甲、乙两数均不为0),乙数比甲数多()。35.当x=()时,:x的比值恰巧是最小的质数。36.甲数比乙数少20%,则甲数与乙数的比是()。
37.一项工程,甲队独做10天完成,乙队独做8天完成。甲队与乙队的工作效率比是()。38.5.1分米:0.34米化成最简整数比是()。
39.被减数与差的比是17:13,那么减数与差的比是()。
40.两个完全相等的长方形拼成一个正方形,这个长方形的长与宽的比为()。41.正方形的周长和边长的比是()。42.把时:15分化成最简整数比()。43.():()==1.25=125÷()。44.()÷=()×=÷()=8:1。
45.甲、乙两数的比是3:4,乙、丙两数的比是5:6,那么甲乙丙三数的比是()。46.两个圆的半径比为3:2,他们的周长比是(),面积比是()。47.A:B=,那么2A:2B=()。48.=0.75=21:()=()%
第三篇:比的意义和基本性质复习题
比和比的应用复习题
班级: 姓名:
一、填空。(每题2分,共28分)
1、()又叫做两个数的比,()叫做比值。
2、比的前项和后项(),比值(),这叫做比的基本性质。
3、把5克盐放入20克水中,盐和盐水的比是(),盐和水的比是()。4、2∶0.25的比值是(),把5、9()107.5化成最简比是()。
()32=()∶0.8 =()% = 0.375 =23。
6、某班女生是男生的,男生和女生的比是(),女生和全班人数的比是()。
5、甲数的等于乙数的,甲数和乙数的比是()。
54436、六(2)班男生人数占全班人数的,那么男生人数与女生人数
94的比是(),女生和全班人数的比是()。
7、一辆汽车5小时行驶300千米,行驶的路程和时间的比是(),比值表示()。
8、一根铁丝截去,截去的与剩下的比是(),319、甲数比乙数少,甲数和乙数的比是(),乙数与两数和31的比是()。
10、一个三角形的周长是36厘米,三条边的比是2∶3∶4,这个三角形最长的边是()厘米,最短的边是()厘米。
11、甲、乙两个数的平均数是72,甲数和乙数的比是5∶3,甲数是(),乙数是()。
12、男生和女生的比是5∶3,男生有30人,女生有()人。如果男生比女生多30人,女生有()人。
13、被减数、减数与差的和是96,差和减数的比是3∶5,减数是(),差是()。
14、一个长方形的周长是30分米,长和宽的比是3∶2,长方形的面积是()平方分米。
二、判断。(每题1分,共6分)
1、英超足球比赛的比分是2∶0,因此比的后项可以是0。()
2、爸爸高175厘米,小明高1米,爸爸和小明的身高比是175∶1。()3、1、8米∶5米的比值是1.6米。()
4、从学校走到科技中心,甲用8分钟,乙用9分钟,甲与乙的速度比是8∶9。()5、0.6∶1.4化简的结果是。()
73※※
6、甲数和乙数的比是3∶4,乙数和丙数的比是5∶6,甲数、乙数和丙数的比是15∶20∶24。()
三、选择。(每题2分,共8分)
1、把7吨∶1400千克化成最简单的整数比是()。
① 5 ② 1∶200 ③ 5∶1 ④ 5∶1千克
2、甲、乙两数的比是3∶5,差是16,甲是()。
① 48 ② 40 ③ 24 ④ 6
3、甲数是乙数的1.5倍,那么乙数与两数和的比是()。
① 1∶1.5 ② 2∶5 ③ 3∶5 ④ 1∶2.5 4、2∶5的前项增加4,后项扩大3倍,它的比值()。
①增加4 ② 扩大3倍 ③大小不变 ④无法确定
四、计算
1、⑴、化简下列各比(6分)1451∶2134 2∶0.25 吨∶450千克
⑵、求下列各比的比值(6分)1.125∶2.375
3352∶
2239 12平方米∶60平方分米
2、解方程:(每题2分,共4分)715=x∶
3125x=15
五、解决问题(前5题每题5分,后2题每题8分,共41分)
1、实验学校六年级四班有60人,男生和女生的比是2∶3,男生和女生各有多少人?
2、学校买来75本课外书,按照人数分配给三个年级,四年级有46人,五年级有50人,六年级有54人,每个年级各分多少本?
3、用72厘米的铁条焊接一个长方体的框架,长、宽、高的比是3∶2∶1,长方体的体积是多少立方厘米?
4、学校运来600本书,分给四年级,其余的按3︰5的比例分给
51五、六年级,五、六年级各应分多少本?
5、两桶油共15升,小桶用去1升后,两桶油剩下的比是2∶5,小桶原来有多少升?
※※
6、甲乙两车同时从相距900千米的两地出发相向而行,经过6小时相遇,甲、乙两车的 速度比是2︰3,甲、乙两车的速度各是多少千米?相遇时甲、乙两车各行了多少千米?
※※
7、一瓶盐水重50克,盐与水的比是1∶4,(1)、加入多少克盐,才能使盐与水的比是3∶8?
(2)、要使盐与水的比是1∶7,需要加入多少克水?
第四篇:比的意义和基本性质练习
比的意义和基本性质练习
一、填空。
1、甲数是乙数的2倍,乙数和甲数的比是()。
2、男生人数是女生的23,女生人数与全班人数的比是()。
3、一段路,甲走完全程用7小时,乙走完全程用6小时,写出甲、乙的时间比是(),甲与乙的速度比是()。
4、甲比乙多3,甲是8,甲与乙两数的比是(),比值是()。
5、():6=0.75
6:()=0.75
6、两个正方形的边长的比是1:3,它们的周长比是()。
二、判断: 1、45可以读作“5比4”。„„„„„„„„„„„„„„„„„„„„()
2、比的前项和后项同时乘一个相同的数,比值不变。„„„„„„„„()
3、比的基本性质与商不变的性质是一致的。„„„„„„„„„„„„()4、10克盐溶解在100克水中,这时盐和盐水的比是1:10。„„„„„()
5、比的前项乘5,后项除以
6、男生比女生多7、952515,比值不变。„„„„„„„„„„„„(),男生与女生人数的比是7:5.„„„„„„„„„()
既可以看作分数,也可以看成一个比。„„„„„„„„„„„„()
8、“宽是长的几分之几”与“宽与长的比”,意义相同,结果表达形不同。()
三、谨慎选择:
1、比的()不能为零。
A 前项 B 后项 C 比值 D 无法确定
2、比的前项和后项都乘
23,比值()。
A 变大 B 变小 C 不变 D 无法确定
3、A 23:109的比值是(),最简整数比是()。
532027 B C
D 3:5
4、在8:9中,如果前项增加16,要使比值不变,后项应()。A 增加16 B 乘2 C 不变 D 无法确定
5、糖占糖水的15,糖与水的比是()
A 1:5 B 1:4 C 1:6 D 无法确定
四、计算。
1、求比值。
32﹕12
1.8﹕4.2
2、化简比。
72﹕18 1.6﹕0.08 小结:求比值和化简比有什么区别?
15232315﹕1 1.5﹕250%
﹕1 ﹕150%
第五篇:比的基本性质
《比的基本性质》教学设计
教学内容: 人教版六年级上册数学教材第45、46页的内容及练习十一的第4—7题。教学目标: 知识与技能:
1、理解比的基本性质。
2、正确应用比的基本性质化简比。过程与方法:
1、利用知识的迁移,使学生领悟并理解比的基本性质。
2、通过学生的自主探讨,掌握化简比的方法并会化简比。情感态度与价值观:
初步渗透事物是普遍联系的辩证唯物主义观点。
教学重点:理解比的基本性质,推倒化简比的方法,正确化简比。教学难点:正确化简比。
教具准备:写有例题和练习题的小黑板。教学过程:
一、情境导入
1、比与分数、除法的关系。
师:我们已经学习了比的意义,知道比和分数、除法之间有着密切的关系,哪位同学愿意说说比和分数、除法之间有什么联系?
2、复习分数的基本性质和商不变的性质。
师:请大家回忆一下,分数有什么性质?除法又有什么性质?它们的内容分别是什么?(指名回答)
二、探究新知
1、猜想:比和分数、除法的关系相当密切,那么,在比中有没有类似的性质呢?如果有,请同学们猜想一下,可能会是怎样的? 汇报时,让学生说说猜想的根据。
2、验证:以小组为单位,讨论、验证一下刚才的猜想是否正确。学生汇报。
3、小结:经过同学们的验证,我们知道这个猜想是正确的,并且经过补充使它更完整了,在比中确实存在这种性质。板书课题:比的基本性质。
4、化简比。
老师:应用比的基本性质,我们可以把比化成最简单的整数比。出示例1的第(1)题。(1)“神舟”五号搭载了两面联合国旗,一面长15cm,宽10cm,(前面展示过),另一面长180cm,宽120cm。这两面联合国旗长和宽的最简单的整数比分别是多少?
让学生在练习本上写出一小一大两面联合国旗长和宽的比,15:10和180:120 提问:你怎样理解最简单的整数比这个概念?
学生讨论,指名回答,达成共识,最简单的整数比必须是一个比,它的前项和后项都是整数,而且前项和后项应该是互质数。
让学生自己尝试把这两个比化成最简单的整数比,然后集体订正答案。15:10=(15÷5):(10÷5)=3:2 180:120=(180÷60):(120÷60)=3:2 提醒学生注意两个比化简的结果,并让学生说说结果相同,说明了什么?(说明两面国旗大小不同,形状相同。)
出示例1的第(2)题。
(2)把下面各比化成最简单的整数比。1/6:2/9 0.75:2 让学生独立试做,教师巡视指导,请两名学生在黑板上板演。师生共同讲评。
1/6:2/9 =(1/6×18):(2/9×18)=3:4 提问:为什么要乘18?可能会有学生想到不同方法,教师应给予肯定。0.75:2=(0.75×100):(2×100)=75:200=3:8或(0.75×4):(2×4)=3:8 老师强调:不管选择哪种方法,最后的结果都应该是一个最简单的整数比,而不是一个数。
5、反馈练习。
(1)完成教材第46页的“做一做”,集体订正。在校对、交流的基础上,引导学生对化简比的方法进行小结。
(2)完成教材第48页练习十一的第4—6题。
三、巩固提高
1、把下面各比化成最简单的整数比。24:28 51:17 1/4:2/3 1:1.2 4/5:4/7 3:3/4 0.4:0.5 2:0.2
2、改错。
(1)0.48:0.6化简后是0.8。(2)21:12化简后是21:12。(3)1:0.4化简后是2/5。
3、有一个两位数,十位上的数和个位上的数的比是2:3。十位上的数加上2,就和个位上的数相等。这个两位数是多少?
四、课堂小结
学完这节课,我们知道了比的基本性质:比的前项和后项同时乘或除以相同的数(0除外),比值不变。我们还能够根据比的基本性质,熟练地把比化成最简单的整数比。
五、作业: 练习十一第4、5题
教学反思:
本节课充分体现了以学生为主。教学中,由除法的“分数的基本性质”和“商不变的性质”就能自然而然地联想到是否也存在着“比的基本性质”。对此,我没有束缚学生的思维,而是顺从学生的思维规律,鼓励他们大胆猜想,并通过举例、论证等方法小心验证,最后确切地得出了“比的基本性质”。在“大胆猜想——小心验证——得出结论”这一过程中,我尽量地放手给学生,让学生自主课堂,步步深入,而教师只是在关键处起点拨作用。这样,整堂课的教学,学生的学习兴趣浓,积极性高,成就感足,理解和记忆也就自然较为深刻。