八年级数学上4.6探索多边形的内角和与外角和教案北师大版

时间:2019-05-12 18:04:05下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《八年级数学上4.6探索多边形的内角和与外角和教案北师大版》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《八年级数学上4.6探索多边形的内角和与外角和教案北师大版》。

第一篇:八年级数学上4.6探索多边形的内角和与外角和教案北师大版

亿库教育网

http://www.xiexiebang.com 探索多边形的内角和与外角和(二)教学目标(一)教学知识点

1.了解多边形的外角定义,并能准确找出多边形的外角.2.掌握多边形的外角和公式,利用内角和与外角和公式解决实际问题.(二)能力训练要求

1.经历探索多边形的外角和公式的过程.进一步发展学生的合情推理意识,主动探究的习惯,进一步体会数学与现实生活的紧密联系.2.探索并了解多边形的外角和公式,进一步发展学生的说理和简单推理的意识及能力.(三)情感与价值观要求

(1).经历多边形外角和的探索过程,培养学生主动探索的习惯;(2).通过对内角、外交之间的关系,体会知识之间的内在联系。.教学重点:多边形的外角和公式及其应用.教学难点:多边形的外角和公式的应用.教学过程:

一.巧设情景问题,引入课题

清晨,小明沿一个五边形广场周围的小跑,按逆时针方向跑步.(1)小明每从一条街道转到下一条街道时,身体转过的角是哪个角?在图中标出它们.(2)他每跑完一圈,身体转过的角度之和是多少?

(3)在上图中,你能求出∠1+∠2+∠3+∠4+∠5吗?你是怎样得到的?

(请同学们探讨解决,教师总结)

下面大家来看小亮的思考:如图所示,过平面内一点O分别作与五边形ABCDE各边平行的射线OA′、OB′、OC′、OD′、OE′,得到∠α、∠β、∠γ、∠δ、∠θ,其中:∠α=∠1,∠β=∠2,∠γ=∠3,∠δ=∠4,∠θ=∠5.亿库教育网

http://www.xiexiebang.com 亿库教育网

http://www.xiexiebang.com

大家看图,∠

1、∠

2、∠

3、∠

4、∠5不是五边形的角,那是什么角呢? 它们的和叫什么呢?

(这五个角是五边形的外角,它们的和叫外角和.)我们这节课就来探讨多边形的外角、外角和.二.讲授新课

那什么是多边形的外角、外角和呢?我们可类似三角形的外角定义来定义多边形的外角.另一边的反向延长线所组成的角叫做这个多边形的外角。

在每个顶点处取这个多边形的一个外角,它们的和叫做这个多边形的外角和.一般地,在多边形的任一顶点处按顺(逆)时针方向可作外角,n边形有n个外角.那多边形的外角和是多少呢?我们来回忆一下:三角形的外角和为多少?(360°)刚才我们又研究了五边形的外角和,它为360°,那大家想一想: 如果广场的形状是六边形、八边形.它们的外角和也等于360°吗?

(学生讨论,得出结论)(六边形的外角和是360°,八边形的外角和是360°)

那么能不能由此得出:多边形的外角和都等于360°呢?能得证吗? 因为多边形的外角与它相邻的内角是邻补角,所以,n边形的外角和加内角和等于n·180°,内角和为(n-2)·180°,因此,外角和为:n·180°-(n-2)·180°= 360°.性质:多边形的外角和都等于360°

由此可知,多边形的外角和与多边形的边数无关,它恒等于360°.下面大家来想一想、议一议:利用多边形外角和的结论,能不能推导多边形内角和的结论呢?

(请学生思考后回答)

亿库教育网

http://www.xiexiebang.com 亿库教育网

http://www.xiexiebang.com(因为对于n(n是大于或等于3的整数)边形,每个顶点处的内角及其一个外角恰好组成一个平角.因此,n边形的内角和与外角和的和为n·180°,所以,n边形的内角和就等于n·180°-360°=n·180°-2×180°=(n-2)·180°).三.知识应用

[例1]一个多边形的内角和等于它的外角和的3倍,它是几边形?

分析:这是多边形的内角和公式与外角和公式的简单应用.根据题意,可列方程解答.(让学生动手解答)解:设这个多边形是n边形,则它的内角和是(n-2)·180°,外角和等于360°,所以:

(n-2)·180°=3×360° 解得:n=8 这个多边形是八边形.四.课堂练习

(一)课本P112随堂练习

1.一个多边形的外角都等于60°,这个多边形是n边形?

解:因为多边形的外角和等于360°,所以根据题意,可知道这个多边形的边数是: 360°÷60°=6 2.下图是三个完全相同的正多边形拼成的无缝隙不重叠的图形的一部分,这种多边形是几边形?为什么?

解:这种正多边形是正六边形,理由是:设:这个正多边形的一个内角为x°,则由题图得:3x=360°.x=120°.再根据多边形的内角和公式得: n×120°=(n-2)×180°.解得n=6(二)试一试

1.是否存在一个多边形,它的每个内角都等于相邻外角的1?为什么? 5解:不存在,理由是:

如果存在这样的多边形,设它的一个外角为α,则对应的内角为180°-α,于是:

1×α=180°-α,解得α=150°.5这个多边形的边数为:360°÷150°=2.4,而边数应是整数,因此不存在这样的多边形.亿库教育网

http://www.xiexiebang.com 亿库教育网

http://www.xiexiebang.com 2.在四边形的四个内角中,最多能有几个钝角?最多能有几个锐角? 解:最多能有三个钝角,最多能有三个锐角.理由是: 设四边形的四个内角的度数分别为:α°,β°,γ°,δ°,则α+β+γ+δ=360°,α、β、γ、δ的值最多能有三个大于90°,否则α、β、γ、δ都大于90°.α+β+γ+δ>360°.同理最多能有三个小于90°.五.课时小结

本节课我们探讨了多边形的外角及其外角和公式.知道多边形的外角和与多边形的边数无关,它恒等于360°,因而,求解有关多边形的角的计算题;有时直接应用外角和公式会比较简便.六.课后作业:课本P112习题4.12 1、2、3

亿库教育网

http://www.xiexiebang.com

第二篇:探索多边形的内角和与外角和教学设计

探索多边形的内角和与外角和

教学目标

【知识与技能】初步掌握多边形内角和与外角和,进一步了解转化的数学思想。

【过程与方法】经历质疑、猜想、归纳等活动,发展学生的合情推理能力,积累数学活动的经验,在探索中学会与人合作,学会交流自己的思想和方法.

【情感态度与价值观】让学生体验猜想得到证实的成功喜悦和成就感,在解题中感受生活中数学的存在,体验数学充满着探索和创造. 教学重难点

【教学重点】多边形内角和外角和的探索和应用。【教学难点】转化数学思想方法的渗透。

第一环节 创设现实情境,提出问题,引入新课

1.多媒体展示八卦图,看到这幅图,你想到什么数学知识。2. 回顾三角形内角和的探索方法。

第二环节 实验探究

1、提出问题:三角形的内角和为180°,那么多边形的内角和是多少度呢?从四边形开始研究. 活动一:利用四边形探索四边形内角和 要求:先独立思考再小组合作交流完成.)(师巡视,了解学生探索进程并适当点拨.)(生思考后交流,把不同的方案在纸上完成.)

……(组间交流,教师课件展示几种方法)

教师帮助学生反思:在刚才的探索活动中,大家有不同的方法求四边形的内角和,这些看似不同的方法有没有相似之处? 进而引导学生得出:我们是把四边形的问题转化成三角形,再由三角形内角和为180°,求出四边形内角和为360°,从而使问题得到解决!进一步提出新的探索活动。

2、活动二:探索五边形、六边形、七边形、八边形的内角和。(要求:独立思考,自主完成.)

3、探索n边形内角和,并试着说明理由。

4、学会了求多边形的内角和你还想学些什么知识?你准备如何求多边形的外角和?

5、大胆猜测多边形的外角和,并想办法验证自己的猜测。

6、用所学知识求八边形的内外角和。

第三环节 回顾转化思想在我们数学学习中的广泛应用。第四环节 转化思想我会用:你能求出平行四边形的面积吗?

第三篇:『 多边形内角和与外角和』知识点剖析

『多边形内角和与外角和』知识点剖析

一、多边形的概念

在平面内,由若干条不在同一条直线上的线段首尾顺次相连组成的封闭图形叫做多边形 ①n边形有n个顶点、n条边、n个内角。②在多边形的基本概念中难点是对角线,从一个顶点可引(n3)条对角线,则从n个顶点可引n(n3)条,但是,从一点引向另一点与由另一点引向这一点重复,所以,多边形共有n(n3)条对角线。

2二、多边形的内角和定理

多边形的内角和等于(n2)180°

①对于公式的理解可以认为从一个顶点引(n3)条对角线,把n边形分成(n2)个三角形,且这(n2)个三角形的内角和恰好是n边形的内角和,所以n边形的内角和等于(n2)180°。

②根据定理我们可以看到,内角和随着边数的变化而变化,边数每增加1,内角和就增加180°。

③利用内角和知识解决,如图∠1+∠2+∠3+∠4+∠5+∠6+∠7的度数是多少?

析解:连接CF,在⊿DEO和⊿COF中,因为∠EOD=∠COF,所以∠4+∠5=∠8+∠9,所以∠1+∠2+∠3+∠4+∠5+∠6+∠7=∠1+∠2+∠3+∠8+∠9+∠6+∠7(恰好是五边形的五个内角)=(52)180540°

三、正多边形的定义

在平面内,内角都相等、边也都相等的多边形叫做正多边形

① 内角都相等、边也都相等,二者缺一不可,内角都相等的多边形不一定是正多边形,如:矩形;边都相等的多边形不一定是正多边形,如:菱形。

②由于正多边形的每个内角都相等,所以它的每个外角也都相等。

四、多边形外角和定理 多边形外角和都等于360°

①外角和是在每一个顶点都只取一个外角。②同一个顶点的一个外角和它相邻的内角互补。③多边形的外角和不随边数变化,都等于360°。

④利用所学知识完成,小明和同学们做游戏,规定从A点向前走20米,左拐30°,再向前走20米,再左拐30°,直到回到A点,请问小明共走了多少米?

析解:小明走的路线构成一个正多边形,小明走的路程就是这个正多边形的周长,根据已知得这个正多边形的每个外角均为30°,所以这个多边形的边数为3603012,所以小明共走了1220240米。

第四篇:探索多边形的内角和与外角和(二)教学设计

6.探索多边形的内角和与外角和

(二)一.学生起点分析

学生已经学完多边形的内角和,对内角和的问题有了一定的认识,二.教学任务分析

【知识与技能】 经历探索多边形的外角和公式的过程;会应用公式解决问题;

【教学重点】多边形外角和定理的探索和应用.

【教学难点】灵活运用公式解决简单的实际问题;转化的数学思维方法的渗透.

三.教学过程设计

第一环节 创设情境,引入新课

问题:(多媒体演示)清晨,小明沿一个五边形广场周围的小路,按逆时针方向跑步。

(1)小明每从一条街道转到下一条街道时,身体转过的角是哪个角?(2)他每跑完一圈,身体转过的角度之和是多少?

(3)在上图中,你能求出∠1+∠2+ ∠3+ ∠4+∠5的结果吗?你是怎样得到的? 第二环节 问题解决

对于上述的问题,如果学生能给出一些合理的解释和解答(例如利用内角和),可以按照学生的思路走下去。然后再给出“小亮的做法”或以“小亮做法”为提示,鼓励学生思考。如果学生对于这个问题无法突破,教师可以给出“小亮的做法”,或引导学生按“小亮的做法”这样的思路去思考,以便解决这个问题。

小亮是这样思考的:如图所示,过平面内一点O分别作与五边形ABCDE各边平行的射线OA′,OB′,OC′,OD′,OE′,得到∠α,∠β,∠γ,∠δ,∠θ,其中,∠α=∠1,∠β=∠2,∠γ=∠3,∠δ=∠4,∠θ=∠5.

1B2C3A54DA'EOB'E'D'C'这样,∠1+∠2+∠3+∠4+∠5=360° 问题引申:

1.如果广场的形状是六边形那么还有类似的结论吗? 2.如果广场的形状是八边形呢?

第三环节 多边形的外角与外角和

1.多边形内角的一边与另一边的反向延长线所组成的角叫做这个多边形的外角。2.在每个顶点处取这个多边形的一个外角,它们的和叫做这个多边形的外角和。探究多边形的外角和,提出一般性的问题:一个任意的凸n边形,它的外角和是多少?

鼓励学生用多种方法解决这个问题,可以参考第二环节解决特殊问题的方法去解决这个一般性的问题。

方法Ⅰ:类似探究多边形的内角和的方法,由三角形、四边形、五边形„的外角和开始探究;

方法Ⅱ:由n边形的内角和等于(n-2)·180°出发,探究问题。结论:多边形的外角和等于360°

(1)还有什么方法可以推导出多边形外角和公式?(2)利用多边形外角和的结论,能否推导出多边形内角和的结论?

第四环节 巩固练习

例1 一个多边形的内角和等于它的外角和的3倍,它是几边形? 随堂练习

1.一个多边形的外角都等于60°,这个多边形是几边形? 2.右图是三个不完全相同的正多边形拼成的无缝隙、不重叠的图形的一部分,这种多边形是几边形?为什么?

第五环节 课时小结

多边形的外角及外角和的定义; 多边形的外角和等于360°;

在探求过程中我们使用了观察、归纳的数学方法,并且运用了类比、转化等数学思想.第六环节 布置作业:习题4.11第1,2,3题

第五篇:《多边形的内角和与外角和》教学反思

完成三角形内外角和的教学之后,学生很自然地就会想到对于多边形的情况如何。为了体现课堂以学生为主,培养学生自主探究的能力,在课前的教学设计中尽量围绕学生展开。如:采取了小组合作学习、组与组之间交流等形式。虽然想法上有此意图,但在具体的实施过程中还是暴露出了很多问题,有事先没预计到的,也有想体现但没体现完整的。经过课后反思及老教师们的指点,主要表现在:

(1)较多的着眼于课堂形式的多样化及学生能力(如:合作、探究、交流等)的培养,而忽视了教学中最重要的知识点的落实。学生练的机会不多,仅有编制习题解答这一部分,且对学生来说要求较高,教师在编题前可先让学生解题,给学生搭好阶梯,使其不至于感到突然。

(2)小组讨论可以说是新教材框架中的一个重要部分,教师事先一定要有详细的计划。这也是本堂课暴露缺陷较多的环节。比如:组员的设置(七、八人一组加上发下的表格较少使得讨论未能有效的开展),以4、5人为一组较为合适,且要分工明确,如谁记录,谁发言等等,避免某些小组成员流离于合作之外。教师还应精心策划:讨论如何有效地开展;时间多长;采取何种讨论方法;教师在讨论过程中又该担当何种角色等。

(3)在小组交流过程中学生的发言过分地注重于探索的结果,而忽视了学生探索过程的展示。同时教师有些总结性的话,限制了学生的思维,不能最大限度的发挥学生自主探究的能力。

(4)教师在教学过程中对学生的评价较为单一,肯定不够及时,表扬不够热情,比如当最后一个平常表现较为一般的学生有此创意时,教师就应大加赞扬,从而也能激发课堂气氛。

下载八年级数学上4.6探索多边形的内角和与外角和教案北师大版word格式文档
下载八年级数学上4.6探索多边形的内角和与外角和教案北师大版.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐