人教版七年级数学上册教案之整式的加减法

时间:2019-05-12 18:16:47下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《人教版七年级数学上册教案之整式的加减法》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《人教版七年级数学上册教案之整式的加减法》。

第一篇:人教版七年级数学上册教案之整式的加减法

第一课时:整式的加减(1)

教学目标和要求:

1.理解同类项的概念,在具体情景中,认识同类项.

2.理解合并同类项的概念,掌握合并同类项的法则.

3.通过小组讨论、合作学习等方式,经历概念的形成过程,培养学生自主探索知识和合作交流的能力.

4.初步体会数学与人类生活的密切联系.

教学重点和难点:

重点:理解同类项的概念;正确合并同类项.

难点:根据同类项的概念在多项式中找同类项并正确的合并. 教学过程:

一、复习引入:

1、创设问题情境

⑴、5个人+8个人=

⑵、5只羊+8只羊=

⑶、5个人+8只羊=

(数学教学要紧密联系学生的生活实际、学习实际,这是新课程标准所赋予的任务.学生尝试按种类、颜色等多种方法进行分类,一方面可提供学生主动参与的机会,把学生的注意力和思维活动调节到积极状态;另一方面可培养学生思维的灵活性,同时体现分类的思想方法.)

2、提出问题

我们应该如何化简式子100t+252t呢?

可以根据乘法分配律100t+252t =(100+252)t = 352t

3、观察下列各单项式,把你认为相同类型的式子归为一类.

8xy,-mn,5a,-xy,7mn,9a,-,0,0.4mn,2xy.

由学生小组讨论后,按不同标准进行多种分类,教师巡视后把不同的分类方法投影显示.

要求学生观察归为一类的式子,思考它们有什么共同的特征?

请学生说出各自的分类标准,并且肯定每一位学生按不同标准进行的分类.

(充分让学生自己观察、自己发现、自己描述,进行自主学习和合作交流,可极大的激发学生学习的积极性和主动性,满足学生的表现欲和探究欲,使学生学得轻松愉快,充分体现课堂教学的开放性.)

二、讲授新课:

1.同类项的定义:

我们常常把具有相同特征的事物归222为一类.8xy与-xy可以归为一类,2xy与-可以归为一类,-mn、7mn与0.4mn可以归为一类,5a与 9a可以归为一类,还有、0与也可以归为一22类.8xy与-xy只有系数不同,各自所含的字母都是x、y,并且x的指数都是2,y的指数都是1;同样地,2xy与-也只有系数不同,各自所含的字母都是x、y,并且x的指数都是1,y的指数都是2.

像这样,所含字母相同,并且相同字母的指数也分别相等的项叫做同类项(similar terms).另外,所有的常数项都是同类项.比如,前面提到的、0与也是同类项.

(教师为了让学生理解同类项概念,可设问同类项必须满足什么条件,让学生归纳总结.)

2.例题:

例1:判断下列说法是否正确,正确

222

地在括号内打“√”,错误的打“×”.

(1)3x与3mx是同类项.

()

(2)2ab与-5ab是同类项.

()

(3)3xy与-yx是同类项.()

22(4)5ab与-2ab c是同类项.()

(5)2与3是同类项.

()

(这组判断题能使学生清楚地理解同类项的概念,其中第(3)题满足同类项的条件,只要运用乘法交换律即可;第(5)题两个都是常数项属于同类项.一部分学生可能会单看指数不同,误认为不是同类项.)

例2:游戏:

规则:一学生说出一个单项式后,指定一位同学回答它的两个同类项.

要求出题同学尽可能使自己的题目与众不同.

可请回答正确的同学向大家介绍写一个单项式同类项的经验,从而揭示同

322

类项的本质特征,透彻理解同类项的概念.

(学生自行编题是一种创造性的思维活动,它可以改变一味由教师出题的程式化做法,并由编题学生指定某位同学回答,可使课堂气氛活跃,学生透彻理解知识,这种形式适合初中生的年龄特征.学生通过一定的尝试后,能得出只要改变单项式的系数,即可得到其同类项,实际是抓住了同类项概念中的两个“相同”,从而深刻揭示了概念的内涵.)

例3:指出下列多项式中的同类项:

(1)3x-2y+1+3y-2x-5;

2222(2)3xy-2xy+xy-yx.

解:(1)3x与-2x是同类项,-2y与3y是同类项,1与-5是同类项.

(2)3xy与-yx是同类项,-2xy2与xy是同类项.

k

例4:k取何值时,3xy与-xy是

同类项?

解:要使3xy与-xy是同类项,这两项中x的次数必须相等,即 k=2.所

k2以当k=2时,3xy与-xy是同类项.

(组织学生口头回答上面三个例题,例3多项式中的同类项可由教师标出不同的下划线,并运用投影仪打出书面解答,为合并同类项作准备.例4让学生明确同类项中相同字母的指数也相同.例5必须把(s-t)、(s+t)分别看作一个整体.)

(通过变式训练,可进一步明晰“同类项”的意义,在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、提高识别能力.)

3.合并同类项

我们知道多项式中的字母表示的是数,因此学习了同类项的概念之后,就可以利用运算律把多项式中的同类项进行合并,前面就是利用乘法分配律来化简式子100t+252t的;把多项式中的同类项合并成一项,叫做合并同类项.

k

2例:找出多项式3xy-4xy-3+225xy+2xy+5种的同类项,并合并同类项.

解:原式=3xy+5xy−4xy+2xy+5−3

22=(3+5)xy+(−4+2)xy+(5−3)= 28xy−2xy2+2

根据以上合并同类项的实例,让学生讨论归纳,得出合并同类项的法则:

把同类项的系数相加,所得的结果作为系数,字母和字母指数保持不变.

三、课堂小结:

①理解同类项的概念,会在多项式中找出同类项,会写出一个单项式的同类项,会判断同类项.

②这堂课运用到分类思想和整体思想等数学思想方法.

③学习同类项的用途是为了简化多项式,为下一课的合并同类项打下基础.

④要牢记法则,熟练正确的合并同

224类项,以防止2x+3x=5x的错误.

⑤从实际问题中类比概括得出合并同类项法则,并能运用法则,正确的合并同类项.

第二课时:整式的加减(2)教学目标

1.知识与技能

能运用运算律探究去括号法则,并且利用去括号法则将整式化简.

2.过程与方法

经历类比带有括号的有理数的运算,发现去括号时的符号变化的规律,归纳出去括号法则,培养学生观察、分析、归纳能力.

3.情感态度与价值观

培养学生主动探究、合作交流的意识,严谨治学的学习态度. 教学重点和难点

重点:1.去括号法则,准确应用法则将整式化简.

2.整式的加减.

难点:1.括号前面是“−”号去括号时,括号内各项变号容易产生错误.

2.总结出整式的加减的一般步骤. 教学过程

一、新授

利用合并同类项可以把一个多项式化简,在实际问题中,往往列出的式子含有括号,那么该怎样化简呢?

现在我们来看本章引言中的问题(3):

在格尔木到拉萨路段,如果列车通过冻土地段要t小时,那么它通过非冻土地段的时间为(t−0.5)小时,于是,冻土地段的路程为100t千米,非冻土地段的路程为120(t−0.5)千米,因此,这段铁路全长为:

100t+120(t−0.5)千米

冻土地段与非冻土地段相差:

100t−120(t−0.5)千米

上面的式子①、②都带有括号,它们应如何化简?

思路点拨:教师引导,启发学生类比数的运算,利用分配律.学生练习、交流后,教师归纳:

利用分配律,可以去括号,合并同类项,得:

100t+120(t−0.5)= 100t+120t+120×(−0.5)= 220t−60

100t−120(t−0.5)= 100t−120t−120×(−0.5)= −20t+60

我们知道,化简带有括号的整式,首先应先去括号.

上面两式去括号部分变形分别为:

+120(t−0.5)= +120t−60 ③

−120(t−0.5)= −120+60

比较③、④两式,你能发现去括号时符号变化的规律吗?

思路点拨:鼓励学生通过观察,试

用自己的语言叙述去括号法则,然后教师总结:

如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反.

特别地,+(x−3)与−(x−3)可以分别看作1与−1分别乘(x−3).

利用分配律,可以将式子中的括号去掉,得:

+(x−3)= x−3

(括号没了,括号内的每一项都没有变号)

−(x−3)= −x+3(括号没了,括号内的每一项都改变了符号)

去括号规律要准确理解,去括号应对括号的每一项的符号都予考虑,做到要变都变;要不变,则谁也不变;另外,括号内原有几项去掉括号后仍有几项.

二、例题

例1.化简下列各式:(1)

28a+2b+(5a−b);(2)(5a−3b)−3(a−2b).

思路点拨:讲解时,先让学生判定是哪种类型的去括号,去括号后,要不要变号,括号内的每一项原来是什么符号?去括号时,要同时去掉括号前的符

2号.为了防止错误,题(2)中−3(a−2b),先把3乘到括号内,然后再去括号.

解答过程按课本,可由学生口述,教师板书.

例2.两船从同一港口同时出发反向而行,甲船顺水,乙船逆水,两船在静水中的速度都是 50千米/时,水流速度是a千米/时.

(1)2小时后两船相距多远?

(2)2小时后甲船比乙船多航行多少千米?

学生思考、小组交流,寻求解答思路.

思路点拨:根据船顺水航行的速度=

船在静水中的速度+水流速度,船逆水航行速度=船在静水中行驶速度−水流速度.因此,甲船速度为(50+a)千米/时,乙船速度为(50−a)千米/时,2小时后,甲船行程为2(50+a)千米,乙船行程为(50−a)千米.两船从同一洪口同时出发反向而行,所以两船相距等于甲、乙两船行程之和.

解答过程按课本.

去括号时强调:括号内每一项都要乘以2,括号前是负因数时,去掉括号后,括号内每一项都要变号.为了防止出错,可以先用分配律将数字2与括号内的各项相乘,然后再去括号,熟练后,再省去这一步,直接去括号.

三、整式加减

我们学习了合并同类项、去括号等内容,它们是进行整式加减运算的基础.

看下面几道例题:

1:

−2y+(3xy−xy)−2(xy−y)

解:原式= −2y+3xy−xy−2xy+2y)22= xy−xy.

(本例让学生体会整式的加减实质是去括号、合并同类项这两个知识的综合,有利于将新知识转化为已有的知识,使学生的知识结构发生更新)

例2:求整式x−7x−2与−2x+4x−1的差.

解:原式=(x−7x−2)−(−2x+4x−1)= 222x−7x−2+2x−4x+1=3x−11x−1.

(本例应先列式,列式时注意给两个多项式都加上括号,后进行整式的加减)

提问:对于以上例题在化简时进行了哪些运算?我们应该怎样进行整式的加减运算?

引导学生归纳总结出整式的加减的步骤:

一般地,几个整式相加减,如果有

33222

3括号,那么先去括号,然后再合并同类项.

四、课堂小结

1.去括号是代数式变形中的一种常用方法,去括号时,特别是括号前面是“−”号时,括号连同括号前面的“−”号去掉,括号里的各项都改变符号.去括号规律可以简单记为“−”变“+”不变,要变全都变.当括号前带有数字因数时,这个数字要乘以括号内的每一项,切勿漏乘某些项.学生作总结后教师强调要求大家应熟记法则,并能根据法则进行去括号运算.法则顺口溜:去括号,看符号:是“+”号,不变号;是“―”号,全变号.

2.整式的加减实际上就是去括号、合并同类项这两个知识的综合.

3.整式的加减的一般步骤:①如果有括号,那么先去括号,然后再合并同类项.

第二篇:人教版七年级数学上册教案之整式

第一课时:整式(1)教学目标和要求:

1.理解单项式及单项式系数、次数的概念.

2.会准确迅速地确定一个单项式的系数和次数.

3.初步培养学生观察、分析、抽象、概括等思维能力和应用意识.

4.通过小组讨论、合作学习等方式,经历概念的形成过程,培养学生自主探索知识和合作交流能力.

教学重点和难点:

重点:掌握单项式及单项式的系数、次数的概念,并会准确迅速地确定一个单项式的系数和次数.

难点:单项式概念的建立. 教学过程:

一、复习引入:

1、列代数式

(数学教学要紧密联系学生的生活实际,这是新课程标准所赋予的任务.让学生列代数式不仅复习前面的知识,更是为下面给出单项式埋下伏笔,同时使学生受到较好的思想品德教育.)

2、请学生说出所列代数式的意义.

3、请学生观察所列代数式包含哪些运算,有何共同运算特征.

由小组讨论后,经小组推荐人员回答,教师适当点拨.

(充分让学生自己观察、自己发现、自己描述,进行自主学习和合作交流,可极大的激发学生学习的积极性和主动性,满足学生的表现欲和探究欲,使学生学得轻松愉快,充分体现课堂教学的开放性.)

二、讲授新课:

1.单项式:

通过特征的描述,引导学生概括单项式的概念,从而引入课题:单项式,并归纳得出单项式的概念:由数与字母的乘积组成的代数式称为单项式.然后教师补充,单独一个数或一个字母也是单项式,如a,5.

2.练习:判断下列各代数式哪些是单项式?

(1);(2)abc;(3)b2;(4)-5ab2;(5)y;

(6)-xy2;(7)-5.

(加强学生对不同形式的单项式的直观认识,同时利用练习中的单项式转入单项式的系数和次数的教学)

3.单项式系数和次数:

直接引导学生进一步观察单项式结构,总结出单项式是由数字因数和字母因数两部分组成的.以四个单项式a2h,2πr,abc,-m为例,让学生说出它们的数字因数是什么,从而引入单项式系数的概念并板书,接着让学生说出以上几个单项式的字母因数是什么,各字母指数分别是多少,从而引入单项式次数的概念.

单项式的系数:单项式中的数字因数叫做这个单项式的系数.

单项式的次数:一个单项式中,所有字母的指数的和叫做这个单项式的次数.

4.例题:

例1:判断下列各代数式是否是单项式.如不是,请说明理由;如是,请指出它的系数和次数.①x+1;

②;

③πr2;

④-

a2b

答:①不是,因为原代数式中出现了加法运算;

②不是,因为原代数式是1与x的商;

③是,它的系数是π,次数是2;

④是,它的系数是-,次数是3.

例2:下面各题的判断是否正确?

①-7xy2的系数是7; ②-x2y3与x3没有系数; ③-ab 3c2的次数是0+3+2;

④-a3的系数是-1;

⑤-32x2y3的次数是7; ⑥πr2h的系数是

答:①错,应是−7;②错;−x2y3系数为−1,x3系数为1;③错,次数应该是1+3+2;④正确;⑤错,次数为2+3 = 5;⑥正确

强调应注意以下几点:

①圆周率π是常数;

②当一个单项式的系数是1或-1时,“ 1”通常省略不写,如x2,-a2b等;

③单项式次数只与字母指数有关.

5.游戏:

规则:一个小组学生说出一个单项式,然后指定另一个小组的学生回答他的系数和次数;然后交换,看两小组哪一组回答得快而准.

(学生自行编题是一种创造性的思维活动,它可以改变一味由教师出题的形式,且由编题学生指定某位同学回答,可使课堂气氛活跃,学生思维活跃,使学生能够透彻理解知识,同时培养同学之间的竞争意识.)

三、课堂小结:

①单项式及单项式的系数、次数.

②根据教学过程反馈的信息对出现的问题有针对性地进行小结.

③通过判断一个单项式的系数、次数,培养学生理解运用新知识的能力,已达到本节课的教学目的. 教学后记:

本节课是研究整式的起始课,它是进一步学习多项式的基础,因此对单项式有关概念的理解和掌握情况,将直接影响到后续学习.为突出重点,突破难点,教学中要加强直观性,即为学生提供足够的感知材料,丰富学生的感性认识,帮助学生认识概念,同时也要注重分析,亦即在剖析单项式结构时,借助反例练习,抓住概念易混淆处和判断易出错处,强化认识,帮助学生理解单项式系数、次数,为进一步学习新知做好铺垫.

针对七年级学生学习热情高,但观察、分析、认识问题能力较弱的特点,教学时将以启发为主,同时辅之以讨论、练习、合作交流等学习活动,达到掌握知识的目的,并逐步培养起学生观察、分析、抽象、概括的能力,为进一步学习同类项打下坚实的基础.

第二课时:整式(2)教学目标和要求:

1.通过本节课的学习,使学生掌握整式多项式的项及其次数、常数项的概念.

2.通过小组讨论、合作交流,让学生经历新知的形成过程,培养比较、分析、归纳的能力.由单项式与多项式归纳出整式,这样更有利于学生把握概念的内涵与外延,有利于学生知识的迁移和知识结构体系的更新.

3.初步体会类比和逆向思维的数学思想. 教学重点和难点:

重点:掌握整式及多项式的有关概念,掌握多项式的定义、多项式的项和次数,以及常数项等概念.

难点:多项式的次数. 教学过程:

一、复习引入:

观察以上所得出的四个代数式与上节课所学单项式有何区别.

(由学生小组派代表回答,教师应肯定每一位学生说出的特点,培养学生观察、比较、归纳的能力,同时又锻炼他们的口表能力.通过特征的讲述,由学生自己归纳出多项式的定义,教室可给予适当的提示及补充.)

二、讲授新课:

1.多项式:

由学生自己归纳得出的多项式概念.上面这些代数式都是由几个单项式相加而成的.像这样,几个单项式的和叫做多项式(polynomial).在多项式中,每个单项式叫做多项式的项(term).其中,不含字母的项,叫做常数项(constant term).例如,多项式3x2−2x+5有三项,它们是3x2,-2x,5.其中5是常数项.

一个多项式含有几项,就叫几项式.多项式里,次数最高项的次数,就是这个多项式的次数.例如,多项式3x2−2x+5是一个二次三项式.

注意:

(1)多项式的次数不是所有项的次数之和;

(2)多项式的每一项都包括它前面的符号.

(教师介绍多项式的项和次数、以及常数项等概念,并让学生比较多项式的次数与单项式的次数的区别与联系,渗透类比的数学思想.)

2.例题:

例1:判断:

①多项式a3-a2b+ab2-b3的项为a3、a2b、ab2、b3,次数为12;

②多项式3n4-2n2+1的次数为4,常数项为1.

(这两个判断能使学生清楚的理解多项式中项和次数的概念,第(1)题中第二、四项应为-a2b、-b3,而往往很多同学都认为是a2b和b3,不把符号包括在项中.另外也有同学认为该多项式的次数为12,应注意:多项式的次数为最高次项的次数.)

例2:指出下列多项式的项和次数:

(1)3x-1+3x2;

(2)4x3+2x-2y2.

解:(1)三项,二次;(2)三项,三次.

例3:指出下列多项式是几次几项式.

(1)x3-x+1;

(2)x3-2x2y2+3y2.

解:(1)三次三项式;(2)四次三次式.

例4:已知代数式3xn-(m-1)x+1是关于x的三次二项式,求m、n的条件.

解:该多项式中的项次数分别为n、1和常数,又多项式为三次,即n = 3;而该多项式至少有两项3xn和1,当m−1≠0时,该多项式即为三项式,与已知不符,所以m = 1.

(让学生口答例

2、例3,老师在黑板上规范书写格式.讲述例2时应特别提醒学生注意,多项式的项包括前面的符号,多项式的次数应为最高次项的次数.在例3讲完后插入整式的定义:单项式与多项式统称整式(integral expression).例4分析时要紧扣多项式的定义,培养学生的逆向思维,使学生透彻理解多项式的有关概念,培养他们应用新知识解决问题的能力.)

三、课堂小结:

①理解多项式的定义,能说出一个多项式是几次几项式,最高次数是几,分别由哪几项组成,各项的系数分别为多少,常数项为几.

②这堂课学习了多项式,与前一节所学单项式合起来统称为整式,使知识形成了系统.

(让学生小结,师生进行补充.)教学后记:

从学生已掌握的列代数式入手,既复习了所学知识,又巧妙的引入了新知,介绍多项式的项、次数以及常数项的概念后,引导学生循序渐进,一步一步的接近本节课学习的重点、难点.掌握了所有的概念后由学生自己举一些多项式的例子,这样更能反映出学生掌握知识的程度,同时也体现了学生学习的主体性.最后列举几个例子,与学生一起完成.教学中一方面教师要示范严格的书写格式,另一方面也可使学生顺着教师的思路,体验一下老师是如何想的,如何来考虑问题的,然后由学生完成当堂课的练习,也可让一两位同学上黑板完成.要了解学生是否真正掌握本节课的内容,可由学生自己进行课堂小结,接着布置作业进一步巩固本课所学知识.

第三篇:七年级数学上册《整式的加减》教案

整式的加减

教学过程:

(一)代数式:

1.本节重点共两部分,一是对给出的一个具体的代数式,能准确表达出它的数学意义,二是列代数式,即将基本数量关系的语言用代数式来表示。

本节是关于代数的初步知识,在复习中注意以下几点:

(1)代数式是什么,并注意和公式、等式区别开来。

(2)一个具体的代数式,能准确用语言表达其意义,并能把简单的与数量有关的词语化为代数式的形式。

(3)会用具体数值代替代数式中的字母,按其代数式指明的运算顺序进行计算。

(4)公式都是由代数式组成的。2.例题分析:

例1.说出下列各组代数式的意义有什么不同:

(1)2(a+b),2a+b,a+2b 2ab2b1222(2)a,(ab),()222 解:(1)2(a+b)是a与b的和的2倍。2a+b是a的2倍与b的和。a+2b是a与b的2倍的和。

22b22(2)a是a与b的一半的差。212(ab2)是a与b两数平方差的一半。2ab2()是a与b的差的一半的平方。注意:用语言表达一个代数式的意义,具体说法上没有统一的规定,只要能正确表达即可。比如2a+b,可以说是a的2倍与b的和,也可以说是2a与b的和。

例2.用代数式表示:

(1)甲数与乙数平方的和;

(2)甲、乙两数的平方差;

(3)甲数与乙数的差的平方。

解:设甲数为x,乙数为y(1)xy2(2)x2y2(3)(xy)2

例3.某校大礼堂第一排有座位x个,后面每排比前一排多2个座位,求第n排的座位数。若该礼堂一共有20排座位,且第一排的座位数也是20个,请您计算该礼堂共有多少座位?

分析:找到座位的规律:

第一排:x个第二排:x2个第三排:x4个 第四排:x6个

第五排:x8个第n排:x(n1)2个 解:由分析可得第n排的座位数:x+2(n-1)第一排有20个座位,共有20排,即a=20,n=20 所以,最后一排座位数:202(201)58(个)

求整个礼堂中的座位数即做加法: 202224……5658

(2058)(2256)……(3840)7810780

例4.某地出租汽车收费标准:起步价10元,可乘3千米,3千米到5千米,每千米1.8元,5千米以后,每千米是2.7元。若某人乘坐了x(x>5)千米的路程,请写出他应该支付的费用。若他支付的费用是19元,请你算出他乘坐的路程。

解:题目中给出他乘坐的路程是超过5千米的,因而前面5千米的费用是固定的,只要能算出后面的费用即可。

前面5km又分成两部分:3千米和2千米

前面3千米的费用是10元,紧接着的2千米是3.6元

所以前面5千米共花13.6元

5千米以后则就是每千米花2.7元,而后面的距离是(x-5)千米

因而总费用=13.6+(x-5)×2.7 已知支付的费用是19元,则

913.6(x5)2.7

1x7千米

注意:列代数式的关键是:一是抓住关键性的词语,如“增加”、“减少”等,或者是 2 规律性的内容,如“后面一排都比前面一排多2个座位”,二是要理清运算顺序,如“和的222积”与“积的和”运算顺序是不同的。如a+b与(a+b),前者是平方和,后者是和的平方。

11xxyy2 例5.若x=,y,求的值。

23xxyy211,y代入代数式中 231111211()262233 得:1111211()223326 解:将x19327918

19324918 注意:在求值过程中,代数式中的运算符号和顺序不能改变,在求值过程中,代数式中字母所代的值应是使代数式有意义的值,如速度、时间、体积、面积均为正值,而在形

aa如的式子中,b0,才能使有实际意义。bb

(二)整式的加减: 1.知识点简要回顾

(1)单项式指的是数与字母积的形式的代数式,即对字母来说只含有乘法运算,因aa1此的形式就不是单项式,但这种就是单项式,因为它的分母中不含有字母,只是b22它的系数。

注意:单独的一个数或单独的一个字母也叫单项式。

单项式中的数字因为叫做单项式的系数,而单项式中的所有字母的指数之和则称之为32单项式的次数。如-3xy中,-3是系数,其次数是5。

(2)多项式指的是几个单项式的和,在多项式中,每个单项式叫做多项式的项,其中不含字母的项叫做常数项,一个多项式含有几项,就叫几项式。多项式里,次数最高

1232项的次数,就是这个多项式的次数。如2x+3x-1是二次三项式,x3x2x32是三次四项式。

(3)单项式、多项式、整式、代数式之间的联系和区别:

几个单项式的和组成多项式,单项式和多项式统称为整式。

整式是代数式,但代数式不一定是整式,判断一个代数式是否是整式,就主要看代数式的分母中是否有字母。

(4)多项式的排列方式:

降幂排列:一个多项式中,按照一个字母的指数从大到小的顺序排列,叫做按照这个字母的降幂排列。

升幂排列:一个多项式中,按照一个字母的指数从小到大的顺序排列,叫做按照这个字母的升幂排列。

例1.指出下列多项式的次数与项数:

2xy1(1)3

(2)a22a2bab2b2 解:(1)是二次二项式。

(2)是三次四项式。

例2.将3x3yy25x24xy3重新排列。

(1)按x降幂排列。

(2)按y升幂排列。

3232 解:(1)按x降幂排列:3xyx54xyy(2)按y升幂排列:5x23x3yy24xy3

(5)同类项与合并同类项:

同类项与合并同类项是整式中非常重要的两个概念。同类项是指字母相同,并且相同字母的指数也分别相同的项叫同类项。同类项的定义规定判断同类项的两条标准:一是字母相同,二是相同字母的指数也分别相同,二者缺一不可。

合并同类项是指把同类项合并成一项,合并同类项的方法是把同类项的系数相加,而字母和相同字母的指数都不变。

23.合并同类项:11x-5+9x+1-3x3x 例

解:11x-5+9x+1-3x23x3x217x

4在多项式中只有同类项可合并,不是同类项不可合并。有人对合并的结果不是一个单项

225式感到不习惯,如犯的错误有:2a+3b=5ab,5ab-3ab=2,2x+3x=5x等,产生错误的根源就是没有掌握合并同类项的要点:“系数相加”、“字母和字母的指数不变”。

例4.将a、b看成常数,x、y看成字母,合并同类项:

(1)2ax3by4ax3by2ax

(2)3ax2by22ax23by2

解:这里将a、b看成常数,因而可合并如下:

(1)2ax3by4ax3by2ax

(2a4a2a)x(3b3b)y

4ax6by

(2)3ax2by22ax23by

2(3a2a)x2(b3b)y2

ax22by2

nn1n2n2nn1 例5.合并同类项:x2xx2x3xx

解:这里的指数全都是含有字母,但观察同类项只要指数相同即可,不论是数字还是字母都可以。

xn2xn1xn22xn23xnxn1 (13)xn(21)xn1(12)xn2

2xn(1)xn1xn2

(6)整式的加减:

整式的加减实际上是对整式实施两个重要的恒等变形:一是合并同类项;另一个是添括号和去括号,整式的恒等变形是整个教学中恒等变形的基础。

整式的加减应该注意以下几个问题:一是观察,就是把同类项看清楚,当项数较多时,可作上记号;二是运用交换律时把项的符号“带走”;三是运用分配律时,符号要分配到每一项,不能漏项,同时要注意项的系数的符号;四是对运算结果要作处理,应该以某一字母作降幂或升幂排列。

例6.化简15a2[4a2(7a8a2)]

解:15a2[4a27a8a2] 15a24a27a8a2

27a27a 例7.已知:A=x2x5,Bx23x1,当x时,求3(3AB)的值。

解:3(3AB)9A3B 9(x2x5)3(x23x1)3x29x453x29x3

18x48 当 x时,18x4818486484233

例 8.一个多项式减去xxy得2xyy,求这个多项式。41212 解:(xxy)(2xyy)x2xyy2

例 9.化简:|x1||x1| 解: |x-1|=0时,x=1 |x+1|=0时,x=-1 所以需分如下三种情况:

(1)当x1时,原式1xx12x

(2)当1x1时,原式1xx12

(3)当x1时,原式x1x12x 说 明:一般aaa……a123n | xa||xa||xa|……|xa|的化简,分别令|xa|0(i1,2,3…n)123ni然后分别讨论在这n+1个部分上的符号,从而将绝对值去掉,达到化简的目的。

例10.若代数式(2x2axy6)(2bx23x5y1)的值与字母x的取值无关,求代 把 x的取值范围分成:xa,axa,……axa,xa这n1部分,112n1nn数式3(a22abb2)(4a2abb2)的值。分析:若代数式(2x2axy6)(2bx23x5y1)的值与x无关,若将x看作字母,则含字母x的项的系数应该为0,以此为据,求得后面代数式的值。

解:(2x2axy6)(2bx23x5y1)

(22b)x2(a3)x6y

5要使其值与x无关,则

2-2b=0 b=1   a+3=0 a=-3 3(a22abb2)(4a2abb2)

a27ab4b2

(3)27(3)1412

921

48 本课小结:

1.本节课主要回忆了一些基本的概念,如同类项等。2.合并同类项是本次课的重点内容,须强化掌握。3.其间有一些特殊的解题方法需同学们认真掌握。

【模拟试题】 一.填空:

11xy与xy的差是____________。22 2.多项式4x25x2与多项式3x22x7的差是____________。3.若xmy3与x2yn是同类项,则m=________,n=________。1.单项式二.化简、求值:

1.x32x2x42x35x4,其中x=2 2.(4x25x)(52x2)(3x25x6),其中x 3.2x{3y[4y(3xy)]},其中x2 31,y0.2 5三.计算:

1.已知Ax35x2,Bx211x6。求:(1)A+B(2)A-B(3)B-A。

2.求证:不论x、y取任何有理数,多项式

(x33x2y2xy24y31)(y3xy2x2y2x32)(x34x2y3xy25y38)的值恒等于一个常数,并求出这个常数。

【试题答案】 一.1.xy 2.x27x9

3.m2,n3

二.1.化简后:x32x26x,代入x2得值为4 2.化简后:x21,代入x23得值为149 3.化简后:x2y,代入x15,y0.2得值为0.2 三.计算

1.(1)x34x211x6

(2)x36x211x6

(3)x36x211x6 2.化简多项式

(x33x2y2xy24y31)(y3xy2x2y2x32)(x34x2y3xy25y38)得结果-5 因而可以肯定其值恒等于一个常数,且这个常数为-5

第四篇:人教版七年级上册数学第二章整式教案

整式

知识点1:单项式、多项式、整式的概念及它们的联系和区别

单项式:由数与字母的乘积组成的式子叫做单项式,单独一个数或一个字母也是单项式。1如:ab,m2,x3y,5,a。

2多项式:几个单项式的和叫多项式。

如:x22xyy2、a2b2。

整式:单项式和多项式统称整式。

它们的关系可以用

图表示:

知识点2: 单项式的系数和次数

单项式的系数是指单项式中的数字因数。单项式的次数是指单项式中所有字母的指数和。

11如:a2b的系数是,次数是3。3

3注意:(1)圆周率π是常数,2πR系数是2π)

(2)当一个单项式的系数是1或-1,1通常省略不写,如:a2,m3。

(3)23a2中系数是23,次数是2。

知识点3 :多项式的项、常数项、次数

在多项式中,每个单项式叫做多项式的项。其中不含字母的项叫常数项。多项式中次数最高项的次数,就是这个多项式的次数。

如多项式3n42n2n1,它的项有3n4,2n2,n,1。其中1不含字母是常数项,3n4这一项次数为4,这个多项式就是四次四项式。

注意:(1)多项式的每一项都包括它前面的符号。

如:6x22x7包含的项是6x2,2x,7。

(2)多项式的次数不是所有项的次数之和。

知识点4: 同类项

同类项:所含字母相同,并且相同字母的指数也分别相等的项,另外所有的常数项都是同类项。

例如:m2n与3m2n是同类项;x2y3与2y3x2是同类项。

注意:同类项与系数大小无关,与字母的排列顺序无关。

知识点5:合并同类项法则

合并同类项法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数保持不变。

如:3m3n22m3n2(32)m3n2m3n2。

知识点6: 括号与添括号法则

去括号法则:括号前面是“+”号,把括号和它前面的“+”号去掉,括号里的各项都不变符号;括号前面是“-”号,把括号和它前面的“-”号去掉,括号里的各项都改变符号。

如:(abc)abc,(abc)abc

知识点7: 升幂排列与降幂排列

为便于多项式的运算,可以用加法交换律将多项式各项的位置按某个字母的指数大小顺序重新排列。

若按某个字母的指数从大到小的顺序排列,叫做这个多项式按这个字母降幂排列。

若按某个字母的指数从小到大的顺序排列,叫做这个多项式按这个字母升幂排列。1如:多项式2a3b3ab3a2bb2aa1

21按字母a升幂排列为:1ab2a3ab3a2b2a3b。2

注意:(1)重新排列后还是多项式的形式,各项的位置发生变化,其他都不变。

(2)各项移动时要连同它前面的符号。

(3)某项前的符号是“+”,在第一项位置时,正号“+”可省略,其他位置不能省,排列时注意添加或省略。

知识点8:整式加减的一般步骤

(1)如果有括号,那么先去括号。有多重括号时,先小括号,再中括号,最后大括号。

(2)如果有同类项,再合并同类项。

典型例题:

1、指出下列各式哪些是单项式?哪些是多项式?

1x22,0,x2y,ab,x2y25,,29xy1,m,xyz, x+x+1x322x

x22x,―2.01×105。

352、指出下列单项式的系数、次数:ab,―x2,3xy5,x

5yz3。

3、指出多项式a3―a2b―ab2+b3―1是几次几项式,最高次项、常数项各是什么?

14、多项式x2y-x2y2+5x3-y3的最高次项系数是。

215、多项式-3ab2+a3b+4-a2的项是

2高次项是,最高次项的系数是,常数项是,它是次项式。

6、若把(s+t)、(s-t)分别看作一个整体,指出下面式子中的同类项,并简化 131(1)1(s+t)-(s-t)-(s+t)+(s-t);463

5(2)2(s-t)+3(s-t)2-5(s-t)-8(s-t)2+s-t。

⑶5(s+t)3-2(s-t)4-2(s+t)3+(t-s)4。

7、若5x3ym和9xn1y2是同类项,则m=_________,n=___________。

24n1ab的和是单项式,那么m=,n=

329、观察下列单项式:x,-3x,5x3,-7x4,9x5,„按此规律,可以得到第2008个单项

式是______.第n个单项式怎样表示________.10、一个三位数,个位数字是a,十位数字是b,百位数字是个位的两倍,这个三

位数表示为。

8、已知单项式3amb2与-

11、代数式9(2ab)2的最大值是______.12、如图,用围棋子按下面的规律摆图形,则摆第n个图形需要围棋子的枚数是

()

A.5nB.5n-1C.6n-1D.2n2+

113、已知a+2b=5,ab=-3,则(3ab-2b)+(4b-4ab+a)=___________.14、当x2时,代数式px3qx1的值等于2002,那么当x2时,代数式px3qx1 的值为______.15、已知xy2xy,求

16、已知m2mn21,mnn215,求m2mnn的值。

17、已知xy7,xy2,求5x3xy4y11xy7x2y的值。222222224x5xy4y的值。xxyy18、已知代数式3xn-(m-1)x+1是关于x的三次二项式,求m、n的条件。

19、已知n是自然数,多项式yn+1+3x3-2x是三次三项式,那么n可以是哪些数?

20、多项式5xmy2+(m-2)xy+3x.(1)如果的次数为4次,则m为多少?(2)如果多项式只有二项,则m为多少?

21、如果5xmy2m2xy3x是四次三项式,求m。

22、如果多项式a1x41bx5x22是关于X的二次多项式,求ab。

23、已知A=2a2+3ma-2a-1,B=-a2+ma-1,且3A+6B的值不含有含a的项,求m的值。

24、一个多项式加上―2x3+4x2y+5y3后,得x3―x2y+3y3,求这个多项式,并求当

1x=―1,y=时,这个多项式的值。2

232n-122n-22n+1x-x-x+2按字母x降幂排列(n为自然数).并说3

4出最高次项、常数项.25、把多项式5x2n+

26、如图三角尺的面积为;

27、如图是一所住宅区的建筑平面图,这所住宅的建筑面积是㎡。

28、某移动通讯公司设了2种通讯业务:“全球通”使用者缴27.5元月租费,然后每通话1分钟再付话费0.1元;“本地通”不缴月租费,每通话一分钟付话费0.2元(本题的通话皆是市内通话),若一个月内通话x分钟。

a)用代数式表示两种方式的话费;

b)某人估计一个月通话350分钟,应选哪种合算?

29、一辆汽车以x千米/小时行驶d 千米路程,若速度加快10千米/小时,则可少用多少小时?

30、两船从同一港口同时出发反向而行,甲船顺水,乙船逆水,•两船在静水中的速度都是50千米/时,水流速度是a千米/时.

(1)2小时后两船相距多远?

(2)2小时后甲船比乙船多航行多少千米?

第五篇:整式加减法教案全

2.2整式的加减

(二)课本P67 例4,,先让学生判定是哪种类型的去括号,去括号后,要不要变号,括号内的每一项原来是什么符号?去括号时,要同时去掉括号前的符号.为了防止错误,题(2)中-3(a2-2b),先把3乘到括号内,然后再去括号。解答过程按课本,可由学生口述,教师板书。

课本P67 例5,思路点拨:根据船顺水航行的速度=船在静水中的速度+水流速度,•船逆水航行速度=船在静水中行驶速度-水流速度.因此,甲船速度为(50+a)千米/时,乙船速度为(50-a)千米/时,2小时后,甲船行程为2(50+a)千米,乙船行程为(50-a)千米.•两船从同一洪口同时出发反向而行,所以两船相距等于甲、乙两船行程之和。去括号时强调:括号内每一项都要乘以2,括号前是负因数时,去掉括号后,•括号内每一项都要变号.为了防止出错,可以先用分配律将数字2•与括号内的各项相乘,然后再去括号,熟练后,再省去这一步,直接去括号。

去括号是代数式变形中的一种常用方法,去括号时,特别是括号前面是“-”号时,括号连同括号前面的“-”号去掉,括号里的各项都改变符号.去括号规律可以简单记为“-”变“+”不变,要变全都变.当括号前带有数字因数时,这个数字要乘以括号内的每一项,切勿漏乘某些项.

学生作总结后教师强调要求大家应熟记法则,并能根据法则进行去括号运算。法则顺口溜:去括号,看符号:是“+”号,不变号;是“―”号,全变号。

一、复习引入:

1、做一做。

某学生合唱团出场时第一排站了n名,从第二排起每一排都比前一排多一人,一共站了四排,则该合唱团一共有多少名学生参加?

①学生写出答案:n+(n+1)+(n+2)+(n+3)

②提问:以上答案进一步化简吗?如何化简?我们进行了哪些运算?

2、练习:化简:

(1)(x+y)—(2x-3y)

(2)2(a2-2b2)-3(2a2+b2)提问:以上化简实际上进行了哪些运算?怎样进行整式的加减运算?

(从实际问题引入,让学生经历一个实际背景,体会进行整式的加减运算的必要性,在通过复习、练习,为学生概括出整式的加减的一般步骤作必要的准备)教师:通过上面的学习,我们可以得到整式加减的运算法则:一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项。

三、课堂小结

1、整式的加减实际上就是去括号、合并同类项这两个知识的综合。

2、整式的加减的一般步骤:①如果有括号,那么先算括号。②如果有同类项,则合并同类项。

3、求多项式的值,一般先将多项式化简再代入求值,这样使计算简便。

4、数学是解决实际问题的重要工具。

1、主要概念:(1)关于单项式,你都知道什么?

(2)关于多项式,你又知道什么? 引导学生积极回答所提问题,通过几名同学的回答,复习单项式的定义、单项式的系数、次数的定义,多项式的定义以及多项式的项、同类项、次数、升降幂排列等定义。

(3)什么叫整式? 在学生回答的基础上,进行归纳、总结。整式

第一章复习

教学过程:

一、知识梳理:

1、正数与负数:(给出4个问题,让学生了解负数产生的必要性和负数在生产、生活中的应用。)

回答下列问题(1)温度为-4℃是什么意思?(2)如果向正北规定为正,那么走-70米是什么意思?(3)21世纪的第一年,日本的服务出口额比上一年增长了-7.3%,这里的“服务出口额比上一年增长了-7.3%”是什么意思?(4)请同学们谈一谈,为什么要引入负数?你还能举出生活中有关负数的例子吗?

2、有理数的分类:(通过2个问题让学生掌握有理数的两种分类方法,理解有理数的意义。)(1)请说出下列各数哪些是整数、分数、正整数、负分数、非负数?(课本P62第一题)

3.5,-3.5,0,|-2|,-2,-135,-13,0.5;

(2)请将上面的各数按一定的标准分成两类,并说明你是根据什么来分类的?若要分成三类,又该怎样分?分类的标准又是什么?

3、相反数、倒数、绝对值: 说出8个数的相反数、倒数、绝对值。

4、数轴:(1)请你画一条数轴;并说一说画数轴时要注意什么?(2)在你所画的数轴上表示出上面的8个数。

5、有理数大小的比较:

(1)请你将上面的8个数用“>”连接起来,并说明你是怎样解决这个问题的?(2)说一说比较两个有理数的大小有哪些方法?

6、有理数的乘方:

(1)an(其中n是正整数)表示什么意思?其中a、n的名称分别是什么?(2)当a、n满足什么条件时,an的值大于0?

7、科学记数法、近似数和有效数字:(通过2个问题引导学生回顾)

(1)将数***000用科学记数法表示(保留三个有效数字)(2)请你说出1.6与1.60这两个近似数有什么不同?

二、运算法则及运算律

1、有理数的加法法则

①同号两数相加,和取相同的符号,并把绝对值相加;

②绝对值不等的异号两数相加,和取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;

③一个数与零相加仍得这个数; ④两个互为相反数相加和为零。(用符号表述:)

2、有理数的减法法则: 减去一个数等于加上这个数的相反数。

3、有理数的乘法法则:

①两数相乘,同号得正,异号得负,并把绝对值相乘; ②任何数与零相乘都得零;

③几个不等于零的数相乘,积的符号由负因数的个数决定,当负因数有奇数个数,积为负;当负因数的个数为偶数个时,积为正;

④几个有理数相乘,若其中有一个为零,积就为零。

4、有理数的除法法则:

法则一:两个有理数相除,同号得正,异号得负,并把绝对值相除;

法则二:除以一个数等于乘以这个数的倒数。

5、有理数的乘方:

正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数。

6、有理数的运算顺序:

先算乘方,再算乘除,最后算加减;如果有括号,则先算括号内,再算括号外。

7、运算律:①加法的交换律;②加法的结合律;③乘法的交换律;④乘法的结合律; ⑤乘法对加法的分配律; 注:除法没有分配律。

三、总结:要注意的几个问题

(1)有理数的两种分类经常用到,应注意它们的区别;

(2)数轴的三要素缺一不可,利用数轴可直观地比较有理数的大小;

(3)相反数指的是两个仅符号不同的数,数轴上表示一对相反数的两个点到原点的距离相等,它们的和为0;而倒数指的是两个乘积为1的数;

(4)一个数的绝对值总是非负数,数a的绝对值是数轴上表示数a的点到原点的距离;(5)要熟练掌握运算法则,在法则的指导下进行运算,做到有理有据;要时刻注意运算的顺序,在计算前,要认真观察式子,选择正确的顺序进行运算;在每一步的计算过程中,要先确定符号,再进行绝对值的计算;灵活运用运算律可以提高运算的速度和正确率,运算律可以正向用也可以逆向用。

下载人教版七年级数学上册教案之整式的加减法word格式文档
下载人教版七年级数学上册教案之整式的加减法.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    七年级数学整式教案2

    2.1 整式 一、素质教育目标(一)知识教学点 1.使学生理解多项式的概念. 2.使学生能准确地确定一个多项式的次数和项数.3.能正确区分单项式和多项式.(二)能力训练点 通过区别单项式与......

    七年级数学上册 2.1 整式教案 (新版)新人教版

    《第2章第1节 整式》教案 一. 教学内容:整式 1. 单项式的有关概念,如何确定单项式的系数和次数; 2. 多项式的有关概念,如何确定多项式的系数和次数; 3. 什么是整式; 4. 分析实际问......

    2017七年级数学整式的运算教案.doc(汇编)

    第一章 整式的运算 一、值得讨论的问题: 1、 符号感的含义是什么?如何培养学生的符号感? 符号感主要表现在“能从具体情境中抽象出数量关系和变化规律,并用符号来表示;理解符号所......

    第二章整式的加减教案(人教新课标七年级上)

    茗蕾辅导学校初中数学辅导教案 整式的加减(1) 教学目的 1、使学生在掌握合并同类项、去括号法则基础上进行整式的加减运算。 2、使学生掌握整式加减的一般步骤,熟练进行整式的......

    人教新版英语七年级上册Unit1SectionA1a-2d教案

    七年级英语Unit1 My name’s Gina.1a-2d 教学设计与反思 一.基本信息教材分析 七年级英语unit1 sectionA,这部分首先通过图文将学生带人“上新学校,结交新朋友”的情境中,并......

    七年级数学上册整式多项式说课稿(大全5篇)

    一、教材分析多项式是在学习单项式的基础上进一步学习的整式的另一个重要知识点,所以只有理解了单项式的概念,才能进一步理解并掌握多项式的概念。而多项式的加减运算正是整式......

    新人教七年级数学上册第二章整式的加减复习学案

    第二章整式的加减复习 一. 【知识回顾】 1._________和__________统称整式. ⑴单项式:由与的乘积式子称为单项式.单独一个数或一个字母也是单项式,如a ,5. 单项式的系数:单式项......

    七年级数学有理数的加减法教案

    株洲大学生家教舒新 http://www.xiexiebang.com电话*** 初一同步辅导材料(第9讲) 第一章有理数加减及其混合运算 【知识梳理】 1、有理数的加法法则: 同号两数相加,取相......