第一篇:六年级数学教案——圆周长与面积整理和复习
六年级数学教案——圆周长与面积整理和复习
教学目标:
⒈根据圆周长与面积的计算公式掌握圆周长与面积的计算方法。
⒉培养学生灵活、全面的运用知识的能力,及运用所学知识解决简单实际问题的能力。
⒊培养学生认真审题的良好学习习惯。
教学重点:灵活运用周长或面积公式解决实际问题。
教学过程:
一、周长与面积的区别。
1、什么是圆?圆周长的计算公式是什么?圆面积公式的计算公式是什么?
2、计算下题。求出它的周长与面积。
(1)学生动手计算。
(2)周长与面积有什么不同?
概念不同,计算公式不同,单位不同。
3、判断。两个图形相比较,哪个图形的周长长,哪个图形的面积就大。
(错。周长的长短和面积的大小没有必然的联系。)
二、运用所学知识解决实际问题。
1、一个圆形花坛,直径是4米,周长是多少米?
3.144=12.56(米)
2、一个圆形花坛,周长是12.56米,直径是多少米?
12.563.14=4(米)
3、一个圆形花坛的半径是2米,它的面积是多少平方米?
3.1422=12.56(平方米)
4、一个圆形花坛的周长是12.56米,它的面积是多少平方米?
r=12.56(23.14)=2(米)3.1422=12.56(平方米)
5、一个环形铁片,外直径是6米,内直径是4米,它的面积是多少平方米?
⑴3.14()2=28.26(平方米)
3.14()2=12.56(平方米)
28.26-12.56=15.7(平方米)
⑵-=5(平方米)
3.145=15.7(平方米)
6、先测量所需要的数据,再计算半圆的周长和面积。(解答结果保留整厘米数)
7、一个圆形餐桌面直径是2m,它的周长多少米?它的面积是多少米?如果一个人需要0.5M宽的位置就餐,这张餐桌大约能坐多少人?+
三、综合练习。
1、判断对错,(1)圆的半径都相等。()
(2)在同圆或等圆中圆周长约是半径的6.28倍。()
(3)半圆的周长是圆周长的一半。()
2、只列式不计算。
(1)一个圆形铁板的半径是5分米,它的面积是多少平方分米?
(2)一个圆形的铁板的直径是6分米,它的面积是多少平方分米?
(3)一个圆形铁板的周长是28.26分米,它的面积是多少平方分米?
3、说一说下面各题的解题思路。
(1)一个圆形花坛,直径是5米,小明围着它跑了小明一共跑了多少米?
(2)在草地的木桩上栓着一只羊,绳长到草的面积最大是
多少平方米?
五、布置作业
5圈,3米,这只羊能吃练习十七1-3,思考第4题。
第二篇:六年级圆的周长数学教案
【内容】圆的周长(小学数学九年级义务教材第十一册)
【教学目标】
1、让学生知道什么是圆的周长。
2、理解并掌握圆周率的意义和近似值。
3、初步理解和掌握圆的周长计算公式,能正确计算圆的周长。
4、培养和发展学生的空间观念,培养学生抽象概括能力和解决简单的实际问题能力。
5、通过了解祖冲之在圆周率方面所作的贡献,渗透爱国主义思想。
6、培养学生的观察、比较、分析、综合及动手操作能力。
【教学重点】
理解和掌握圆的周长的计算公式。
【教学难点】
对圆周率的认识。
【教学准备】
1、学生准备直径为5厘米、6厘米、7厘米的圆片各一个,有圆面的物体各一个,线,直尺,每组准备一只计算器。
2、教师准备图片。
【教学过程】
一、激情导入
1、动物王国正在举行动物运动会可热闹了,想不想去看一看?
2、一只小山羊和一只梅花鹿分别在圆形和正方形跑道上赛跑,大家猜一猜最后谁跑的路程远?
二、探究新知
(一)复习正方形的周长,猜想圆的周长可能和什么有关系。
1、由比较两种跑道的长短,引出它们的周长你会算吗?(如果学生谈到角或线的形状,就顺势导:正方形是由4条这样的线段围成的,圆是由一条圆滑的曲线围成的。)
2、(生答正方形的周长)追问:你是怎么算的?(生答正方形的周长=边长×4师板书c=4a)那你们说说正方形的周长和它的边长有什么关系?(4倍,1/4)(师,正方形的周长总是它边长的4倍,这是一个固定不变的数。)
3、圆的周长能算吗?如果知道了计算的公式能不能算?看来很有必要研究研究圆的周长的计算方法,下面我们就一起研究圆的周长。(板书课题:圆的周长)
4、猜想:你觉得圆的周长可能和什么有关系?
(二)测量验证
1、教师提问:你能不能想出一个好办法来测量它的周长呢?
①生1:把圆放在直尺边上滚动一周,用滚动的方法测量出圆的周长。师生合作演示量教具的周长。
②用绳子在圆上绕一周,再测量出绳子的长短,得到这个圆的周长。
2、①学生动手测量,验证猜想。学生分组实验,并记下它们的周长、直径,填入书中的表格里。
②观察数据,对比发现。
提问:观察一下,你发现了什么呢?(圆的直径变,周长也变,而且直径越短,周长越短;直径越长,周长越长。圆的周长与它的直径有关系。)
3、比较数据,揭示关系
正方形的周长是边长的4倍,那么,圆的周长秘直径之间是不是也存在着固定的倍数关
系呢?猜猜看,圆的周长可能是直径的几倍?
学生动手计算:把每个圆的周长除以它的直径的商填入书中表格的第三列。
提问:这些周长与直径存在几倍的关系,(3倍多一些),最后师生共同总结概括出,圆的周长总是直径的3倍多一些,板书:3倍多一些。到底是三倍多多少呢?引导学生看书。
(三)介绍圆周率
1、师:任意一个圆的周长都是它直径的三倍多一些,这是一个固定不变的数,我们把它叫做圆周率,用字母∏来表示,用手指写一写。
2、圆周率是怎样发现的,请同学们看课本小资料,讲述并对学生进行德育教育。
3、小结:早在1500年前,祖冲之把圆周率算到了3.1415926和3.1415927之间,比外国人早了整整一千年,这是中华民族对世界数学史的巨大贡献,今天,同学们自己动手也发现了这一规律,老师相信同学们当中将来也会有成为像祖冲之一样伟大的科学家,根据需要,我们一般保留两位小数。
圆的周长总是它直径的3倍多一点。刚才我们是怎样计算的?两个数相除又可说成是两数的比,所以这个结果就是圆周长与它直径的比值。我们把圆的周长和直径的比值叫做圆周率,用字母
“∏”表示。这个比值是固定的,而我们现在得到的结果有差异主要是测量工具及测量方法有误差造成的。那圆周率的数值到底是多少呢?说说你知道了什么?(强调∏≈3.14,在说的时候要注意是近似值,写和算的时候要按准确值计算,用等号。)
(四)推导公式
1、到现在,你会计算圆的周长吗?怎样算?
2、如果用c表示圆的周长,表示d直径,字母公式怎样写?(板书:c=∏d)就告诉你直径,你能求圆的周长吗?圆的周长是它直径的∏倍,是一个固定不变的数。
3、知道半径,能求圆的周长吗?周长是它半径的多少倍?
三、运用公式解决问题
1、一张圆桌面的直径是0.95米,求它的周长是多少米?(得数保留两位小数)
2、花瓶最大处的半径是15厘米,求这一周的长度是多少厘米?花瓶瓶口的直径是16厘米,求花瓶瓶口的周长是多少厘米?花瓶瓶底的直径是20厘米,求花瓶瓶底的周长是多少厘米?
3、钟面直径40厘米,钟面的周长是多少厘米?
4、钟面分针长10厘米,它旋转一周针尖走过多少厘米?
5、喷水池的直径是10米,要在喷水池周围围上不锈钢栏杆2圈,求两圈不锈钢总长多少米?
四、课堂小结
通过这节课的学习你想和大家说点什么?
这节课,同学们大胆猜想圆的周长可能和什么关系、有怎样的关系,然后进行科学的验证,发现了圆的周长的计算方法,你们正在走一条科学的研究之路,希望你们能坚持不懈的走下去。
第三篇:圆周长和面积
《圆周长和面积》复习教学设计
教学目标:
1、借助学生已有的数学知识经验去梳理,使知识系统化。学生在主动参与解决实际数学问题中,掌握运用数学知识。
2、通过练习,进一步理解圆的周长和面积的含义,掌握圆的周长和面积的计算方法。
教学重难点:能用圆的知识解决生活中简单的实际问题。
教学过程:
一、认识圆。
1、同学们画面中的这个图形叫什么?前面我们已经学习了圆的有关知识,今天这节课我们就来复习圆的知识。你还记得这个单元我们都学了哪些内容吗?
2、在圆的认识里,你们知道了哪些知识?请拿出自己做的圆形纸片,在里面标出圆心、半径、直径,并用字母表示。
3、直径和半径之间有什么关系?(强调:同一圆或等圆)你还知道圆的那些知识?前面我们还学习了哪些对称图形?在这些对称图形中哪种图形的对称轴最少,哪种图形的对称轴最多?
4、看来大家对圆的认识都掌握得很不错,圆周长和面积是指哪一部分?摸摸看。
二、回忆所学的方法。
1、你是怎样求圆的周长?(量 公式)π是指什么?你还了解圆周率的那些历史?
2、你是怎样知道圆面积的?(数方格 剪拼)
3、圆面积的推导实际用到了什么思想?(转化思想)
4、把圆转化成平行四边形或长方形,什么变了?什么没变?(出示课件)
5、求圆面积有几种方法?
6、你能不能算出你手中圆形纸片的周长和面积。指名说算法。
7、计算时应注意什么?(公式 单位)
三、指导练习
1、判断下列说法是否正确。
(1)半径是 2厘米 的圆的周长和面积相等。()
(2)两个半圆一定能拼成一个圆。()
(3)半圆形纸片的周长就是圆周长的一半。()
(4)把半径 3厘米 的圆等分成十六份,拼成一个近似长方形,长方形的周长比圆的周长多。()
(5)大圆的圆周率比小圆的圆周率大。()
2、走进生活,解决问题。
(1)车轮为什么设计成圆的?
(2)运动场上为什么运动员不在一个起跑线上。出示课件:
(3)小羊能吃到草的面积有多大?
林业部门需要测量一棵古树树干横截面的面积,树干横截面是什么形状?可是又不知道它的半径或直径,总不能把这棵千年古树砍倒后量一量,你能不能帮他们想一个办法?
(4)一根长 4米 的绳子围了一圈后还剩 0.86米,请你算算树干横截面面积大约是多少平方米?
(5)用篱笆靠墙围一个直径是 4米 的半圆形的养鸡场,求篱笆的长和占地的面积。
四、师生总结。
通过本节课学习有怎样的收获?
第四篇:圆的周长与面积复习教案
圆的周长与面积
——复习课学案设计
宋斌才
一、学习目标
1、能自己回顾总结圆的周长与面积计算公式。
2、会利用公式进行圆的周长和面积的计算。
3、会变通使用公式解决生活中的实际问题。
二、学习过程
(一)、概念我熟知
学习方法:通过回忆、查阅书籍以及笔记自己完成填空。然后同桌交流,最后全班订正。
1、圆心到()叫圆的半径,用字母()表示。同一个圆的半径长度()。
2、通过(),两端在()的线段叫(),用字母()表示。同一个圆的直径长度()。
3、在同一个与圆内,直径与半径的关系是:()。
4、绕圆()的长度,叫圆的周长,圆的周长是一条()线。
5、圆的周长总是直径的()倍多一点。实际上,圆的周长除以()的商是一个固定的数,我们把它叫做(),用字母()表示。
6、我们用拼接的方法来探讨圆的面积的计算方法。把圆平均分成若干份,拼接的图形像()或();均分的分数越多,拼接的图形就越接近()。拼出的长方形的长相当于圆的(),宽相当于圆的()。
(二)我会小结
学习方法:自己根据条件解答问题,并根据自己的解答小结出计算公式。圆的半径扩大3倍,直径扩大()倍,周长扩大()倍;面积扩大()倍
小铁环直径6分米,大铁环直径8分米。大铁环和小铁环半径的比是();周长的比是();面积的比是()。
在一张长60厘米,宽40厘米的长方形纸上剪一个最大的圆,则圆的面积是()平方厘米。如果剪一个最大的半圆,则半圆的面积是()平方厘米。
把一个圆形纸片沿半径平均分成若干等份,拼成一个近似的长方形。则面积(),周长()。A增加 B减少C不变
(三)、我能运用
学习方法:读懂题意,根据题中的数学信息,和要解决的数学问题,选择相关的公式进行计算,计算完毕后要注意仔细检查哦!
把一个直径是10厘米的圆剪成两个半圆,则两个半圆周长的和是()厘米。
一根铁丝正好围成一个直径8分米的圆,如果改围成一个正方形,则正方形的边长为()厘米。
上面图形的周长是25.7厘米,它的面积是多少平方厘米
把半径3厘米的圆等分成十六份,拼成一个近似长方形,长方形的周长比圆的周长长。
()
下图中,圆的周长25.12厘米,圆的面积正好和长方形的面积相等,求涂色部分的面积和周长。
0 ·
A
(四)、课堂总结
B
1、通过这节课的学习,我记住了根据条件的不同,圆的周长可以用下面的公式进行计算。();根据条件的不同,圆的面积可以用下面的公式进行计算()。
2、我认为计算圆的周长与面积的时候要注意:
3、我对今天本堂课的学习效果评价是();同学对我的评价是();老师对我的评价是()
三、资源链接
1、其他平面图形的周长和面积计算公式。
2、关于圆的周长和面积计算公式的推导过程。
第五篇:圆的周长和面积
《圆的周长和面积》教学反思学生在学完圆的面积后,往往容易把圆的面积与周长混淆。因此我特意设计了本堂对比课。我引导学生分清以下几点:(1)圆的面积是指圆所围平面部分的大小,而圆的周长是指圆一周的长度。(2)求圆面积公式是S=πr2,求圆周长的公式是C=πd或C=2πr。(3)计算圆的面积用面积单位,计算圆的周长用长度单位。根据以上三方面,帮助学生理清了圆的面积和周长的不同之处,练习中反映出来的情况也较好。本节课成功之处有以下三点。
1.练习教学体现“生活化”
《数学课程标准》指出:数学教学应该是从学生生活经验和已有的知识背景出发,向他 们提供充分的从事数学活动和交流的机会。练习课教学同样必须从学生熟悉的生活情境和感兴趣的事物出发,将生活中的数学问题引进课堂。上课伊始,我就引进了圆形花池的生活实例,设疑引思,让学生体会到数学就在我们身边。课中,我充分利用学生列举的生活实例,让他们利用数学知识去解决实际问题,感受到数学的趣味与作用,增强对数学的理解。同时也充分体现了课程标准提出的“在现实情景中了解圆的周长和面积的关系”,突出了“让学生在生活中学数学,在生活中用数学”的理念,充分调动了学生学习的积极性和主动性。
2练习教学体现“数学化”
我们应该明确反对数学教育完全脱离学生的生活实际,但同时我们又应该注为了防止“生活化”完全取代数学教学所具有的“数学化”。为此,在课中我设计了两个圆之间的不断移动、变化、组合的变式练习题,让学生会用数学观点和方法来认识周围的事物,并能解答一些简单的实际问题。
3练习教学体现“开放化”
在新课改全面铺开的形势下,《数学课程标准》提出的“教学中应尊重每一个学生的个
性特征,允许不同的学生从不同的角度认识问题,采用不同方式表达自己的想法,用不同的知识与方法解决问题”越来越多地被引入课堂,数学不再是“1+1=2”的绝对模式,而是允许一题多问,一题多解,一题多变的教学模式。在教学设计和教学环节中,我适时、适度地运用“开放化”教学,引导学生提出有价值的数学问题,发现有价值的数学规律,解决有价值的数学问题,使每个学生都能不同程度地获得和谐的发展。