第一篇:七年级数学上册第二章整式单项式多项式知识点教案及练习
知识点:
1.用字母表示数时,应注意以下几点:
(1)加、减、乘、除、乘方等运算符号将数和表示数的字母连接而成的式子是代数式.(2)代数式中出现的乘号一般用“·”或省略不写,例如4乘a写作4a.(3)在代数式中出现除法运算时,一般按分数的写法来写,例如a除以t写作.(4)代数式中大于1的分数系数一般写成假分数,例如2.单项式
(1)如3a,xy,-6m2,-k等,它们都是数与字母的积,像这样的式子叫做单项式。
对于单项式的理解有以下几点需要注意:
①单项式反映的或者是数与字母,或者是字母与字母之间的运算关系,且这种运算只能是乘法,而不能含有加减运算,如代数式(x+1)3不是单项式.②字母不能出现在分母里,如不是单项式,因为它是n与m的除法运算.③单独的一个数或一个字母也是单项式,如0,-2,a都是单项式.(2)单项式的系数:是指单项式中的数字因数,如果一个单项式只含有字母因数,它的系数就是1或-1,如m就是1·m,其系数是1;-a2b就是-1·a2b,其系数是-1.(3)单项式的次数:是指一个单项式中所有字母的指数的和.掌握好这个概念要注意以下几点:
①从本质上说,单项式的次数就是单项式中字母因数的个数,如5a3b就是5aaab,有4个字母因数,因此它的次数就是4.②确定单项式的次数时,不要漏掉“1”.如单项式3x2yz3的次数是2+1+3=6,字母因数的指数为1时,不能认为它没有指数.③单项式的次数只与单项式中的字母因数的指数有关,而不能误加入系数的指2345数,如单项式-abc的次数是字母a、b、c的指数和,即3+4+5=12,而不是2+3+4+5=14.④单独一个非零数字的次数是零.3.多项式
(1)多项式:是指几个单项式的和。
其含义有:
①必须由单项式组成;②体现和的运算法则,如3a2+b-5是多项式,(2)多项式的项:是指多项式中的每个单项式.其中不含字母的项叫做常数项.要特别注意,多项式的项包括它前面的性质符号(正号或负号).另外,一个多项式化简后含有几项,就叫做几项式.多项式中的某一项的次数是n,这一项就叫做n次项.如多项式x3+2xy+x2-x+y-1是六项式,x3的次数是3,叫三次项,2xy、x2的次数都是2,都叫二次项,-x、y的次数都是1,都叫一次项,后面的-1叫常数项.(3)多项式的次数:是指多项式里次数最高的项的次数.应当注意的是:不要与单项式的次数混淆,而误认为多项式的次数是各项次数之和,如多项式3x4+2y2+1的次数是4,而不是4+2=6,故此多项式叫做四次三项式.4.单项式与多项式统称为整式。【练一练】
例1.(1)某市对一段全长1500米的道路进行改造.原计划每天修x米,为了尽量减少施工对城市交通所造成的影响,实际施工时,每天修路比原计划的2倍还多35米,那么修这条路实际用了__________天.(2)某商店经销一批衬衣,每件进价为a元,零售价比进价高m%,后因市场变化,该商店把零售价调整为原来零售价的n%出售,那么调整后每件衬衣的零售价是()
A.a(1+m%)(1-n%)元
B.am%(1-n%)元
C.a(1+m%)n%元
D.a(1+m%·n%)元 例2.找出下列代数式中的单项式,并写出各单项式的系数和次数.X-7,x,8a3x,-1,x+
例3.请你用代数式表示如图所示的长方体形无盖的纸盒的容积(纸盒厚度忽略不计)和表面积,这些代数式是整式吗?如果是,请你分别指出它们是单项式还是多项式.例4:已知多项式-2x2a-1y2-x3y3+
例5.把代数式2a2c3和a3x2的共同点填写在下列横线上.例如:都是整式.(1)都是____________________;(2)都是____________________.例6.如果多项式x4-(a-1)x3+5x2-(b+3)x-1不含x3和x项,求a、b的值.是七次多项式,则a=
【练一练】 一.选择题
1.在代数式有
()
A.2个
B.4个
C.6个
D.8个 2.下列说法不正确的是()
中单项式共
C.6x2-3x+1的项是6x2,-3x,1
D.2πR+2πR2是三次二项式 3.下列整式中是多项式的是()
4.下列说法正确的是()
A.单项式a的指数是零
B.单项式a的系数是零 C.24x3是7次单项式
D.-1是单项式 5.组成多项式2x2-x-3的单项式是下列几组中的()A.2x2,x,3
B.2x2,-x,-3 C.2x,x,-3
D.2x,-x,3
227.下列说法正确的是()
B.单项式a的系数为0,次数为2 C.单项式-5×102m2n2的系数为-5,次数为5
8.下列单项式中的次数与其他三个单项式次数不同的是()
9.如果一个多项式的各项的次数都相同,则称该多项式为齐次多项式.例如:x3+2xy2+2xyz+y3是3次齐次多项式.若xm+2y2+3xy3z2是齐次多项式,则m等于()
A.1
B.2
C.3
D.4 二.填空题
1.一台电视机的原价为a元,降价4%后的价格为__________元.三.解答题
1.下列代数式中哪些是单项式,并指出其系数和次数.2.说出下列多项式是几次几项式:(1)a3-ab+b3(2)3a-3a2b+b2a-1
(3)3xy2-4x3y+12(4)9x4-16x2y2+25y2+4xy-1
四.综合提高题
3.一个关于字母a、b的多项式,除常数项外,其余各项的次数都是3,这个多项式最多有几项?试写出一个符合这种要求的多项式,若a、b满足︱a+b︱+(b-1)2=0,求你写出的多项式的值.
第二篇:七年级数学上册整式多项式说课稿
一、教材分析
多项式是在学习单项式的基础上进一步学习的整式的另一个重要知识点,所以只有理解了单项式的概念,才能进一步理解并掌握多项式的概念。而多项式的加减运算正是整式加减运算的的基础,而整式的加减运算又是解决大量的实际问题的基础,因此学好多项式的相关知识是至关重要的。
二、教学目标
1、知识目标:掌握多项式、多项式的项、常数项、多项式的次数的概念。
2、过程与方法:在预习的基础上,通过小组合作的方式,进一步探究有关多项式的相关概念,并能理解运用。
3、情感与态度:初步体会类比和逆向思维的数学思想。
三、重点、难点
重点:多项式的相关概念
难点:多项式的次数
四、教法、学法
采取小组合作,分步达标的教学模式,由学生自主或合作完成学习内容。
五、教学过程
1、检查预习:能过填空的.方式检查学生的预习情况。
2、学习目标:把本节课的学习目标出示给学生,让学生以小组为单位,以一对一的方式解决比较简单的问题,有难度的问题组内合作交流,组长检查完成任务的情况。
3、讨论交流:针对学习目标中的问题有针对性地讨论交流(即对有难度的难以解决的问题),达成共识。
4、讲解质疑:各组派代表到前面板演讲解,其他同学提出发现的问题和质疑,然后各组代表或其他同学讲解。
5、互助练习:以一对一的方式完成课后练习,再不会的组内交流。
【七年级数学上册整式多项式说课稿】相关文章:
1.数学《整式》说课稿
2.整式的说课稿
3.多项式与多项式相乘说课稿
4.整式的加减说课稿
5.整式说课稿2篇
6.七年级数学上册《整式(单项式)》优秀说课稿
7.七年级数学上册整式的加法和减法说课稿模板
8.七年级数学上册整式的加减的达标测试题
9.人教版七年级数学上册《整式的加减》教学反思
第三篇:数学人教版七年级上册2.1整式 第二课时 单项式
1.下列结论中正确的是()A.a是单项式,它的次数是0,系数为1 B.π不是单项式 C.是一次单项式
D.-是6次单项式,它的系数是-2.已知是8次单项式,则m的值是()A.4
B.3
C.2
D.1 3.3×105xy的系数是
,次数是
.4.下列式子:①ab;②3xy2;③;④-a2+a;⑤-1;⑥a-.其中单项式是.(填序号)5.写出一个含有字母x,y的五次单项式
.6.关于单项式-23x2y2z,系数是
,次数是
.7.某学校到文体商店买篮球,篮球单价为a元,买10个以上(包括10个)按8折优惠.用单项式填空:(1)购买9个篮球应付款
元;
(2)购买m(m>10)个篮球应付款
元.8.若-mxny是关于x,y的一个单项式,且系数是3,次数是4,则m+n=
.9.观察下列各数,用含n的单项式表示第n个数.-2,-4,-6,-8,-10,…,.★10.若(m+2)x2m-2n2是关于x的四次单项式,求m,n的值,并写出这个单项式.
第四篇:15.1.4.2单项式乘多项式学教案
15.1.4.2单项式乘多项式学教案
课时:第1课时 主备人:张湛坪 学生姓名: 学习内容:课本P145~146页。
学习目标:
1、理解单项式与多项式相乘的算理,体会乘法分配律及转化思想的作用;
2、在探索单项式与多项式相乘的乘法法则的过程中,建立学习信心和勇气;
学习重点:单项式与多项式相乘的乘法法则及其应用; 学习难点:灵活运用单项式与多项式相乘的乘法法则; 学习过程:
一、知识链接
1.复习巩固
单项式与单项式的乘法运算法则_______________________________________
______________________________________;
2.练一练:
(1)(0.25x2)(4x)
(2)(2.8103)(5102)
(3)(3x)2(2xy2)
二、自主探究
1.独立思考,解决问题 三家连锁店以相同的价格m(单位:元/瓶)销售某种商品,它们在一个月内的销售量(单位:瓶)分别是a,b,c,你能用不同的方法计算它们在这个月内销售这种商品的总收入吗?
第一种方法:
第二种方法:
问题(1)观察以上两种方法的两个式子有什么特征?上面两种方法的结果怎么样呢?如果相同,请用学过的知识说明理由.
实质上上面的式子提供了单项式乘以多项式的方法.(2).如何进行单项式与多项式相乘的运算?即法则.(阅读课本146页)
练一练: 1.计算
(1).2ab(5ab2+3a2b)
(2).
23(ab22ab)12ab
22233(3)(4).(2a)(2a3a1)
(12xy10xy21y)(6xy)
2.判断题:
(1)3a3·5a3=15a3(2)6ab7ab42ab
(3)3a4(2a22a3)6a86a12(4)-x2(2y2-xy)=-2xy2-x3y
三、问题交流
(1)小组长组织,交流你组同学不懂问题;(2)单项式与多项式相乘的乘法要注意什么?
四、展示提升
把你组内不能解决的问题展示到黑板上;
五、巩固提高
1、计算
(1)a(a2a)
(2)y(6122()()()()
12yy);
(3)2a(2ab213ab)
2(4)(x)―2x[x―x(2x―1)];
(5)x(2x
2、若a(3a-2a+4a)=3a-2a+4a,求-3k(nmk+2km)的值. 3nmk
232332
n
n+2
-3x
n-1
+1).
第五篇:单项式乘多项式 公开课教案
单项式乘多项式 教案
----------
2012年全县初中教学比武课
苏纽兮
一、教学目标:
1、知识与能力
(1)理解和掌握单项式与多项式乘法法则及推导;(2)熟练运用法则进行单项式与多项式的乘法计算。
2、过程与方法
(1)通过用语言概括法则,提高学生的表达能力和灵活运用知识的能力;(2)通过螺旋式练习,提高学生的计算能力和综合运用知识的能力。
3、情感、态度与价值观 渗透公式恒等变形的数学美。
二、教学重、难点:
1、重点:掌握单项式与多项式乘法法则。确立依据:“单项式乘多项式”是后续知识学习的基础,也是中考的重要内容,但计算量较大,学生计算能力弱,所以容易出错。
2、难点:正确迅速地进行单项式与多项式的乘法计算。确立依据:从认知规律看,学生已经具有初步的探究能力和思维能力,且过程中关注的“点”较多,特别是符号问题的处理,学生理解起来比较困难,导致正确迅速地进行单项式与多项式的乘法计算上可能会有困难。
三、教学过程:
一、导入:
1、复习:(1)叙述单项式乘法法则。
(单项式相乘,把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式。)
(2)什么叫多项式?说出多项式 的项和各项系数。
2、情境引入思考这样一个问题:计算一个宽为a,长为(b+c+d)的长方形的面积,并把你的算法与同学交流。
设计意图:将学生迅速引入数学课堂,并通过传统媒体呈现类似的、较为熟悉的问题情境,使学生实行角色的转变(从课堂中“坐观者”转变为“数学课堂学习的主人”),突出问题情境为内容。
二、探索新知,讲授新课
简便计算:(见小黑板)
引申:计算,其中m、a、b、c都是单项式,因为式中字母都表示数,故分配律对代数式也适用。
引导学生用学过的长方形面积知识加以验证,把宽为m,长分别是a、b、c的三个小长方形拼成大长方形,研究图形面积的整体与部分关系。
由该等式,你能说出单项式与多项式相乘的法则吗?单项式与多项式乘法法则:单项式与多项式相乘,就是用单项式乘多项式的每一项,再把所得的积相加。
例1
计算:
(1)a(b+c+d)
(2)2xy(3x-4y)
说明:讲解时,要紧扣法则:①用单项式遍乘多项式的各项,不要漏乘。②要注意符号,多项式的每一项包括它前面的符号。③“把所得积相加”时,不要忘了加上加号。
例2 化简: 5x(7x-2y)-4x(x +3y)
化简按课本,化简时直接写成省略加号的代数和,注意正确表达,做完乘法后,要合并同类项。
练习:错例辨析
(1)-2x(3x-5y)=-6x y-10x y
(2)5x(4x-2y)=20x y-5x y
三、巩固练习
1、(-4x)·(2x 2+3x-1);
2、(2/3ab2-2ab)·1/2ab。
可以看出,此例较简单,但讲解时,要紧扣法则。还要注意,多项式的各项是带着前面的符号。
1、(-4x)·(2x 2+3x-1)
=(-4x)·(2x 2)+(-4x)·(3x)+(-4x)(-1)
=-8x 3-12x 2+4x
2、(2/3ab2-2ab)·1/2ab
=(2/3ab2)1/2ab+(-2ab)1/2ab
=1/3a2b3-a2b2
根据乘法的交换律,单项式在前或在后没有关系,照常运用法则。
3、化简:-2a2(1/2ab+b2-5a(a2b-ab2)
=-a3b-2a2b2-5a3b+5a2b
2=-6a3b+3a2b2
这里的化简,实际上是做完乘法后,再合并同类项。这种变形,在今后学习中用处大,要求学生能熟练地进行。
4、补充例题:解方程:
6x(7-x)=36-2x(3x-15)解:42x-6x 2=36-6x 2+30x
移项得12x =36
x =3
5、教科书第102页练习,习题7。4A组第1题(1),(2),(3),(4);第2题(1),(2);第3题(1)。
四、总结、扩展
由学生叙述单项式与多项式相乘,积仍是多项式,积的项数与多项式因式的项数相同。
五、布置作业 :
P112 A组 1。(2)(4)(6)(8),2,3。(2)
六、板书设计:
单项式乘多项式
法则:①用单项式乘多项式的各项,不要漏乘。
②要注意符号,多项式的每一项包括它前面的符号。
③“把所得积相加”时,不要忘了加上加号。
注意:单项式与多项式相乘,积仍是多项式,积的项数与多项式因式的 项数相同。
《单项式乘多项式》课后综合评议
一、能很好地突出重点:
在教学过程中,首先通过练习复习了单项式与单项式相乘的法则,然后通过有理数运算中利用乘法分配律计算的两个小题。提出问题,让学生计算,再通过问题“乘法分配律对于含有字母的代数式是否也同样适用呢?”引发学生的思考,最后通过计算图形的面积,解决问题,引出课题。之后通过乘法分配律公式让学生试着完成两个单项式与多项式相乘的习题,然后再让学生试着用自己的语言总结出法则。
二、能有效地突破难点:
通过例题,让学生试着反思在解题过程中容易出错的地方,积是一个多项式,其项数与多项式的项数相同,运算时,要注意多项式中的每一项前面的”+”“-”号是性质符号,并总结出单项式与多项式相乘就是利用乘法分配律把它转化为单项式与单项式相乘。然后完成一组练习题,达到对法则的熟练运用。
三、教学实施过程中部分环节处理收到了良好效果:
(1)通过复习乘法分配律,为引入单项式与多项式的相乘法则打下良好的基础,很顺畅的引入了课题。但是太过于直白,说这就是为这节课准备的,实际多此一举,没有必要讲。
(2)通过求长方形的面积,形象直观地引入单项式与多项式的相乘法则,并引导学生用文字语言概括出其结论。
(3)通过例题分析、讲解并示范板书,让学生规范解题过程。
四、教学过程中部分环节有待提高。注意教师提问语言的指向性,提高课堂教学效率。因为自己的语言不简洁、重复,使部分教学任务没有完成,分析主要原因是提出问题指向性不明。所以在后面的教学中我还要注重自己提问语言的指向性,使自己的提问更加明确,提高课堂教学效率。
本节课的课堂教学基本达成了教学目标,个别的错误仍然是出现在符号方面。本课从课堂反馈中也发现了一个问题: “单项式乘多项式”可以根据乘法的分配律得到法则:用单项式乘以多项式的每一项,再把所得的积相加。因此在板演例题时,特别注意应用法则进行计算,用加号把若干个单项式乘单项式连起来的形式,甚至还把加号用彩色加以强调,可有的学生做习题时,写成了省略加号的代数和的形式,出现了跳步的现象,对于简单的题来说,这样写可能更好,但是这样写对于混合运算就很容易犯符号错误。所以要强调用法则进行计算,把过程写详细,避免出错。
评议人: