人教版七年级上册数学 3.4 第1课时 产品配套问题和工程问题 优质教案

时间:2019-05-12 19:32:48下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《人教版七年级上册数学 3.4 第1课时 产品配套问题和工程问题 优质教案》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《人教版七年级上册数学 3.4 第1课时 产品配套问题和工程问题 优质教案》。

第一篇:人教版七年级上册数学 3.4 第1课时 产品配套问题和工程问题 优质教案

3.4 实际问题与一元一次方程

第1课时 产品配套问题和工程问题

教学目标:

1.掌握产品配套问题、工程问题中常见的数量关系.2.掌握用一元一次方程解决实际问题的基本过程.教学重点:弄清题意,用列方程解决实际问题.教学难点:寻找实际问题中的等量关系,建立数学模型.教学过程:

一、复习巩固 解下列方程

(1)10x-4(3-x)-5(2+7x)=15x-9(x-2);(2)3(2-3x)-3[3(2x-3)+3]=5;(3)(x+1)+(x+2)-3=-(x+3).二、提出问题,探究新知

问题1(课本P100例1):某车间有22名工人生产螺钉和螺母,每人每天平均生产螺钉1 200个或螺母2 000个,一个螺钉要配两个螺母.为了使每天的产品刚好配套,应该安排多少名工人生产螺钉,多少名工人生产螺母?

练习1:某水利工地派48人去挖土和运土,如果每人每天平均挖土5方或运土3方,那么应怎样安排人员,正好能使挖出的土及时运走?

问题2:要用20张白卡纸做包装盒,每张白卡纸可以做盒身两个或者做盒底盖3个.如果一个盒身和两个盒底盖可以做成一个包装盒,那么能否把这白卡纸分成两部分,一部分做盒身,一部分做盒底盖,使做成的盒身和盒底盖正好配套?请设计一种分法.(想一想:如果一张白卡纸可以适当的剪裁出一个盒身和一个盒底盖,那么,怎样分这些白卡纸,才能既使做出的盒身和盒底盖配套,又能充分地利用白卡纸?)

练习2:

(1)用白铁皮做罐头盒,每张铁皮可制盒身16个或制盒底43个,一个盒身与两个盒底配成一套罐头盒.现有100张白铁皮,用多少张制盒身,多少张制盒底,可以既使做出的盒身和盒底配套,又能充分地利用白铁皮?

(2)某车间每天能生产甲种零件120个,或者乙种零件100个.甲、乙两种零件分别取3个、2个才能配成一套.要在30天内生产最多的成套产品,问怎样安排生产甲、乙两种零件的天数? 教学过程:

问题3:课本P100例2:

整理一批图书:由一个人做要40 h完成.现计划由一部分人先做4 h,然后增加2人与他们一起做8 h,完成这项工作.假设这些人的工作效率相同,具体应先安排多少人工作?

1.逐句阅读题目,熟悉题中已知条件,回答问题:(1)由一个人要做40小时完成,这句话的作用?(2)根据题意,整项工作分成几部分?(3)借助线段图进一步理解题意.2.根据线段图,题目反映的相等关系是什么? 3.设未知数,列方程解答.4.例题变式练习:

(1)整理一批图书,由一个人做要40 h完成,现计划由一部分人先做4 h,然后增加2人与他们一起做6 h,完成这项工作的,假设这些人的工作效率相同,具体应先安排多少人工作?

(2)整理一批图书,由一个人做要40 h完成,现计划由2人先做4 h,然后增加若干人与他们一起又做4 h完成了这项工作,问增加了多少人?

三、归纳总结

1.归纳:用一元一次方程解决实际问题的基本过程.2.学生独立练习:(有困难的个别指导)(1)课本P101练习第2题

(2)货车早上6:40从A城出发,15:40到达B城,一辆客车上午8:00从A城出发,14:00到达B城.求客车追上货车是什么时刻?

提示:①由已知条件如何表示出货车与客车的速度?

②当客车在途中追上货车时,两车的行驶时间有什么关系?行驶路程有什么关系? ③以什么量为未知数,什么量为相等关系列方程,求出方程的解后又如何求解题目问题.强调:弄清货车与客车出发时间的先后,与到达时间的先后,以理解题意.四、课时小结

通过以下问题引导学生反思小结:

1.通过这节课的学习,你有什么收获?

2.在解决配套、分配等问题方面你获得了哪些经验?这些问题中的相等关系有什么特点?

五、课堂作业

课本P101练习第1题,P106习题3.4第2、3题.课本P106第4、5题.

第二篇:苏科版数学七年级上册3.4合并同类项(第2课时)教案

课题:3.4 合并同类项(第2课时)

教学目标:

1.了解同类项的概念,能识别同类项.2.会合并同类项,并将数值代入求值.3.知道合并同类项所依据的运算律.教学重点:会合并同类项,并将数值代入求值.教学难点:知道合并同类项所依据的运算律.教学过程:

一、创设情境

1.所含字母相同,并且相同字母的指数相同,向这样的项是同类项.2.把同类项合并成一项叫做合并同类项.3.合并同类项的法则:同类项的系数相加,所得的结果作为系数,字母和字母的指数不变.二、探索新课: 1.例2 合并同类项5m3-3m2n-m3+2nm2-7+2m3中的同类项.解:5m3-3m2n-m3+2nm2-7+2m

3=(5m3-m3+2m3)+(-3m2n+2m2n)-7

=(5-1+2)m3+(-3+2)m2n-7

=6m3-m2n-7 2.做一做:

求代数式2x3-5x2+x3+9x2-3x3-2的值,其中x=1.与同学交流你的做法.解:2x3-5x2+x3+9x2-3x3-2

=2x3+x3-3x3-5x2+9x2-2

=(2+1-3)x3+(-5+9)x2-2

=4x2-2 当x=1时

原式=4×12-2=4-2=2 3.总结:

求代数式的值时,如果代数式中含有同类项,通常先合并同类项再代入数值进行计算.4.练一练: P97 练一练1、2 P98 1.合并同类项:(1)a2-3a+5+a2+2a-1

(2)-2x3+5x2-0.5x3-4x2-x3(3)5a2-2ab+3b2+ab-3b2-5a2(4)5x3-4x2y+2xy2-3x2y-7xy2-5x3 2.求下列各式的值:

(1)6y2-9y+5-y2+4y-5y2,其中y3 51 2(2)3a2+2ab-5a2+b2-2ab+3b2,其中a=-1,b

三、小结

本节课你学到了哪些知识?

四、布置作业 P98 习题3.4 3、5

五、教后反思

第三篇:五年级上册数学第3课时植树问题

第7单元 数学广角——植树问题

第2课时 植树问题(3)

教学目标:

1.运用转化的方法,使学生理解在一条首尾封闭的曲线上植树所需棵数与间隔数“一一对应”的数学模型。

2.进一步培养学生在解决实际问题中探索规律,找出解决问题的有效方法的能力,以及抽取数学模型的能力。

教学重点:理解在一条首尾相接的封闭曲线上植树的基本数学模型。

教学难点:培养学生在解决实际问题中探索规律,找出解决问题的有效方法的能力。

教学过程:

一、谈话引入,复习旧知

教师:在前面两节课中,我们共同探讨了在一条线段上植树的问题,还运用发现的规律解决了许多生活中的实际问题。谁来帮助大家一起回顾这些知识?

预设:在一条线段上植树可以分成三种情况:两端都栽时,棵数比间隔数多1;两端都不栽时,棵数比间隔数少1;一端栽一端不栽时,棵数和间隔数相等。

教师:在解决复杂问题时,我们是怎么做的?

预设:可以先给出一个猜测,要判断这个猜测对不对,可以从简单的事例中发现规律,再应用找到的规律来解决原来的问题。

教师:同学们对已学知识掌握得很好!今天这节课,我们要一起来研究植树问题中的另一种情况。

二、自主探索,学习新知

1.出示情境,展开探索

例3:张伯伯准备在圆形池塘周围栽树。池塘的周长是120 m,如果每隔10 m栽一棵,一共要栽多少棵树?

教师:这道题与前面学习的植树问题相比,有什么相同和不同的地方?

预设:不同之处在于前面学习的是在线段上植树的问题,这道题是在一个圆形周围植树。(教师追问1:线段是怎样的?圆形又是怎样的?)线段是直的,圆形是一条曲线。(教师追问2:一条什么样的曲线?)

逐步引导得出:一条首尾相接的封闭曲线。

预设:相同之处是,都是已知长度和间隔距离。

教师:你能联系已经学过的知识,自主解决“一共要栽多少棵树”的问题吗?

学生独立思考,讨论汇报。

2.概括归纳,得出模型

教师:大家想到了用什么方法来解决问题?(画图)120 m的长度太长了,怎么办?(先用简单的数据试一试)

(1)以周长为40 m的圆为例,通过下图得知,能栽4棵树。

(2)如果把圆拉直成线段,你能发现什么?

预设:相当于在线段上植树的问题中“一端栽一端不栽”的情况。

(3)我们还可以用这样的方式来理解。

引导得出:植树的棵数与间隔数“一一对应”。

教师:利用发现的知识,你能解决例3的问题吗?(出示:池塘的周长是120 m?)

120÷10=12(棵)

答:一共要栽12棵树。

教师:谁能完整地概括一下刚才的发现?

预设:在一条首尾相接的封闭曲线上植树,所需棵数与间隔数“一一对应”,相当于在线段上植树的一端栽一端不栽的情况。

三、课堂练习,巩固强化

教师:运用刚才的发现,解决以下实际问题。

1.圆形滑冰场的一周全长是150 m。如果沿着这一圈每隔15 m安装一盏灯,一共需要装几盏灯?

150÷15=10(盏)

答:一共需要装10盏灯。

教师:你能利用题目中的数据编出一道在线段上植树(一端栽一端不栽)的问题吗?

学生练习,交流汇报。

2.一条项链长60 cm,每隔5 cm有一颗水晶。这条项链上共有多少颗水晶?

教师:这题与我们学习的植树问题的知识有关联吗?属于哪一种情况?(在一条首尾相接的封闭曲线上植树)你能说说在这题中谁与谁“一一对应”吗?(水晶的颗数与间隔数)

练习校对:60÷5=12(颗)

答:这条项链上共有12颗水晶。

四、拓展延伸,灵活应用

小区花园是一个长60 m,宽40 m的长方形。现在要在花园四周栽树,四个角上都要栽,每相邻两棵间隔5 m。一共要栽多少棵树?

教师:仔细读题并思考,这题与我们今天学习的内容有什么不同?(是在长方形的四周植树)你能运用画图的方法找到这类问题中隐藏的规律吗?

独立思考,合作交流。

预设1:可以先求出花园的周长,再按照棵数和间隔数一一对应的方法来求。(追问:这种方法跟我们今天这节课学习的内容是?)相同的。(60+40)×2=200(m)200÷5=40(棵)

答:一共要栽40棵树。

教师:这样的方法栽树能够保证四个角上都有树吗?为什么?(能够保证,因为长和宽都是5的倍数)

预设2:也可以分别求四条边上各栽多少棵,再求一共栽多少棵。(追问:用这种方法求的时候,要特别注意什么?)四个角上的树不能重复计算。

教师:那我们可以把4条边都当作一端栽一端不栽的情况来求。(你能自己画一画吗?)

60÷5×2=24(棵)40÷5×2=16(棵)24+16=40(棵)

答:一共要栽40棵树。

五、全课总结,畅谈收获

教师:通过这一节的学习,你有什么收获?跟大家交流一下。

根据学生回答,强调:在一条首尾相接的封闭曲线上植树,所需棵数和间隔数“一一对应”,相当于在线段上植树的问题中一端栽一端不栽的情况。

板书设计:

教学反思:

植树问题

一端不栽 间隔数=棵树

第四篇:人教版七年级上册数学 1.3.2 第1课时 有理数的减法法则 优质教案

1.3.2有理数的减法 第1课时 有理数的减法法则

教学目标:

1.经历探索有理数减法法则的过程,理解有理数减法法则.2.会熟练进行有理数减法运算.教学重点:有理数减法法则和运算.教学难点:有理数减法法则的推导.教与学互动设计

(一)创设情景,导入新课 观察温度计:

你能从温度计看出4℃比-3℃高出多少度吗?

学生普遍能直观地看出4℃比-3℃高7℃,进一步地假定某地一天的气温是-3~4℃,那么温差(最高气温减最低气温,单位℃)如何用算式表示?

按照刚才观察到的结果,可知4-(-3)=7 ①,而4+(+3)=7 ②,∴由①②可知:4-(-3)=4+(+3)③,上述结论的获得应放手让学生回答.(二)动手实践,发现新知

观察、探究、讨论:从③式能看出减-3相当于加哪个数吗? 结论:减去-3等于加上-3的相反数+3.(三)类比探究,总结提高

如果将4换成-1,还有类似于上述的结论吗?

先让学生直观观察,然后教师再利用“减法是与加法相反的运算”引导学生换一个角度去验算.计算(-1)-(-3)就是要求一个数x,使x与-3相加得-1,因为2与-3相加得-1,所以x应是2,即(-1)-(-3)=2 ①,又因为(-1)+(+3)=2 ②, 由①②有(-1)-(-3)=-1+(+3)③, 即上述结论依然成立.试一试:如果把4换成0、-5,用上面的方法考虑0-(-3),(-5)-(-3),这些数减-3的结果与它加上+3的结果相同吗?

让学生利用“减法是加法的相反运算”得出结果,再与加法算式的结果进行比较,从而得出这些数减-3的结果与它们加+3的结果相同的结论.再试:把减数-3换成正数,结果又如何呢? 计算9-8与9+(-8);15-7与15+(-7)从中又能有新发现吗?

让学生通过计算总结如下结论:减去一个正数等于加上这个正数的相反数.归纳:由上述实验可发现,有理数的减法可以转化为加法来进行.减法法则:减去一个数,等于加上这个数的相反数.用字母表示:a-b=a+(-b).(在上述实验中,逐步渗透了一种重要的数学思想方法——转化)(四)例题分析,运用法则 【例】计算:

(1)(-3)-(-5);

(2)0-7;(3)7.2-(-4.8);(4)-3-5.(五)总结巩固,初步应用 总结这节课我们学习了哪些数学知识和数学思想?你能说一说吗?

教师引导学生回忆本节课所学内容,学生回忆交流,教师和学生一起补充完善,使学生更加明晰所学的知识.

第五篇:3.4 实际问题与一元一次方程(第1课时) 同步练习—人教版数学七年级上册(含答案)

3.4 实际问题与一元一次方程(第1课时)

1.某车间有26名工人,每人每天可以生产800个螺钉或1000个螺母,1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套.设安排x名工人生产螺钉,则下面所列方程正确的是()

A.2×1000(26-x)=800x

B.1000(13-x)=800x

C.1000(26-x)=2×800x

D.1000(26-x)=800x

2.某项工程甲单独做4天完成,乙单独做6天完成.若甲先做1天,然后甲、乙合作完成此项工作,若设甲一共做了x天,则所列方程()

A.+=1     B.+=1

C.+=1     D.++=1

3.要修一段长1210米的路,由甲乙两施工队从两端同时施工,已知甲队每小时修130米,乙队每小时修90米,则修完这段路需()

A.5小时

B.5.5小时

C.6小时

D.6.6小时

4.某土建工程共需动用15台挖运机械,每台机械每小时能挖土3m3或者运土2m3,为了使挖土和运土工作同时结束,安排了x台机械运土,这里x应满足的方程是()

A.2x=3(15-x)

B.3x=2(15-x)

C.15-2x=3x

D.3x-2x=15

5.一项工程,甲队单独完成需要20天,乙队单独完成需要30天.若先由甲队单独做5天,则剩下部分由甲、乙两队合作完成还需要的天数是()

A.9      B.10      C.12     D.15

6.有一个专项加工茶杯车间,一个工人每小时平均可以加工杯身12个,或者加工杯盖15个,车间共有90人.安排加工杯身的人数为多少时,才能使生产的杯身和杯盖正好配套?

直接设法:设安排加工杯身的工人为x人,则加工杯盖的工人为____________人,每小时加工杯身____________个,杯盖____________个,则可列方程为____________,解得x=____________.

间接设法:设共加工杯身x个,共加工杯盖x个,则加工杯身的工人为____________人,加工杯盖的工人为____________人,则可列方程为_________________________.解得x=________.故加工杯身的工人为____________人.

7.限期完成一项工程,甲队单独做4天可完成,乙队则需10天完成,现甲队工作2天后,余下的由乙队去做,正好按期完成,问原计划需多少天完成?设原计划需x天完成,则甲队完成了________,乙队完成了________,由题意列方程为____________________,解得x=________.

8.学校大扫除,某班原分成两个小组,第一组26人打扫教室,第二组22人打扫包干区.这次根据工作需要,要使第二组人数是第一组人数的2倍,那么应从第一组调多少人到第二组?

9.用白铁皮做罐头盒,每张铁皮可制盒身16个或盒底43个,一个盒身与两个盒底配成一套罐头盒,现有150张白铁皮,用多少张制盒身,多少张制盒底,可以正好制成整套罐头盒?

10.一个水池,有甲、乙、丙三个水管,甲、乙是入水管,丙是排水管.单开甲管16分钟可以将水池注满,单开乙管10分钟可将水池注满,单开丙管20分钟可将全池水放完.现在先开甲、乙两管,4分钟后关上甲管开丙管,问又经过几分钟才能将水池注满?

11.一项工程,甲独立完成需要10天,乙独立完成需要15天,现在两人合作,完工后,厂家共付给450元,如果按完成工程量的多少分配,则甲乙两人各分得()

A.250元,200元     B.260元,190元

C.265元,185元     D.270元,180元

12.两根同样长的蜡烛,粗烛可燃烧4小时,细烛可燃烧3小时.一次停电,同时点燃两根蜡烛,来电后同时吹灭,发现剩余的粗蜡烛长度是剩余的细蜡烛长度的2倍,则停电时间为________小时.

13.机械厂加工车间有85名工人,平均每人每天加工大齿轮16个或小齿轮10个,已知2个大齿轮与3个小齿轮配成一套,问需分别安排多少名工人加工大、小齿轮,才能使每天加工的大小齿轮刚好配套?

14.用正方形硬纸板做三棱柱盒子,每个盒子由3个长方形侧面和2个等边三角形底面组成,硬纸板以如图两种方法裁剪(裁剪后边角料不再利用).A方法:剪6个侧面;B方法:剪4个侧面和5个底面.

现有19张硬纸板,裁剪时x张用A方法,其余用B方法.

第14题图

(1)用x的式子分别表示裁剪出的侧面和底面的个数;

(2)若裁剪出的侧面和底面恰好全部用完,问能做多少个盒子?

15.抗震救灾,重建家园.为了修建在地震中受损的一条公路,若由甲工程队单独修建需3个月完成,每月耗资12万元;若由乙工程队单独修建需6个月完成,每月耗资5万元.

(1)请问甲、乙两工程队合作修建需几个月完成?共耗资多少万元?

(2)若要求最迟4个月完成修建任务,请你设计一种方案,既保证按时完成任务,又最大限度节省资金.(时间按整月计算)

参考答案

1—5.CCBAA

6.(90-x)12x 15(90-x)12x=15(90-x)50

+=90 600 50

7.+=1 7

8.设从第一组调x人到第二组.依题意列方程x+22=2(26-x),解得x=10.9.设x张制盒身,则(150-x)张制盒底,依题意可列方程:16x×2=43(150-x),解方程得,x=86,故150-x=64.答:用86张制盒身,64张制盒底,可以正好制成整套罐头盒.10.设又经过x分钟才能将水池注满.

得++(-)x=1,解得x=7.答:又经过7分钟才能将水池注满.

11.D

12.2.4

13.设安排x名工人加工大齿轮,则有(85-x)名工人加工小齿轮,由题意,得3×16x=2×[10×(85-x)],解得x=25,∴85-25=60(名).答:安排25名工人加工大齿轮,60名工人加工小齿轮才能使每天加工的大小齿轮刚好配套.

14.(1)侧面:6x+4(19-x)=2x+76,底面:5(19-x)=95-5x.(2)由题意可知:2(2x+76)=3(95-5x),解得x=7,(2×7+76)÷3=30.答:能做30个盒子.

15.(1)设甲、乙两工程队合作需x个月完成,由题意,得x=1,解得x=2.(12+5)×2=34(万元).答:甲、乙两工程队合作修建需要两个月完成,共耗资34万元.

(2)设甲、乙合作y个月,剩下的由乙来完成.则

y+=1,解得y=1.故甲、乙合作1个月,剩下的由乙来做3个月就可以.

下载人教版七年级上册数学 3.4 第1课时 产品配套问题和工程问题 优质教案word格式文档
下载人教版七年级上册数学 3.4 第1课时 产品配套问题和工程问题 优质教案.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐