第一篇:五年级下册数学教案统计具体内容的说明和教学建议
五年级下册数学教案——统计具体内容的说明和教学建议
1.众数(第122~125页)
这部分内容紧密结合学生的生活实际,围绕“如何根据身高选拔参加集体舞比赛的队员”“你认为用哪一个数据代表全班同学视力的平均水平比较合适”等问题展开讨论,使学生在提出问题、观察和处理数据、做出决策的过程中,认识另一种统计量——众数。在理解众数的意义及作用的同时,了解平均数、中位数与众数的区别,并能根据统计量进行简单的预测或做出决策。教材安排了例
1、“做一做”及相应的练习来完成以上任务。1.例1及“做一做”。
编写意图
呈现了要在20名候选队员中选拔10名同学参加集体舞比赛的信息,提出“你认为参赛队员身高是多少比较合适?”的问题,教材呈现了不同的解题思路,小林算出了20名队员身高的平均数;小平求出了这组数据的中位数;小明认为身高152米的人最多,所以身高在152米左右的同学参加集体舞比赛比较合适。在此基础上,教师明确“用小明的方案选出的队员身高均匀。”由此引出众数,并说明众数的特点。
“做一做”结合五(1)班40名同学的左眼视力情况,让学生通过计算中位数、众数,选取合适的数据表示全班同学视力的平均水平等,进一步理解所学的统计量的特点和作用。本题的中位数是50、众数是51,在这里用众数表示全班同学的平均视力水平比较合适。教学建议(1)教学例1时,可以引导学生围绕问题进行分组讨论。汇报时既要阐述各自的观点,如说清楚“为什么觉得身高在152米左右的同学参加集体舞比赛比较合适?”并鼓励其他学生进行评议,从而体会平均数、中位数、众数各自不同的特点,最后说明本例中用众数来确定参赛队员的身高比较合适,由此理解众数的意义。
“做一做”第(4)问,具有开放性。学生可以结合生活经验谈一谈建议。第(5)问要求学生调查本班同学的视力情况,在调查前,教师要提醒学生团结合作,分工明确。
(2)重视理解平均数、中位数与众数的联系与区别。
描述一组数据的集中趋势,可以用平均数、中位数和众数,它们有各自不同的特点。
平均数应用最为广泛,用它作为一组数据的代表,比较可靠和稳定,它与这组数据中的每一个数据都有关系,能够最为充分地反映这组数据所包含的信息,在进行统计推断时有重要的作用;但容易受到极端数据的影响。
中位数在一组数据的数值排序中处于中间的位置,故其在统计学分析中也常常扮演着“分水岭”的角色,人们由中位数可以对事物的大体趋势进行判断和掌控。
众数着眼于对各数据出现的频数的考察,其大小仅与一组数据中的部分数据有关,当一组数据中有不少数据多次重复出现时,它的众数往往是我们关心的一种统计量。
在这部分知识的教学中,要注意讲清上述三个量的联系与区别。使学生知道它们都是描述一组数据集中趋势的统计量,但描述的角度和适用范围有所不同,在具体的问题中究竟采用哪种统计量来描述一组数据的集中趋势,要根据数据的特点及我们所关心的问题来确定。2.关于练习二十四中的一些习题的说明和教学建议。
第1、2、3题,提供了各种数据,通过让学生计算其平均数、中位数和众数,进一步明确各统计量的实际意义和特点。
第4题,五(1)班参赛选手的成绩出现了两个众数,88和87,这两个众数意味着在这次竞赛中得88分和87分的人同样多。而五(2)班没有众数,则表示这次竞赛中没有集中的分数。通过整理数据让学生理解:在一组数据中,众数可能不止一个,也可能没有众数。
第5题,给出了某公司全体员工的工资情况,让学生求其平均数、中位数和众数,并选择能比较合适地代表该公司员工工资的一般水平的数据。由于平均数是2600,中位数和众数都是2000,所以用众数代表这个公司员工工资的一般水平比较合适,因为它反映的是大多数人的工资水平。本题旨在结合具体事例让学生进一步理解平均数、中位数、众数三种统计量的实际意义,学习根据具体问题,选择适当的统计量表示数据的不同特征。
第6题是一道实际调查的题目。让学生以小组合作的方式,通过对本班全体学生所穿鞋子号码的调查,在收集、整理、描述、分析数据的过程中,进一步感受众数在统计中的作用,体验统计在决策中的重要价值。
2.复式折线统计图(第126~131页)
学生在前面已经学习了复式条形统计图及单式折线统计图,本单元在此基础上学习复式折线统计图。教材以体育方面的素材为例,通过让学生比较两组数据的变化情况,感受到单式折线统计图的局限性,进而了解复式折线统计图的特点。1.例2及“做一做”。
编写意图
例2通过第9~14届亚运会中国和韩国获金牌情况的对比,使学生感受到单式折线统计图的局限性,从而体会到引入复式折线统计图的必要性。让学生亲历处理数据的过程,充分认识统计的现实意义,增强民族自豪感。
“做一做”,通过分析李欣和刘云两名同学10天里进行1分钟跳绳训练的复式折线统计图,让学生进一步体会到复式折线统计图的特点:可以比较方便地比较两组数据的变化趋势。同时学习分析折线统计图包含的信息:李欣和刘云跳绳的成绩都呈逐步上升的趋势,但上升的情况不同。李欣是稳步提高,刘云忽高忽低;李欣最后四天的成绩呈上升趋势并且比刘云好,而刘云最后四天的成绩不如自己前几天的最好成绩。由此可以预测李欣的比赛成绩可能会超过刘云。教学建议
教学时,可先出示第9~14届亚运会中国和韩国获金牌情况复式统计表,说明要看出两个国家各届金牌数的变化情况,可以用折线统计图把数据表示出来,然后师生共同完成两个国家的金牌折线统计图。在此基础上引导学生想:怎样做才能更方便地比较两国获得金牌数量的变化情况呢?当学生说出可以把两个单式折线统计图合并成一个时,师生共同完成复式折线统计图(其中韩国的金牌折线图让学生在书上独立完成)。然后,让学生充分观察、比较单式折线统计图与复式折线统计图的不同点。通过对比,明确图例的作用,了解复式折线统计图的画法,体会复式折线统计图便于比较的特点。通过回答例2后面的问题,使学生认识到从两条折线的变化趋势,可以看出中国获得金牌的数量呈上升趋势,韩国则趋于平稳。
2.关于练习二十五中的一些习题的说明和教学建议。
第1题,通过看图回答问题,使学生学会看复式折线统计图。通过比较发现某地区7~15岁的男、女生平均身高都在随着年龄的增加而增高,但13岁之后女生的身高增长趋于平缓,增长速度要比男生的速度慢。第二个问题是开放式的,让学生通过对自己身高与平均值的比较,体会到统计对生活的实际指导意义。
第2题,结合甲乙两地月平均气温的复式折线统计图,学习分析复式折线统计图包含的信息,从而了解甲乙两地的不同气候特点,同时通过后两个问题体会统计图对解决问题的作用。根据甲乙两地的气候特点,选择乙地比较适合树莓的生长。“五一”黄金周时由甲地去乙地旅游,应准备一些厚一点的衣物。
第3题,是进一步巩固会看复式折线统计图,通过对比知道陈明的体重在13~14岁间增长幅度最大,而且他的体重始终都高于标准体重。
第4题,给出A、B两种品牌彩电的销售量统计表,让学生据此画出折线统计图,通过分析折线统计图,进一步体会折线统计图比统计表更直观、更便于比较的特点,并尝试解决一些问题,体会统计的实际意义。如,通过对比两条折线的走势,分析出A牌彩电销售量逐渐降低,而B牌彩电的销售量在逐步提高并超过了A牌彩电的销量,根据这种变化趋势帮助商场经理做出决策,应加大B牌彩电的进货量同时降低A牌彩电的进货量,以保证比较稳定的销售额。
第5题,充分展开小组讨论,根据数据反映的不同情况,确定选用适当的统计图,进一步感受复式条形统计图与复式折线统计图的不同特点。
综合应用:打电话(第132~133页)
教材说明
在四年级上册的“数学广角”中教材安排了有关优化思想的学习,通过日常生活中的一些简单事例,让学生尝试在解决问题的多种方案中寻找最优的方案,初步体会运筹思想在实际生活中的应用以及对策论方法在解决问题中的运用。“打电话”这个综合应用就是结合学生生活中熟悉的素材,合唱队在假期接到一个紧急任务,老师要打电话尽快通知到每个队员。让学生帮助老师设计一个打电话的方案,并从中寻找最优的方案。通过这个综合应用,让学生进一步体会数学与生活的密切联系以及优化思想在生活中的应用,培养学生应用数学知识解决实际问题的能力,同时通过画图的方式发现事物隐含的规律,培养学生归纳推理的思维能力。
本活动可分为以下三个部分。1.探讨最优方案。
教材首先联系生活实际提出问题:15人的合唱队接到紧急演出,通过打电话通知每个队员,如果每分钟通知1人,怎样尽快通知到每个队员?让学生设计一个打电话的最快方案。根据学生的思维水平,教材呈现了几种不同的方案:一种是最简单的方案,就是一个一个地通知,当然这种方案需要的时间最长,一共需要15分钟;另一种是分组通知的方法,这种方案比一个一个通知要省时间。如,平均分成3个组,通知完15人至少需要7分钟。那是不是分的组越多用的时间就越少呢?对于这个问题可以让学生通过不同的分组方案来检验。如,按(4,4,4,3)分成4组,需要6分钟,如果平均分成5组,每组3人,则需要7分钟,所以并不是分的组越多所需的时间越少。为了便于理解,教材用图示的方式直观地表示出每种方案,也能帮助学生计算出所需的时间。接下来,让学生继续探讨还有没有更快的方法。学生在前面分组的方案中可能已经体会到要想时间最少,就需要每个接到通知的队员立即通知后面的队员,每个人都不空闲,照这样继续下去直到通知到全体队员为止,所需的时间最少。在学生讨论的基础上,教材同样用图示的方法直观地展示了这种方案(见下图),按照时间的顺序,用不同的颜色动态地显示了每分钟新接到通知的队员和总共通知的队员。这种方案就是用时最少的方案,通过图示可以找出这个方案的用时是4分钟。
2.发现规律。
通过观察这个示意图,让学生从中发现这种方案中隐含的规律。从图上学生就能清楚地看到每增加一分钟新接到通知的队员数正好是前面所有接到通知的队员和老师的总数,也就是第n分钟新接到通知的队员数等于前(n-1)分钟内接到通知的队员和老师的总数。因而到第n分钟所有接到通知的队员和老师的总数就是一个等比数列,通项公式为an=2,到第n分钟所有接到通知的队员总数就是(2-1)人。当然这个公式不需要学生掌握,学生只要能通过示意图发现上面的规律,根据规律找到到第n分钟所有接到通知的队员总数就可以了。3.应用规律。
发现这个规律后,可以让学生直接利用这个规律来解决前面提出的问题了。随着时间的增加,所有接到通知的队员数分别为1,3,7,15,31„„因此要通知完15个队员,只需要4分钟。此外教材还让学生根据这个规律算一算5分钟最多可以通知多少人,以及如果一个合唱团有50人,最少花多少时间就能通知到每个人。这些问题利用发现的规律都能轻松地解决。
找到打电话的最优方案,但在具体实施中还有个问题要解决,那就是要设计好打电话的顺序,也就是说每个队员要清楚他接到电话后,后面要怎样继续通知其他队员。因此这个方案还需要事先制定好一个打电话的流程示意图,让老师和每个队员都明确接到通知后,按照怎样的顺序通知后面的队员。只有严格按照事先制定好的方案执行,才能达到节省时间的目的。教学建议
1.这个综合实践活动可以用1课时进行教学。
2.除了教材提供的这个实际问题,教师也可以创设其他类似的情景,但是要注意这里人数的数据不要太大,因为数据过大,对学生尝试不同的方案会带来一定的困难。而且从简单的数据开始找到规律后,再推广到一般情况也是数学中解决问题的一种重要的策略和方法。如,教材最后就让学生把发现的规律应用到50人的合唱团。另外,教师要向学生说明:这里说的都是理想情况,每通知一人正好要用1分钟,不考虑其他的特殊情况。
n
n3.提出问题后,教师可以放手让学生分组设计方案并用适当的方式呈现出来。为了激发学生的积极性,教师可以创设一些竞争机制激励学生设计出最佳的方案。小组活动时,教师可以通过巡视了解学生不同的设计方案并适时地加以指导。如,在设计分组通知的方案时,如果平均分成3组,正好每组5人,这样分是不是最省时间呢?如果分成4组,15人该怎样分呢?除了教材呈现的两种方案外,学生还可能设计出其他的方案。如,分成4组,人数可以分别为4,4,4,3人,所需时间为6分钟。分成3组时,除了平均分所需时间为7分钟,还可以按6,5,4的人数分,这样就只需要6分钟了,比平均分要节省时间,还可以分成5组、6组等等,还有的小组可能还设计了组上继续分组的方案。对于学生不同的方案,只要合理,教师都应给予鼓励,以保护学生学习和探索的积极性。
4.在学生汇报的基础上,教师可以提出这样的问题:是不是分的组越多用的时间越少呢?如果学生汇报的方案中有不同的分组方案,可以马上从这些分组方案的对比中找到答案。在引导学生探讨分组对时间的影响中,教师可以进一步引导学生思考:还有更快的方法吗?怎样保证时间最少呢?让学生结合刚才不同分组的方案进行讨论,通过交流发现:只有每个接到通知的队员都继续通知后面的队员,直到全部通知到为止,这样每个接到通知的队员都不空闲才是最快的方案。
5.接下来以小组为单位,让学生用自己喜欢的方式把这种最优的方案表示出来,除了教材呈现的方法,学生可以有不同方式的示意图。为了便于学生发现规律,这里可以让学生把每一分钟新接到通知的队员用不同的颜色或图形表示出来,当然也可以直接用序号来表示。设计好之后,通过展示和交流,教师进一步引导学生观察:通过这个示意图,你发现了什么规律?可以适当地提示学生从人数的变化去观察。学生在观察、思考、讨论、交流后,再来汇报发现的规律,这里主要让学生发现每增加一分钟新接到通知的队员数正好是前面所有接到通知的队员和老师的总数,也就是第n分钟新接到通知的队员数等于前(n-1)分钟所有接到通知的队员和老师的总数,也可以说到第n分钟所有接到通知的队员和老师的总数是前(n-1)分钟所有接到通知的队员和老师的总数的2倍。有的学生可能会用表格的方式来表示发现的规律(如下表)。当然这里不要求学生列出计算公式,只要发现其中的规律并能利用规律推算就可以了。
6.发现规律后,再回过头来解决前面提出的问题就很容易了。教师在这里还要提醒学生找到打电话的最优方案,但在具体实施中还要事先设计好打电话的流程图,也就是说每个队员要清楚他接到电话后,后面要怎样继续通知其他的队员,让学生进一步制定好打电话的流程示意图。
7.最后,教师还可以让学生利用发现的规律解决较复杂的问题,如教材上提出的“按上面的方式,5分钟最多可以通知多少人?”“如果一个合唱团有50人,最少花多少时间就能通知到每个人?”也可以提出其他类似的问题。
第二篇:《解方程》具体内容及教学建议
《解方程》具体内容及教学建议
编写说明
(1)例1以x+3=9为例,讨论了形如x±a=b的方程的解法。教学的重点是运用等式性质1解方程,并引入方程的解与解方程两个概念。
(2)为了便于给出解方程全过程的直观图示,例题中的数据比较小。教材借助三幅天平演示图,展现了解方程的完整思考过程,然后以此为例引入方程的解与解方程的概念。最后,提示还需要检验.并介绍验算过程。
(3)“方程的解”中的“解”是名词指能使方程左右两边相等的未知数的值;“解方程”中的“解”是动词,指求方程的解的过程。
对于学生来说,只要初步理解这两个概念的含义,能正确运用就行了,不必在概念叙述上过于咬文嚼字。
(4)“做一做”安排了两题。第1题是解形如x±a=b的方程,第2题是检验方程的解。
教学建议
(1)引导学生运用等式性质。
可采用思维定向的策略加以引导,即先复习等式性质1,出示例1并请学生口述方程后,再明确指出,从今天起我们将学习怎样根据等式性质来解方程。
由于数据小,学生一眼就能看出x=6.为提高学习掌握新方法的积极性,教
/ 5
师还可强调这种思考方法以后到中学解更复杂的方程一直有用。为此,暂时避开算法多样化的讨论。
(2)注意培养学生的自学能力。
得到x=6后,它叫什么?怎样检验它是否正确?请学生看书自学。然后通过交流,明确两个概念,并小结检验的思路:代入原方程,看左右两边是否相等,这样做的依据,就是“方程的解”的意义
(3)引导小结“做一做”的收获。
第1题的三小题,共同点是:依据相同,都是等式性质1;思路相同.为了得到x=?(这是解方程的目标),都在等式两边加上或减去相同的数。小结这两点有利于凸显用等式性质解方程的优点:不用再去区分未知的是加数,还是被减数,也不用再去回忆它们各自的关系式。
第2题的小结,主要是启发学生体会代入检验是辨别方程的解的好方法。编写说明
(1)例2以3x=18为例,讨论形如ax=b的方程的解法,它的思考方法可类推到解形如x÷a=b的方程。教学的重点是运用等式性2解方程。
教材仍凭借天平演示的图示,展现解方程的完整思考过程。然后请学生自己检验。
(2)例3以20-x=9为例,讨论形如a-x=b的方程的解法,思路是转化为x+b=a,即转化为例1,这里不再依靠天平的图示,意图在于及时抽象,启发学生直接根据等式性质进行转化。
(3)由小精灵提问,引导学
/ 5
生通过讨论,小结解方程的思考方法、解题步骤和注意事项。
(4)“做一做”有两题。第1题是解六种基本的简易方程,排成两行,分别运用等式性质1与等式性质2。第2题是看图列出方程并解方程。
教学建议
(1)由复习入手,让学生独立尝试。
教学例2,可先复习等式性质2,再出示例题,并用天平表示。使学生明确,这个方程是已知3个x等于18,求一个x等于多少。然后提出问题:怎样运用等式性质得出x等于多少?可以让学生独立思考,完成例2中的填空,并自己验算。交流时,让学生先说自己是怎样想的,用天平演示验证,再说验算过程。紧接着可由学生运用例2的方法,尝试解形如x÷a=b的方程。
(2)突出转化思想,将例3归结为例1。
教学例3,可先复习9+x=20,再出示例题,启发学生思考,根据哪一条等式性质。怎样将“新”问题转化为已经解决的“旧”问题?也可以让学生看书,说说每一步是怎样想的。学生根据加减法的关系,直接得出9+x=20,也是可以的。但应指出,这样的思考方法,到了中学解更复杂的方程就行不通了形如a÷x=b的方程,可由学生运用例3的方法,自己尝试把它转化为bx=a求解。
(3)及时小结,积累解方程的经验。
“做一做”的两道题,可由学生独立完成。交流时,让学生说说哪几题是在方程两边加上或减去一个数,哪几题是在方程两边乘上或除以一个不等于0的数。
/ 5
编写说明
(1)例4采用图示方式得出形如ax+b=c的方程。教材特别强调了解这个方程的关键是先把ax看成一个整体,从而根据等式性质1求出ax的值,即转化为例2。这一思路:
先求ax=? 再求x=?
也是初中解一元一次方程的基本思路。
(2)例5直接给出方程。该方程可以仿照例4的思路,先把小括号内的式子看作一个整体;也可以根据乘法分配律将原方程转化为例4中的方程。教材在两种解法的关键步骤处设问.启发学生思考,想到解法。
(3)与前面三道例题比较,例1~例3,只运用等式的一条性质,例
4、例5要先后运用等式的两条性质。
(4)“做一做”中,第1题的形式、内容都与例4基本相同。第2题的4个方程在两道例题的基础上略有变化,以促进学生举一反三。
教学建议
(1)启发思考“把什么看作一个整体”。
教学例4时可以先给出插图,让学生自己看图列出方程,再思考怎样解这个方程。也可以先复习解方程3x=36,再出示例题并列出方程3x+4=40。比较两个方程,就很容易想到先把3x看作一个整体。
教学例5时可以按照教材直接出示方程,先让学生尝试,再交流各自想到的 4 / 5
解法。
也可以先让学生尝试,再看书,然后说说自己想到的是书上的哪种解法,另一种解法是怎样想的。
还可以先复习解方程x-16=4,再出示2(x-16)=8,以启发学生通过比较,想到把小括号内的式子看作一个整体。
(2)引导学生比较例5的两种解法。
两种解法的共同点是都要用到等式的两条性质,区别是教材的第二种解法还运用了乘法的分配律。这里不必引导学生比较哪种解法更简便。因为“去括号”的方法在本题中需要多一步运算,但却是解一元一次方程的基本步骤之一。
(3)在独立练习过程中培养检验习惯。
“做一做”的题组,应让学生独立完成。教师可提醒学生解一题,代入检验一题,以促进检验习惯的养成。
/ 5
第三篇:五年级下册数学教案
五年级下册数学教案
五年级下册数学教案1
教学内容:
人教版小学数学五年级下册教材第5-6页例3、例4。
教学目标:
1、通过生活事例,使学生初步了解图形的旋转变换。结合生活实际,能初步感知旋转现象,探索旋转的特征和性质。
2、通过动手操作,使学生会在方格纸上将一个简单图形旋转90°。
3、初步学会运用旋转的方法在方格纸上设计图案,发展学生的空间观念。
4、欣赏图形的旋转变换所创造出的美,培养学生的审美能力;感受旋转在生活中的应用,体会数学的价值。
教学重点:
1、理解图形旋转变换的含义。
2、探索图形旋转的特征和性质。
教学难点:
能在方格纸上将一个简单图形旋转90°。
教学准备:
多媒体课件
教学过程:
教学环节教师活动学生活动设计意图一情景导入
1.揭示课题课件出现:摩天轮、电风扇、风车等旋转的物体。引导学生观察物体的旋转,并感知旋转现象观察物体的旋转,并感知旋转现象由学生生活中熟悉的事物引入,使学生感知旋转现象,建立旋转的表象。引导学生观察并描述这些物体是怎样运动的。
师:刚才,同学们反复地提到“旋转”,这节课我们就来研究“旋转”(板书课题)用语言描述这些物体是怎样旋转的。还可以用肢体动作来表现这些物体的旋转。体验旋转现象,初步认识旋转。
2.联系生活师:生活中,你还见过哪些旋转现象?
师:同学们的.思维真开阔,生活中像这样的旋转现象很多,那到底什么是旋转呢?
引导学生用数学语言概括出旋转含义,并板书。师:今天咱们就从与我们日常生活关系最密切地钟表和风车开始研究吧!风扇、陀螺、旋转木马、钟表、车轮……
学生用自己的语言说出旋转就是物体绕着某一个点或轴运动。通过生活事例,使学生初步了解图形的旋转变换。把学生的生活语言转化成数学语言,内化为学生的知识。
五年级下册数学教案2
【教学内容】
认识因数和倍数(教材第5页内容,以及第7页练习二的第1题)。
【教学目标】
1.从操作活动中理解因数和倍数的意义,会判断一个数是不是另一个数的因数或倍数。
2.培养学生抽象、概括的能力,渗透事物之间相互联系、相互依存的辩证唯物主义的观点。
3.培养学生的合作意识、探索意识,以及热爱数学学习的情感。
【重点难点】
理解因数和倍数的含义。
【复习导入】
1. 教师用课件出示口算题。
10÷5= 16÷2=
12÷3= 100÷25=
220÷4= 18×4=
25×4= 24×3=
150×4= 20×86=
学生口算
2. 导入:在乘法算式中,两个因数相乘,得到的结果叫做它们的积。乘法算式表示的是一种相乘的关系,在除法算式中,两个数相除,得到的结果叫做它们的商。除法算式表示的是一种相除的关系,在整数乘法和除法中还有另一种关系,这就是我们这一节课要学习探讨的内容。
(板书课题:因数和倍数(1)
【新课讲授】
1.学习因数和倍数的概念
(1)教师用课件出示教材第5页例1,引导学生观察图上的算式,把这些算式分为两类。
学生说出自己的分类方法,商是整数的分为一类,商不是整数的分为一类。教师以商是整数的第一题为例,板书:12÷2=6。
教师:在这道除法算式中,被除数和除数都是整数,商也是整数,这时我们就可以说12是2和6的倍数,2和6是12的因数。
谁来说一说其他的式子?
学生回答。
教师板书:在整数除法中,如果商是整数而没有余数,我们就说被除数是除数和商的倍数,除数和商是被除数的因数。
(2)说一说第一类的算式中,谁是谁的因数?谁是谁的倍数?
学生回答,如:在20÷10=2中,20是10和2的倍数,10和2是20的因数。或:20是10的倍数,20是2的倍数,10是20的因数,2是20的因数。(3)通过刚才同学们的回答,你发现了什么?
学生回答,教师板书:倍数与因数是相互依存的。
2.举例概括
教师:请同学们注意,为了方便,我们在研究因数和倍数时,所说的数一般指的是自然数,而且其中不包括0。
教师:在自然数中像这样的例子还有很多,我们每个同学都在心中想一个,想好了说给大家听。学生举例,并说出谁是谁的因数,谁是谁的倍数。
教师同时板书。
教师小结:像这样的例子举也举不完,那能不能用比较简洁的方式来叙述因数与倍数的关系呢?
引导学生根据“用字母表示数”的知识表述因数与倍数的关系。
如:M÷N=P,M、N、P都是非0自然数,那么N和P是M的因数,M是N和P的倍数。
A×B=C,A、B、C、都是非0自然数,那么A和B是C的因数,C是A和B的倍数。
你能从这些数中挑出两个数,说出谁是谁的因数,谁是谁的倍数吗?
3、9、15、21、36
学生独立思考并回答。
【课堂作业】
1.完成教材第5页“做一做”。
2.完成教材第7页练习二第1题。
3.下面每一组数中,谁是谁的倍数,谁是谁的因数。16和24和2472和820和5
4.下面的说法对吗?说出理由。
(1)48是6的倍数。
(2)在13÷4=3……1中,13是4的倍数。
(3)因为3×6=18,所以18是倍数,3和6是因数。
【课堂小结】
我们一起来回忆一下,这节课我们重点研究了一个什么问题?你有什么收获呢?
【课后作业】
完成练习册中本课时练习。
因数和倍数(1)
在整数除法中,如果商是整数而没有余数,我们就说被除数是除数和商的倍数,除数和商是被除数的因数。
因数和倍数一般指的是自然数,而且其中不包括0。
倍数与因数是相互依存的。
本节课的重点是掌握因数和倍数的概念,理解因数和倍数是相互依存的,知识内容比较抽象,知识点比较少,教学中,我采取让学生反复说,互相说的.方式,让学生加深理解,提高他们自主学习和合作学习的能力。
因数和倍数(2)
【教学内容】
一个数因数的求法和一个数倍数的求法(教材第6页例2、例3,教材第7~8页练习二第2~8题)。
【教学目标】
1.通过学习使学生掌握找一个数的因数,倍数的方法;
2.学生能了解一个数的因数是有限的,倍数是无限的;
3.能熟练地找一个数的因数和倍数;
4.在解决问题的过程中,培养学生思维的有序性、条理性,增强学生的探究意识和求索精神。
【重点难点】
掌握找一个数的因数和倍数的方法,能熟练地找一个数的因数和倍数。
【复习导入】
说出下列各式中谁是谁的因数?谁是谁的倍数?
20÷4=5 6×3=18
在上面的算式中,6和3都是18的因数,你知道还有哪些数是18的因数吗?18是3的倍数, 你知道还有哪些数是3的倍数吗?这节课我们就来学习如何找一个数的因数和倍数。
(板书课题:因数和倍数(2))
【新课讲授】
(一)找因数:
1.出示例1:18的因数有哪几个?
一个数的因数还不止一个,我们一起找找18的因数有哪些?
学生尝试完成后汇报
(18的因数有: 1,2,3,6,9,18)教师:说说看你是怎么找的?(生:用整除的方法,18÷1=18,18÷2=9,18÷3=6,18÷4=…;用乘法一对一对找,如1×18=18,2×9=18…)
教师:18的因数中,最小的是几?最大的是几?我们在写的时候一般都是从小到大排列的。
2.用这样的方法,请你再找一找36的因数有哪些?
小组合作交流后汇报,36的因数有: 1,2,3,4,6,9,12,18,36
教师:你是怎么找的?
举错例(1,2,3,4,6,6,9,12,18,36)
教师:这样写可以吗?为什么?(不可以,因为重复的因数只要写一个就可以了,所以不需要写两个6)
仔细看看,36的因数中,最小的是几,最大的是几?
教师板书:一个数的最小因数是1,最大因数是它本身。
3.你还想找哪个数的因数?(18、5、42……)请你选择其中的一个在自练本上写一写,然后汇报。
4.其实写一个数的因数除了这样写以外,还可以用集合表示:如18的因数。小结:我们找了这么多数的因数,你觉得怎样找才不容易漏掉?
从最小的自然数1找起,也就是从最小的因数找起,一直找到它的本身,找的过程中一对一对找,写的时候从小到大写。
(二)找倍数:
1.我们一起找到了18的因数,那2的倍数你能找出来吗?
小组合作交流后汇报,2的倍数有:2、4、6、8、10、16、……
教师:为什么找不完?
你是怎么找到这些倍数的? (生:只要用2去乘1、乘2、乘3、乘4、…)那么2的倍数最小是几?最大的你能找到吗?
2.让学生完成做一做1、2小题:找3和5的倍数。汇报
3的倍数有:3,6,9,12
教师:这样写可以吗?为什么?应该怎么改呢?
改写成:3的倍数有:3,6,9,12,……
你是怎么找的?(用3分别乘以1,2,3,……)
5的倍数有:5,10,15,20,……
教师:表示一个数的倍数情况,除了用这种文字叙述的方法外,还可以用集合来表示2的倍数,3的倍数,5的倍数。
教师:我们知道一个数的因数的个数是有限的,那么一个数的倍数个数是怎么样的呢?
(一个数的倍数的个数是无限的,最小的倍数是它本身,没有最大的倍数)【课堂作业】
1.完成课本第7页练习二第2~5题。
2.完成教材第8页练习二第6~8题。
【课堂小结】我们一起来回忆一下,这节课我们重点研究了一个什么问题?你有什么收获呢?
【课后作业】
完成练习册中本课时练习。
因数和倍数(2)
一个数的因数的个数是有限的,,最小的是1,最大的是它本身.
一个数的倍数的个数是无限的,最小的倍数是它本身,没有最大的倍数.
本节课是在学生认识因数和倍数的基础上进行教学的,在找一个数的因数时,如何做到既不重复又不遗漏,对于刚刚对因数和倍数有感性认识的学生来说有一定的困难,教学时充分发挥小组学习的优势,在小组交流的过程中,学生对自己的方法进行反思,吸取同伴的好方法,很好的体现了自主探索和合作交流的教学理念。
五年级下册数学教案3
教学内容:
教材第xx页的内容及第xx页练习的第x题。
教学目标:
1.理解两个数的公倍数和最小公倍数的意义。
2.通过解决实际问题,初步了解两个数的公倍数和最小公倍数在现实生活中的应用。
3.培养学生抽象、概括的能力。
教学重点:
理解两个数的公倍数和最小公倍数的意义。
教学难点:
自主探索并总结找最小公倍数的方法。
教学具准备:
多媒体课件,学生操作用长方形纸片(长3Cm,宽2Cm)与方格纸。
教学方法:
小组合作谈话法。
教学过程:
一、创设情景,生成问题:
前面,我们通过研究两个数的因数,掌握了公因数和最大公因数的知识。今天,我们来研究两个数的倍数。
二、探索交流,解决问题
1.在数轴上标出4、6的倍数所在的点
拿出老师课前发的画有两条直线的纸。
在第一条直线上找出4的倍数所在的点,画上黑点。在第二条直线上找出6的倍数所在的'点,圈上小圆圈。
2.引入公倍数
(1)学生汇报,多媒体课件出现两条数轴,并根据学生报的数,仿效出现黑点和小圆圈。
(2)观察:从4和6的倍数中你发现了什么?
(3)学生回答后,多媒体课件演示两条数轴合并在一起,闪现12和21。
(4)我们发现:有些数既是4的倍数,又是6的倍数,如果让你给这些数起个名,把它们叫做4和6的什么数呢?(板书:公倍数)
说说看,什么叫两个数的公倍数?
3.用集合图表示
如果让你把4的倍数、6的倍数、4和6的公倍数填在下面的图中,你会填吗?试试看。同桌两人可以讨论一下。
4.引人最小公倍数
学生汇报后问:
(1)为什么三个部分里都要添上省略号?
(2)4和6的公倍数还有哪些?有没有最大公倍数?
(3)有没有最小公倍数?4和6的最小公倍数是几?(板书:最小公倍数)
4的倍数6的倍数
4,8,
16,20,
12,24,
4和6的公倍数:
五年级下册数学教案4
【教学内容】
教科书第1~2页的例1以及相关的练习。
【教学目标】
1?理解分数的意义和单位“1”的含义,知道分母、分子的含义和分数各部分的名称,知道生活中分数的广泛用途,会用分数解决生活中的简单问题。
2?培养学生的分析能力和归纳概括能力。
3?通过学生的主动探索,培养学生的成功体验,坚定学生学好数学的信心。
【教具准备】
多媒体课件和视频展示台。
【教学过程】
一、复习引入
师:中秋节到了,小华家买了很多月饼,分月饼的任务当然就落到小华的身上了。你看,小华一会儿就把这几块月饼分好了。你能用分数分别表示这些月饼的阴影部分占一个月饼的几分之几吗? 多媒体课件展示:
等学生完成后,抽学生的作业在视频展示台上展示,集体订正。
二、教学新课
1?教学例1,理解单位“1”
师:第二天,小华的爸爸又买回一盒月饼共8个,并且提出了一个新的分月饼的要求。 课件演示:爸爸对小华说:小华,你把这8个月饼平均分给4个人吧。
师:同学们,你们能用小圆代替月饼,帮小华分一分吗?
等学生分好后,抽一个学生分的小圆在视频展示台上展示。
师:这时,小华的爸爸又提出了问题。
课件演示:爸爸对小华说:每个人得的月饼是这8个月饼的几分之几呢?
引导学生理解把8个月饼平均分成了4份,每份是这8个月饼的14。
师:老师也有个问题,刚才小华分出了1个月饼的1/4,这儿又分出了8个月饼的1/4,同学们看一看,这两个1/4表示的月饼数量一样吗?
多媒体课件演示下面的月饼图:
引导学生理解两个1/4代表的数量不一样。
师:为什么会出现这种现象呢?
引导学生说出前一个1/4是1个月饼的.1/4,而后一个1/4是8个月饼的1/4。课件中随学生的回答在图形下出现相应的文字。
师:对。前一个1/4是以1个月饼为一个整体来平均分的,而后一个1/4是以8个月饼为一个整体来平均分的。平均分的整体不一样,对分出来的每份数量有影响吗?
让学生意识到,整体“1”的变化对每份的数量是有影响的。以1个月饼为整体“1”,每份就是1/4个月饼;以8个月饼为整体“1”,每份就是2个月饼。
师:像这样把许多物体组成的一个整体来平均分的分数还很多,请同学们看一看下面这幅图。 课件出示第2页的熊猫图。
师:这里是把多少只熊猫看作一个整体?平均分成了几份?每份是这个整体的几分之几?
请分一分,并填空。
课件出示单元主题图,要求学生说一说图中的每个分数分别是以什么作为一个整体来平均分的。 师:通过上面的研究,同学们有什么发现?
引导学生说出这些分数都是以许多物体组成的一个整体来平均分的。
师:像这样由一个物体或许多物体组成的一个整体,通常我们把它叫做单位“1”。
板书单位“1”的含义。
师:把12个学生看作一个整体,其中的6个学生是这个整体的几分之几?这里是把谁看作一个整体? 教师再举两个例子,深化学生对单位“1”的理解。
2?理解并归纳分数的意义
师:请同学们拿出一些小棒,把它们平均分成5份或6份,想一想,其中的1份是全部小棒的几分之几?其中的2份呢?其中的3份呢?
学生操作后回答,如:我拿了10根小棒,把它平均分成了5份,每份有2根小棒,这2根小棒是10根小棒的1/5。2份有4根小棒,这4根小棒是10根小棒的2/5??
师:想想自己操作的过程,你能说一说什么是分数吗?
学生讨论后可能这样表述:把单位“1”平均分成几份,表示其中1份或几份的数叫做分数。
师:同学们归纳得很好,但是这句话中出现了两个“几份”,所以我们一般把前一个“几份”说成是若干份。
归纳并板书分数的意义,板书课题。
试一试:涂色部分占整个图形的几分之几?
师:看看最后(五星图)这个分数,请同学们说说这个分数的意义。
生:这个分数表示把15颗五角星平均分成5份,其中的3份占这个图形的35。
师:把15颗五角星平均分成了5份,其中的1份占这个图形的几分之几?(生:1/5)其中的3份呢?(生:3/5)35是由多少个15组成的?(生:3个)所以,35的分数单位是1/5,35/里面有3个这样的分数单位。 说一说:3/7的分数单位是多少?它有多少个这样的分数单位?5/6,9/10呢??
3?说生活中的分数
师:分数在我们生活中应用得非常广泛,书上第3页课堂活动中的两个小朋友正在说生活中的分数,你们能像他们这样说一说生活中的分数吗?
学生说生活中的分数。
三、课堂小结
(略)
四、课堂作业
1?第4页课堂活动第2题。
2?练习一第1,2,3,4题。
分数的意义
师:在三年级的时候,我们初步认识了分数,你能在下面的括号里填上适当的分数吗?
课件出示如下的题目:
(1)把一个月饼平均分成4份,其中的1份是这个月饼的;
(2)把一张手工纸
五年级下册数学教案5
【教学目标】
1、使学生能理解质数、合数的意义,会正确判断一个数是质数还是合数。
2、知道100以内的质数,熟悉20以内的质数。
3、培养学 生自主探索、独立思考、合作交流的能力。
4、让学生在学习活动中体验到学习数学的乐趣,培养学习数学的兴趣。
【重点难点】
质数、合数的意义。
教学过程:
【复习导入】
1、什么叫因数?
2、自然数分几类? ( 奇数和偶数)
教师:自然数还有一种新的分类方法,就是按一个数的因数个数来分,今天这节课 我们就来学习这种分类方法。
【新课讲授】
1、学习质数、合数的概念。
(1)写出1 ~20各数的因数。(学生动手完成)
点四位学生上黑板写,教师注意指导。
(2)根据写出的因数的个数进行分类。
(3)教学质数和合数概念。
针对表格提问:什么数只有两个因数,这两个因数一定是什么数?
教师:只有1和它本身两个因数,这样的`数叫做质数(或素数)。
如果一个数,除了1和它本身还有别的因数,这样的数叫做合数。(板书)
2、教学质数和合数的判断。
判断下列各数中哪些是质数,哪些是合数。
17 22 29 35 37 87 93 96
教师引导学生应该怎样去判断一个数是质数还是合数(根据因数的个数来判断)
质数:17 29 37
合数:22 35 87 93 96
3、出示课本第14页例题1。
找出100以内的质数 ,做一个质数表。
(1)提问:如何很快 地制作一张100 以内的质数表?
(2)汇报:
①根据质数的概念逐个判断。
②用筛选法排除。
③注意1既不是质数,也不是合数。
五年级下册数学教案6
教学内容:
义务教育课程标准实验教科书青岛版小学数学五年制五年级下册108-109页。
教学目标:
1.利用已有经验认识和了解简单的“排列”,掌握解决问题的策略和方法。体会解决问题策略的多样性。
2.培养初步的观察、分析及推理能力,能有序地、全面地思考问题。
3.尝试用数学的方法来解决生活中的实际问题,感受数学在现实生活中的广泛应用。
4.在数学活动中养成与人合作的良好习惯,并初步学会表达解决问题的大致过程和结果。
教学重点:
培养学生思维的有序性。
教学难点:
抽象概括计算规律。
教学准备:
计数器,答题纸。
教学过程:
一、提出问题:
师:同学们,数学王国里有十个数字,它们是……
生:0、1、2、3、4、5、6、7、8、9。
师:就是0-9,用这简单的十个数字可以提出很多的数学问题。请看大屏幕。
出示课件:例:用1、2、3三个数字可以组成多少个没有重复数字的三位数呢?
师:问题提出来了,敢不敢迎接挑战?
生:敢!
师:谁来说说,你是怎么理解“没有重复数字的三位数”的?
生:举个例子吧,221不行,因为十位上的2和百位上的.2重复了。
师:看来“没有重复数字的三位数”就是指百位、十位、个位三个数位上的数字不能相同。下面请同学们开动脑筋,把你的答案写在练习本上,咱比一比,谁写的又准确,速度又快。
二、研究问题:
1、解决问题:
(学生尝试解决问题)
师:同学们写完了,哪位同学愿意展示一下你的答案?
生:(投影仪展示)123,321,213,132,321。
师:还有其他的写法吗?
生:(投影仪展示)123,132,213,231,312,321。
师:两种写法,你认为哪一种更好?
生:第二种更好。
师:为什么?(学生茫然)同桌讨论一下。
生:第二种更好,因为第一种有遗漏,少了231,而第二名同学是有规律地写的,不会重复也不会遗漏。
师:观察第二种写法有重复或遗漏吗?
生:没有!
师:看来按规律写是不会重复也不会遗漏。老师把这种写法记录下来。
五年级下册数学教案7
教学目标:
1、通过欣赏与设计图案,使同学进一步熟悉已学过的对称、平移、旋转等现象。
2、欣赏美丽的对称图形,并能自身设计图案。
3、同学感受图形的美,进而培养同学的空间想象能力和审美意识。
重点难点:
1、能利用对称、平移、旋转等方法绘制精美的图案。
2、感受图形的内在美,培养同学的审美情趣。
教学准备:幻灯片、课件。
教学过程:
一、情境导入
利用课件显示课本第7页四幅美丽的图案,配音乐,让同学欣赏。
二、学习新课
(一)图案欣赏:
1、伴着动听的.音乐,我们欣赏了这四幅美丽的图案,你有什么感受?
2、让同学尽情发表自身的感受。
(二)说一说:
1、上面每幅图的图案是由哪个图形平移或旋转得到的?
2、上面哪幅图是对称的?先让同学边观察讨论,再进行交流。
三、巩固练习
(一)反馈练习:
完成第8页3题。
1、这个图案我们应该怎样画?
2、仔细观察这几个图案是由哪个图形经过什么变换得到的?
(二)拓展练习:
1、分别利用对称、平移和旋转创作一个图案。
2、交流并欣赏。说一说好在哪里?
四、全课总结
对称、平移和旋转知识广泛地应用于平面、立体的建筑艺术和几何图像上,而且还涉和到其它领域,希望同学们平时注意观察,都成为杰出的设计师。
五、安排作业:
教材第9页第5题。
板书设计:
欣赏和设计
图案1 图案2
图案3 图案4
对称、平移和旋转知识有广泛的应用。
五年级下册数学教案8
【教学目标】
1.使学生通过观察、猜想、验证、理解并掌握3的倍数的特征。
2.引导学生学会判断一个数能否被3整除。
3.培养学生分析、判断、概括的能力。
【重点难点】
理解并掌握3的倍数的特征。
【复习导入】
1.学生口述2的倍数的特征,5的倍数的特征。
2.练习:下面哪些数是2的倍数?哪些数是5的倍数?
324 153 345 2460 986 756
教师:看来同学们对于2、5的倍数已经掌握了,那么3的倍数的特征是不是也只看个位就行了?这节课,我们就一起来研究3的倍数的特征。
板书课题:3的倍数的特征。
【新课讲授】
1.猜一猜:3的倍数有什么特征?
2.算一算:先找出10个3的倍数。
3×1=3 3×2=6 3×3=9
3×4=12 3×5=15 3×6=18
3×7=21 3×8=24 3×9=27
3×10=30……
观察:3的倍数的个位数字有什么特征?能不能只看个位就能判断呢?(不能)
提问:如果老师把这些3的倍数的个位数字和十位数字进行调换,它还是3的倍数吗?(让学生动手验证)
12→21 15→51 18→81 24→42 27→72
教师:我们发现调换位置后还是3的倍数,那3的倍数有什么奥妙呢?
(以四人为一小组、分组讨论,然后汇报)
汇报:如果把3的倍数的各位上的数相加,它们的和是3的倍数。
3.验证:下面各数,哪些数是3的倍数呢?
210 54 216 129 9231 9876
小结:从上面可知,一个数各位上的数字之和如果是3的倍数,那么这个数就是3的倍数。(板书)
4.比一比(一组笔算,另一组用规律计算)。
判断下面的数是不是3的倍数。
3402 5003 1272 2967
5.“做一做”,指导学生完成教材第10页“做一做”。
(1)下列数中3的倍数有。
14 35 45 100 332 876 74 88
①要求学生说出是怎样判断的。
②3的倍数有什么特征?
(2)提示:①首先要考虑谁的特征?(既是2又是5的`倍数,个位数字一定是0)
②接着再考虑什么?(最小三位数是100)
③最后考虑又是3的倍数。(120)
【课堂作业】
完成教材第11~12页练习三的第4、6、7、8、9、10、11题。
【课堂小结】
同学们,通过今天的学习活动,你有什么收获和感想?
【课后作业】
完成练习册中本课时练习。
3的倍数的特征
一个数各位上的数字之和是3的倍数,那么这个数就是3的倍数。
教学3的倍数的特征时,教师要注意学生的自主探索过程,通过猜一猜、算一算、想一想、验一验、比一比等教学环节,循序渐进地让学生参与到学习中来,但教师在想一想这个环节中要进行适当点拨、引导,这样效果更明显。
五年级下册数学教案9
教学目标:
1、知道容积的意义。
2、掌握容积单位升和毫升的进率,及它们与体积单位立方分米、立方厘米之间的关系。
3、会计算物体的容积。
教学重点:
1、容积的概念。
2、容积与体积的关系。
教学难点:
容积与体积的关系。
教具:量筒和量杯、不同的饮料瓶、纸杯
教学过程:
一、复习检查:
说出长正方体体积计算公式。
二、准备:
把泥放入一个长方体的小木盒中(压实,与上口平),然后扣出来,量一量泥块的长、宽、高。计算泥块的体积。这个长方体小木盒所能容纳物体的体积是( )。
三、新授:
1、认识容积及容积单位:
(1)箱子、油桶、仓库等所能容纳物体的体积,叫做它们的容积。
通过上面的“做一做”,我们知道长方体小木盒所能容纳物体的体积就是这个小木盒的'容积。
(2)计量容积,一般就用体积单位。但是计量液体体积,如药水、汽油等,常用容积单位升和毫升。
(3)演示:体积单位与容积单位的关系。
说一说,在生活中哪些物品上标有升或毫升。升和毫升有什么关系呢?教具演示。
①1升(L)=1000毫升(mL)
将1升 的水倒入1立方分米的容器里。
小结:1升(L)=1立方分米(dm3 )
②1升 = 1立方分米
1000毫升 1000立方厘米
1毫升(mL)=1立方厘米( cm3 )
练一练:
1.8L=( )mL 3500mL=( )L 15000cm3 =( )mL=( )L
1.5dm3 =( )L
(4)小组活动:(1)将一瓶矿泉水倒在纸杯中,看看可以倒满几杯?
(2)估计一下,一纸杯水大约有多少毫升,几纸杯水大约是1升。
2、长方体或正方体容器容积的计算方法,跟体积的计算方法相同。但是要从容器的里面量长、宽、高。
例一个小汽车上的油箱,里面长5分米,宽4分米,高2分米。这个油箱可以装汽油多少升?
5×4×2 =40(立方分米) 40立方分米=40升
答:这个油箱可以装汽油40升。
做一做:一个正方体油箱,从里面量棱长是1.4米。这个油箱装油有多少升?(订正)
小结:计算容积的步骤是什么?
3、我们知道了计算规则物体的体积的方法,如计算长方体的体积是用长乘宽乘高,计算正方体的体积是棱长的3次方。那有些不规则的物体怎么计算它的体积呢?
出示一个西红柿,谁有办法计算它的体积?小组设计方案:
四、巩固练习:
1、生物小组买来一个长方体鱼缸,从里面量长是6分米,宽是4分米,深2.5分米,它的容积是多少升?
2、一个长方体油箱的容积是20升。这个油箱的底长25厘米,宽20厘米,油箱的深是多少厘米?
3、有一个棱长是6分米的正方体水箱,装满水后,倒入一个长方体水箱内,量得水深3分米,这个长方体水箱得底面积是多少?
4、提高题:p55、16
五、作业:
五年级下册数学教案10
教学内容:观察物体
教学目标:
1.让学生经历观察的过程,认识到从不同的位置观察物体,所看到的形状是不同的。能辨认从正面、左面、上面观察到的简单物体的形状。
2.培养学生从不同角度观察,分析事物的能力。
3.培养学生构建简单的.空间想象力。
重点:帮助学生构建初步的空间想象力。
难点:帮助学生构建初步的空间想象力。
教学过程:
一、谜语导入
请同学们猜谜语:“左一片、右一片,摸得着,看不见,是什么呢?”(耳朵)为什么能看见别人的耳朵,却看不见自己的耳朵呢?因为我们观察的角度不一样,那么今天我们就一起来进一步研究观察物体(板书)
二、合作探究
(一)整体观察
1.教师将一个对面涂有相同颜色的长方体举起静止不动,叫学生观察并提问:
你观察到的正方体是什么样的?
在你的位置上观察,你看到了哪几个面?
2.学生汇报交流。
学生自由走动,观察。汇报交流。
3.解释应用
教师出示两个正方体的立体图,一个有虚线,另一个没有。
提问:谁能用刚学到的知识解释一下正方体为什么这样画?
学生解释说明。
(二)分别从三个面进行观察(出示例1)
1.教师提问:我们分别从几个不同的方向去观察这个图形,看看它的正面、左面以及上面分别是什么形状的图形,把它们分别划出来。
学生离开座位自由观察。
2.小组之间相互交流,然后全班交流,学生以组为单位在投影以上展示交流。
总结学生的发言:从不同的方向观察,所看到的形状是不一样的。
三、拓展应用
1.做教科书例2
2.智力游戏:两个同学为一组做游戏,一个同学画,另一个同学猜,负责猜的同学要想办法通过你提问的问题确定这个物体是什么,猜完后,在把物体拿出来验证一下,看是否猜对了。
学生玩游戏,教师指导。
四、总结
本节课你学会了什么?
五、作业布置
兴趣探索,根据以下几幅图找出1的对面是几,2的对面是几,3的对面是几。
1.不同角度观察一个物体,看到的面都是两个或三个相邻的面,不可能一次看到长方体或正方体相对的面。
2.从一个面看到物体的形状,可以有多种不同的摆放方式。
3.知道从两个面看到的物体的形状,可以确定小立方体的个数范围。
五年级下册数学教案11
教学目标:
1、结合具体的情景,自主探索两位数乘两位数的乘法算法。
2。学会进行两位数乘两位数的乘法计算,并能解决一些简单的实际问题。
教学重点:
1、两位数乘两位数的估算。
2、探索并掌握两位数乘两位数(不进位)的乘法计算。
教学难点:
掌握两位数乘两位数(不进位)的乘法并能熟练计算。
教学理念:
组织学生讨论、交流,使学生体验学习中通过合作交流带来的.方便和快乐。
教学准备:
课件。
学生准备:
预习课前知识。
教学过程:
一、实践调查
课前让学生在汇景新城作实地调查,调查本小区住户情况
二、课内交流
1、让同学们根据调查所得的数学信息编一道数学应用题。
2、根据所编的题目独立列式
3、探讨和交流如何解决问题。
(1)尝试通过估算结果解决问题。
A、分组讨论不同的计算过程
B、师:根据以上的结果你能判断“这栋楼能住150户吗?”
(2)讨论算法
三、习题巩固:
1、试一试
11×4324×1244×21
2、练一练:
第1、2题
3、第3题,学生独立思考,理解题意,再进行计算
四、综合应用:
陈老师班上有42名同学,她为同学们购置书包和文具,一个书包24元,一个文具11元,买书包和文具各花了多少钱?一共花了多少钱?
五、课堂总结:今天我们学习了什么知识?你学会了什么?
六、板书设计:
五年级下册数学教案12
信息社会已经到来,信息的获取、分析处理将成为现代人最基本的能力和素质的标志。本课正是基于这一理念,选择具有丰富现实背景的学习材料,学生了解了折线统计图的特点、作用后,在应用部分设置了分析数据、处理信息的练习题,以培养学生根据数据、图像分析事物并作出合理推断的能力。
1、了解折线统计图的特点和作用,初步学会折线统计图的绘制方法。
2、能分析折线统计图,培养学生利用数据、图像分析、判断、预测问题结果或趋势的能力。
3、让学生体验折线统计图在实际生活中应用的广泛性和重要性,培养正确的数学观,并通过相互交流、讨论,培养合作交流的.能力。
一、引入:
1、出示:条形统计图
(1)某电影院上月各类影片观众人数统计图
(2)新芽书苑20xx年3月第一星期故事书销售情况统计图
2、提问:你已知道了条形统计图的哪些知识?
3、现实生活中还有另一种统计图,你见过吗?出示:折线统计图。
(1) 上虞电影院20xx年(1~6)月观众人数统计图。
(2) 百官镇一农户96~20xx年人均收入统计图。
二、展开:
(一)折线统计图的特点和作用。
1、四人小组讨论;条形统计图和折线统计图有什么相同点和不同点?
(1) 学生自由讨论交流。
(2) 这两类统计图最大的区别是什么?
2、结合条形统计图的特点,归纳折线统计图的特点。
3、从折线统计图上我们能看出数量的多少吗?还能了解到什么?
4、结合课本进一步深入了解折线统计图的特点和作用。
(二)折线统计图的绘制。
1、你认为哪幅条形统计图用折线统计图来绘制更合适?
2、小组讨论:把这幅条形统计图绘制成折线统计图你有什么办法?
A、小组讨论 B、汇报 C、提问:绘制的关键是什么?
3、学生尝试绘制。
(1) 出示“我们的调查资料”。
(2) 想一想,哪几组数据用折线统计图绘制比较合适?
(3) 请选择其中一组数据绘制。
(4)小组交流绘制情况,分析增减变化的情况,并 推断发展趋势。
(5)大组交流绘制情况,并纠错。
三、应用
1、出示:李X(住院)的体温变化情况统计图,提问:看图后,你能推断出什么?
2、出示:百官镇一农户96~20xx年人均收入统计图。
思考:A、看图后你有什么感受?
B、你能提出哪些数学问题?
3、对比练习:
(1)出示:“吉祥鞋店20xx年凉鞋、棉鞋销售情况统计图”。
思考:A、两种鞋的销售趋势分别怎样?
B、你有什么建议?
(3) 出示:两家游泳衣专卖店的销售情况统计图。
思考:A、比较这幅图,说说哪一幅比较符合我们的生活实际?
B、猜猜为什么乐乐专卖店会有这样的销售现象
四、总结
你又有什么新收获?你是用什么方法学会的?
五、课外作业
省略
五年级下册数学教案13
教学内容:
义务教育课程标准实验教科书《数学》(新世纪版)五年级下册第六单元第82-83页《包装的学问》。
教材分析:
本课教学内容是在学生掌握了长方体特征及表面积计算等相关知识的基础上,进一步探究几个相同长方体组合成新长方体的多种方案以及使其表面积最小的最优策略。教材把《数学与购物》这一系列数学实践活动安排在第六单元后,主要意图是通过这样一系列与生活紧密联系的实践活动,培养学生综合应用所学的知识解决实际问题的能力。在这一系列实践活动中,教材安排了三个内容,主要涉及数与代数、空间与几何两部分知识,在解决生活实际问题的过程中,分别培养了学生的估算意识、计算中的最优策略以及多个长方体叠放后使其表面积最小的最优策略。本课教学内容是这一系列实践活动中的最后一个内容。
包装问题在日常生活与生产中经常遇到,教材创设包装的情境,使学生综合应用表面积等知识来讨论如何节约包装纸的问题,它不仅培养学生的节约意识,更体现了数学的优化思想。有助于培养学生空间观念,提高解决实际问题的能力,感受数学与实际生活的密切联系。同时有利于学生感悟数学思想,积累数学活动经验。
学情分析:
1、学生已有的'知识基础。
在本课学习之前,学生已熟练掌握了长方体、正方体的特征,能准确、迅速地计算出单一物体的棱长、表面积、体积,能把几个相同的正方体组合成新的正方体。初步接触了由两个相同的正方体拼成一个长方体后表面积发生的变化。在第二单元探索活动《露在外面的面》中,又训练了学生有序的观察能力和计算露在外面的面 面积的能力。
2、学生已有的生活经验。
学生大都接触过物品的包装,能清楚地意识到用包装纸包装起来的部分就是求物体的表面积。
3、学生学习本课内容可能遇到的困难及学习方式的研究。
学生在探究由四个或者多个相同的长方体组合成新的长方体时,对于方案的多样化与策略的最优化可能存在问题,通过动手操作大多数学生可以得到由4个相同长方体组合成新的长方体时的六种拼摆方案,但思维可能会无序,对于方法的归纳和总结也存在困难。因此以小组合作的活动方式可以说是本课的较佳路径,让同伴之间相互协作,共同归纳总结,有助于培养学生思维的有序性。
五年级下册数学教案14
教案设计
设计说明
1.以学生自主探究为主,引导学生发现分数与小数的互化方法。
学生通过自主参与、主动探究,可以更好地掌握数学知识。在学生探究分数与小数的互化方法时,给学生提供探究的时间,让学生以小组合作的方式进行探究,再通过比较、整合,得出分数与小数的互化方法。在这个过程中,学生通过自己和同伴的努力,经历了知识形成的全过程。
2.在学生原有的认知水平上促进发展。
本节课的内容相对简单,学生在课前已经有了初步的了解,因此,在课堂上让学生自主探究,经历知识的形成过程,使得不同水平的学生获得不同层次的发展,收获的多少可能不同,但都能获得成功的体验。
课前准备
教师准备 PPT课件
学生准备两张完全一样的方格纸
教学过程
⊙创设情境,导入新课
师:今天,老师带着你们一起去“分数王国”和“小数王国”里玩一玩。
(课件出示情境图)
师:“分数王国”里有哪些数呢?“小数王国”里呢?
(生汇报)
师:“分数王国”的士兵和“小数王国”的士兵吵了起来,它们在吵什么?
生:和0.06都说自己更大。
师:和0.06哪个数大?你能帮助它们吗?(板书课题——“分数王国”与“小数王国”)
设计意图:用“分数王国”与“小数王国”里的士兵吵架这个情境导入新课,营造一种氛围,激发孩子的学习兴趣。然后以比较“分数王国”里的与“小数王国”里的0.06哪个数大的问题情境引入,让学生产生分数和小数互化的需要,从而引出本节课的学习内容。
⊙自主探索,学习新知
1.解决问题。
(1)课件出示教材7页情境图。
师:比一比,“分数王国”里的与“小数王国”里的0.06哪个数大?
(2)大胆猜测,探究比较方法。
方法一 把分数化成小数来比较。
=1÷20=0.05,因为0.060.05,所以0.06。
方法二 把小数化成分数来比较。
0.06=,=,因为,所以0.06。
课件展示学生没有想到的画图法,让学生在讨论中理解。
0.06>
师小结:比较分数与小数的大小时,可以把分数化成小数或者把小数化成分数。
2.“分数王国”和“小数王国”分别有不同的尺子,你能帮助“翻译”吗?
(1)认真读题,明确题目中的“翻译”指什么。
(2)鼓励学生根据“分数尺”和“小数尺”中呈现的例子说一说与0.125的互化过程。
(3)引导学生理解数线上的同一个点既能表示一个分数,也能表示一个小数。
3.归纳分数化成小数的方法。
(1)探究将分数化成小数的'方法。
把下列分数化成小数:
练习,并思考转化方法。
(2)小组内交流方法。
(3)班内反馈。
要求学生说出转化方法,并讲明转化的原理。
师小结:分数化成小数,就用分子除以分母。根据分数与除法的关系,分数的分子相当于被除数,分母相当于除数。
4.归纳“小数化成分数”的方法。
把0.3,0.27,0.75,0.125化成分数。
练习,探究小数化成分数的方法。
师小结:小数化成分数,原来是几位小数,就在1的后面写几个0作分母,把原来小数的小数点去掉作分子,化成分数后,能约分的要约分。
设计意图:数学知识只有通过学生的主动参与、自主探究,才能转化为学生自己的知识。本教学环节中,学生以小组合作、自主学习的方式进行探究,在多种方法的基础上比较、整合,从而得出分数与小数的互化方法。
五年级下册数学教案15
教学目标:
1.知识技能:经历探索分数基本性质的过程,理解分数的基本性质,能运用分数的基本性质,把一个分数化成指定分母或分子而大小不变的分数。
2.思考与问题解决:经历观察讨论,操作等学习活动,能对分数的基本性质作出简要的,合理的说明,培养学生的观察,比较,归纳,总结概括的能力。
3.情感态度:经历观察,操作和讨论等数学学习活动,使学生进一步体验数学学习的乐趣,鼓励学生敢于发现问题,培养学生勇于解决问题的学习品质。
教学重点:
探索,发现和掌握分数的基本性质,并能运用分数的基本性质解决问题。
教学难点:
自主探索,归纳概括分数的基本性质。
教具学具准备:
多媒体课件,正方形纸,彩笔。
教学设计:
一、创设情境,导入新课:
1.课件分别出示两张不同的孙悟空的照片。师:学们仔细看看这两张照片,你有什么发现?(指名回答)。
2.教师引导交流:孙悟空本人没有改变,只不过是外表的打扮装饰发生了改变。
3.学生初步感知了什么变了而什么却没有变的概念。
4.教师导入新课:今天我们就来探讨什么变了而什么没有变的有关内容。教师板书课题:分数的基本性质设计意图:利用学生感兴趣的图片来吸引学生的注意力和观察能力,为下一步学习营造一个轻松活跃的氛围。
二、探究新知。
(一):1.师:在我们在学习这个新的内容之前,我们首先来复习一下除法与分数的关系。学生回答教师板书:
被除数=课件出示:120÷30=(120×2)÷(30×2)=(120÷10)÷(30÷10)= 2.同学们说说这几道相等吗?(指名回答)。
3.教师引导说出商不变的性质,课件出示商不变的性质的定义。
设计意图:通过复习商不变的性质,为下一步更容易的学习分数的基本性质打下基础。
(二)、教学新知。
1.师:请同学们拿出课前准备好的正方形纸,把手中的纸平均折成4份,其中把3份图上你喜欢的颜色。
2.学生操作,教师巡视并特别提醒学生注意“平均分”。
3.展示学生的作业。
4.师:现在请同学们把正方形纸平均分成8份,16份,分好之后你有什么发现?(指名回答)。
5.教师归纳总结,并课件出示:设计意图:同一张纸能平均分成不同的.份数,拓展学生的思维能力。
6.引导学生观察:
观察它们的分子和分母是怎样变,学生观察,思考,交流后,教师集体指导观察,并板书:
教师归纳总结后,学生完成课本66页的填空题,完成后集体回答。
设计意图:学生通过动手操作发现一些表象,但这些表象还须上升为科学理论,这就需要学生能透过表象识别表现后蕴藏的规律,这才能知其然且知其所以然,便于以后举一反三,解决同类相关问题。
7.课件出示:(通知互相讨论)
(1)相比较,看看分子分母有什么变化?(2)在这个变化中,你们发现了什么规律。
8.教师引导学生说出:分数的分子和分母同时乘或除以相同的数(0除外)分数大小不变。这就是分数的基本性质。(教师特别强调“同时”“同一个数”)。
9.教师提出疑问:为什么要0除外呢?学生回答,教师归纳:因为0和任何数相乘都得0,而分数的分母是不能为0的。
10.同学们,现在你们来看看分数的基本性质和你们以前学习过得商不变性质有什么不同呢?(课件出示两性质作对比)
师:分数的基本性质和商不变性质的规律是一致的。
三、巩固强化,拓展应用。
(1)课件出示:(集体回答)。
(2)指出下列分数是否相等。(指名回答)。
(3)把和化成分母是10而分数大小不变的分数。(指名到台上板演)。
(4)课件出示小故事。
有位老爷爷把一块地分给三个儿子。老大分到了这块地的,老二分到了这块地的。老三分到了这块的。老大、老二觉得自己很吃亏,于是三人就大吵起来。刚好阿凡提路过,问清争吵的原因后,哈哈的笑了起来,给他们讲了几句话,三兄弟就停止了争吵。
你知道,阿凡提为什么会笑吗?他对三兄弟讲了哪些话?(让学生课后去思考)
设计意图:多样的练习可以让学生及时巩固所学知识,有调动了学习的积极性。
四、回顾总结,梳理新知。
同学们,你们对分数又有了哪些新的了解呢?板书设计:分数的基本性质数的分子和分母同时乘或除以相同的数(0除外)分数大小不变。这就是分数的基本性质。
教学反思:
1.创设情境,激发学生兴趣。出示孙悟空的照片激发学生的兴趣,吸引学生的注意力。
2.手脑并用,在操作中深入感知分数。请同学们用一张正方形纸片,动手折一折,通过三次的对折,每次找出一个和相等的分数,比较涂色部分大小有没有变化?(没有)。那么得到了什么结论?教师引导学生观察分子,分母的变化,经历总结得出:分数的分子和分母同时乘或除以相同的数(0除外)分数大小不变。学生对此进行巩固后,再引导学生说出:0除外。学生在动手实践的过程中动脑思考,很快地突破了重难点,取得很好的效果。
3.巩固练习,围绕中心。在设计练习的过程中,采取多种形式呈现,使学生加深对分数基本性质的理解,激发了学生学习的兴趣,使每个学生都能理解所学知识,学有所获,并进一步学习约分和通分打下了良好的基础。
第四篇:《小数乘小数》具体内容和教学建议
小学数学精选教案
《小数乘小数》具体内容和教学建议
编写意图
(1)例3教学小数乘小数。教材以解决实际问题的活动引入,其教学功能有三:①提供学习小数乘小数的生活素材。②引起认知冲突。当学生列出“2.4×0.8”的算式,问题自然浮现:“两个因数都是小数怎么计算呢?”促成学生利用例2的计算经验,用转化的方法将小数乘法转化为整数乘法来计算,再一次体验用转化的方法学习新知。③学会细分问题,有序思考,分步解决。解决宣传栏刷油漆问题,先要解决宣传栏的面积问题,再解决所需油漆数量的问题。
(2)教材分以下几个层次编排:①通过对话,引导学生用转化的方法,将两个因数同时转化为整数,再进行计算。②根据因数的变化引起积的变化规律,用竖式的变化揭示小数乘小数的算理。
(3)引导学生归纳因数和积的小数位数之间的关系。在完成“做一做”后,结合例3和“做一做”引导学生归纳因数和积的小数位数之间的关系,学会小数点位置的正确处理方法,为概括小数乘小数的计算方法作好准备。
教学建议
(1)根据学生已有的知识基础,放手让学生自主学习。
可设计以下几个环节:①让学生看图,读懂图意,准确地叙述图中给出的数学信息:要解决什么问题?解决这些问题的条件具备吗?②引导学生寻找解决问题的办法。③组织学生研讨交流“2.4×0.8”的竖式算法及算理。由于有了例2的计算经验,学生很容易想到转化的方法,将小数乘法转化为整数乘法来计算,1 / 2
小学数学精选教案
这时要借助因数与积的变化规律,帮助学生理解算理。如果有学生将“米”改写成“分米”进行转化,也应该给予鼓励。
(2)组织学生探索因数和积的小数位数之间的关系。
结合例3和“做一做”中的练习,让学生比较一下因数与积的小数位数,看能发现什么。引导学生用不完全归纳的方法概括出因数和积的小数位数之间的关系,为正确处理小数点的位置提供操作依据。
/ 2
第五篇:人教版新起点五年级上册数学教学设计——观察物体具体内容的说明和教学建议
1.例1。
教科书通过观察小药箱的活动,使学生认识到从不同方向观察立体图形看到的形状是不同的,在任一位置,都不能同时看到所有的面;使学生能够辨认从正面、左面和上面观察到的简单物体的形状。
教学时,可以分以下两步进行。
(1)提供相应实物,让学生站在不同的位置进行观察,说一说自己看到的是哪几个面。使学生真正体验到从不同方向观察同一物体,看到的形状是不同的;并且发现站在任一位置,都不能同时看到长方体所有的面,而最多只能看到它的三个面。
(2)指导学生分别从正面、左侧面和上面进行观察,使学生能辨认从不同方向看立体图形得到的平面图形。注意:①提供给学生的实物要足够大,观察时,视线都要垂直于被观察物体的表面。否则学生在观察的时候很难只看到一个面,会给教学带来不必要的麻烦。②使学生明确,这里所说的正面、左面和上面,都是相对于观察者而言的。教学时,教师可以让学生站在不同的位置说一说自己从这几个方向看到的分别是什么图形,进一步明确这一点。③教师还可以让学生从右侧面和背面观察这个物体,描述所看到的形状。
教师还可以提供一些其他的简单立体图形,如正方体、球、圆柱等,让学生从不同的方向观察,看一看观察到的是什么形状,为后面的学习做准备。2.例2及做一做。(1)例2。
教科书通过让学生观察两个简单立体图形组合的活动,学会辨认从不同方向观察到的两个物体的形状和相对位置。
前面学生学习的都是从不同方向观察一个物体,这里是进一步学习从不同方向观察两个物体的位置关系和形状。教学时,可以分以下几步进行。
①引导学生根据头脑中已有的从不同方向观察这些立体图形所得到的形状的表象,结合这两个物体的位置关系进行判断。如果学生有困难,教师可以提供相应实物,让学生通过观察进行判断。
②让学生实地进行观察,检验自己的判断是否正确。(2)做一做。
教科书呈现了从正面观察两个物体得到的一组图形,让学生判断可能是观察哪两个物体的组合得到的,进一步发展学生的空间观念。
根据从一个方向看到的图形,判断是哪两个物体要比给出两个物体,辨认从某一个方向看到的图形所要求的空间想像力和思维能力更高。教学时,可以将练习八中第2题作为基础,引导学生先想一想这两个立体图形可能是什么,并根据这两个平面图形的位置进行猜测,再验证。
3.有关练习八中习题的教材说明和教学建议。
第2题,让学生根据从一个方向看到的图形,判断所观察的物体是什么立体图形,使学生认识到从同一个方向观察不同形状的立体图形,得到的形状也可能是相同的;不能只根据一个方向看到的形状,就确定是什么立体图形,只有把从不同方向看到的形状进行综合,才能形成完整的表象。在教学例1时,已经提醒教师做了一些铺垫。这里教师可以引导学生先根据头脑中已经具有的从不同方向观察立体图形所得到的形状的表象进行猜测,再验证。进一步引导学生思考,如何再增加条件,使其他人能确定是什么立体图形。而且可以让学生仿照此题进行活动,加深学生的认识。第3题,是配合例2的练习。4.例3及相应的做一做。(1)例3。
教材呈现观察4个小正方体搭成的一个简单立体图形的活动,使学生进一步学习从不同的方向观察立体图形,发展学生的空间观念。教学时,可以分以下几步进行。
①让学生辨认从不同方向观察立体图形得到的平面图形。②让学生用4个小正方体在小组中摆出不同的立体图形,再指导学生从不同的方向进行观察。对观察的结果进行比较,并认识到从同一角度观察不同形状的立体图形,得到的平面图形可能是相同的,也可能是不同的。
③教师也可以逐步提出要求让学生进行拼摆,例如:用4个小正方体拼摆,先使从正面观察这个立体图形得到的图形与例题中的相同(会有无数种可能);再使从左面观察到的图形与例题相同(也有无数种可能);最后,使从上面观察到的图形与例题相同(只有一种可能)。在这个过程中教师可以不断提问能确定立体图形的形状了吗,使学生认识到仅仅依据从一个或两个方向看到的图形不能确定立体图形的形状。
教师还可以增加小正方体的数量,进行类似的活动,但注意数量不宜过多。(2)做一做。
教材呈现观察4个小正方体搭成的两个简单立体图形的组合的活动,使学生进一步学习辨认从不同方位观察到的两个物体的形状和相对位置。
教学时,可以让学生直接判断,如果学生有困难,教师可以提供相应的实物帮助学生判断。5.有关练习九一些习题的说明和教学建议。第1题,可以让学生直接判断。
第2题,呈现了从不同方位观察一个立体图形得到的三个图形,让学生用正方体搭出相应的立体图形。教师可以放手让学生自主探究,然后组织全班同学讨论交流拼搭的方法。注意引导学生有步骤、简洁地进行操作。例如:先根据从正面看到的图形进行拼摆,会有无数种摆法,教师应提醒学生选择比较简单的方式;再根据从左面和上面看到的图形对所拼搭的立体图形进行调整并完成。
第3题,让学生先摆出所给的立体图形,再在附页1的方格纸上画出从不同方向观察到的图形。如果有的学生凭借空间想像力直接画出这几个图形,也是可以的,但不要要求所有的学生都能达到这种水平。
第4题,让学生根据从一个方向看到的图形,判断所观察的物体是什么立体图形,使学生进一步认识到:不能只根据一个方向看到的形状,就确定是什么立体图形。如果搭成的图形从正面看是,最少需要3个正方体,还可能是4个、5个教师还可以让学生说一说或在方格纸上画出,从不同的方向观察自己所搭的立体图形得到的图形;还可以让学生小组活动,由一名学生增加所给的条件,使其他人能准确地摆出这个立体图形。
第5题,让学生根据从一个方向看到的图形,判断所观察的两个物体是如何拼搭的。根据所给的条件,可能有无数种搭法,教材中给出了两种。教学过程可以参考第4题。
第6*题,让学生联系生活经验进行辨认,使学生体会到同一景物在不同位置拍摄出来的画面不同。